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Abstract: Bluecat is a recently proposed methodology to upgrade a deterministic model (D-model)
into a stochastic one (S-model), based on the hypothesis that the information contained in a time
series of observations and the concurrent predictions made by the D-model is sufficient to support
this upgrade. The prominent characteristics of the methodology are its simplicity and transparency,
which allow its easy use in practical applications, without sophisticated computational means. In
this paper, we utilize the Bluecat methodology and expand it in order to be combined with climate
model outputs, which often require extrapolation out of the range of values covered by observations.
We apply the expanded methodology to the precipitation and temperature processes in a large area,
namely the entire territory of Italy. The results showcase the appropriateness of the method for
hydroclimatic studies, as regards the assessment of the performance of the climate projections, as
well as their stochastic conversion with simultaneous bias correction and uncertainty quantification.

Keywords: Bluecat; climate models; stochastics; uncertainty

1. Introduction

Hydrologists often need to consider in their studies climate projections for the future.
Such need comes from concerns about the future climate, the idea that “stationarity is
dead” [1] (which has, however, been disputed, e.g., [2,3]), and the obligation to use climate
predictions for the technical design of climate adaptation strategies. There is no doubt
that the future climate will change (as ever) and, therefore, the assessment of the techni-
cal performances of climate models at local temporal and spatial scales is an important
research topic [4–10].

For the above reasons, methods for extracting useful technical information from
climate models are attracting increasing attention. In this respect, Tyralis and Koutsoyian-
nis [11] have developed a Bayesian methodology for extracting such information and
providing a stochastic framework of the future climate based on observations, on the one
hand, and conditional on climate model outputs, on the other hand.

However, this methodology is rather complicated, which prohibits its use by prac-
titioners. In this paper, we provide a simple methodology that can be applied without
sophisticated computational means. The methodology stems from hydrological modelling—
in particular from deterministic hydrological models that are upgraded to stochastic ones
(see Section 2). In this study, we illustrate the methodology in hydroclimatic applications,
in which the deterministic models are climate models (also known as general circulation
models), while the stochastic model is built upon reanalysis data representing reality; both
model outputs and reanalysis data are readily provided on the internet (Section 3). Climate
models provide outputs for atmospheric variables, such as temperature and precipitation,
which, in turn, are used as inputs in hydrological modelling. Therefore, the usefulness
of the study relies on (a) the assessment of how well climate model outputs represent
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reality, (b) the correction of the model outputs to approach reality, (c) the assessment of the
involved uncertainty by means of comparing model outputs to reality (instead of the more
common practice of comparing different models with each other), and (d) the potential
of supporting the construction of a stochastic representation of climate inputs for use in
hydrologic modelling. This usefulness with respect to items (a)–(c) is illustrated by the ap-
plication of the methodology to a large area, namely, the entire territory of Italy (Section 4),
while a study focused on item (d) is planned for future research.

2. Bluecat and Its Expansion to Deal with Climate Projections

Hydrological models are transformations of inputs xτ (e.g., rainfall) at a discrete time
τ to outputs Qτ (e.g., river discharge) by means of a model, expressed as:

Qτ = G(xτ) (1)

where xτ is a vector containing a number of consecutive input variables, or even a matrix
consisting of several input variables (such as rainfall, evapotranspiration and perhaps river
discharge in an upstream basin). The transformation function is generally a complicated
one, also involving additional state variables (e.g., soil moisture).

Climate models do not differ from this logic, even though they are much more com-
plicated. A model is never identical to reality and, thus, the true value of the output qτ is
different from the model prediction Qτ .

In their blueprint, Montanari and Koutsoyiannis [12] provided a framework to up-
grade a deterministic model into a stochastic one, which provides the probability distri-
bution of the output given the inputs and the deterministic model output, considering
the uncertainty in the model parameters and in input variables. This work has been
discussed [13,14] and advanced in other studies [15–17].

In a recent follow-up paper, Koutsoyiannis and Montanari [18] proposed a simple,
easy-to-use and transparent methodology to upgrade a deterministic model into a stochas-
tic one based on the data only, which they named Bluecat. The basic hypothesis is that
the information contained in the true outputs qτ and the concurrent predictions by the
deterministic model Qτ is sufficient to support this upgrade. Simplicity is a primary
objective of this methodology, which does not involve multiple simulations, likelihood
estimation, Bayesian methods, etc. Rather, it uses a computational framework that can
run even in a worksheet software. In this paper, we utilize this latter methodology and
expand it in order to be combined with climate model outputs, which often require ex-
trapolation out of the range of values covered by observations. The need for extrapolation
emerges when projections to future time periods are of interest and, in particular, when
modelling includes atmospheric temperature, for which almost all climate models suggest
a future increase.

In upgrading a deterministic model into a stochastic one, all related quantities should
be regarded as stochastic (random) variables and their sequences as stochastic processes.
For notational clarity, we underline stochastic variables, stochastic processes and stochastic
functions. We use non-underlined symbols for regular variables and deterministic functions,
as well as for realizations of stochastic variables and of stochastic processes, where the
latter realizations are also known as time series.

We assume that the inputs xτ , at discrete times τ, have a stationary probability density
function fx(x) and distribution function Fx(x). The output q

τ
depends on the inputs xτ

and is given though some stochastic function (S-model) as:

q
τ
= g(xτ) (2)

The stochastic process q
τ

is assumed to correspond to the real process, while the
outcome of the deterministic model (D-model) of Equation (1) is an estimate thereof. By
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writing the latter equation in stochastic terms, retaining, however, the function G
(
6= g

)
as

a deterministic function, we obtain the estimator Q
τ

of the output q
τ

as:

Q
τ

:= G(xτ) (3)

To advance from the D-model, in its form (3), to the S-model in (2), we just need to
specify the conditional distribution:

Fq|Q(q|Q) = P
{

q ≤ q
∣∣∣Q = Q

}
(4)

with q and Q assumed to be concurrent and referring to discrete time τ. In other words, in
this paper, conditioning is meant in scalar setting. An extension where Q is a vector con-
taining the current and earlier predictions by the D-model is possible, but more laborious,
thus not complying with our simplicity target.

It is relatively easy to infer from data the marginal distribution and density functions
of the S-variable q and D-predicted variable Q. Therefore, we may assume that fq(q) and
fQ(Q) are known. Specifically, if we have a time series of concurrent Q and q, each of size
n, and if Q(i:n) is the ith smallest value in the time series of Q and q(j:n) is the jth smallest
value in the time series of q, then we can use the approximations:

FQ

(
Q(i:n)

)
≈ i− 0.439

n + 0.123
, Fq

(
q(j:n)

)
≈ j− 0.439

n + 0.123
(5)

which provide an unbiased estimate of the logarithm of the excess return period, or,
equivalently, the quantity − ln(F/(1− F)) (adapted from Koutsoyiannis [19], Table 5.5).

Then, the conditional density sought should obey [18]:

∞∫
−∞

fq|Q(q|Q)dq = 1,
1∫

0

fq|Q

(
q
∣∣∣F−1

Q (z)
)

dz = fq(q),
1∫

0

Fq|Q

(
q
∣∣∣F−1

Q (z)
)

dz = Fq(q) (6)

However, determining Fq|Q(q|Q) from the data alone without assuming a specific
expression for the distribution is not that easy. As the variables of interest are usually of
continuous type, we may expect that each value Qτ in the available time series appears
only once. Thus, we cannot form a sample for a particular value of Q. Koutsoyiannis
and Montanari [18] proposed the following simple approximation of Fq|Q(q|Q), by using a
sample of Q-neighbours:

Fq|Q(q|Q) = P
{

q ≤ q
∣∣∣Q = Q

}
≈ P

{
q ≤ q

∣∣∣Q− ∆Q1 ≤ Q ≤ Q + ∆Q2

}
= P

{
q ≤ q

∣∣∣FQ(Q)− ∆F1 ≤ FQ
(
Q
)
≤ FQ(Q) + ∆F2

}
=: Fq|[Q](q|Q, ∆F1, ∆F2)

(7)

where the increments ∆Qi and ∆Fi can be chosen based on the requirement that the intervals
below and above the values Q (or FQ(Q)) contain appropriate numbers of data values,
m1 := ∆F1n and m2 := ∆F2n, respectively. The numbers m1 and m2 should not be too
large, so that FQ(Q) ± ∆F1,2 be close to FQ(Q), nor too small, so that the probability

P
{

q ≤ q
∣∣∣FQ(Q)−m1/n ≤ FQ

(
Q
)
≤ FQ(Q) + m2/n

}
can be estimated empirically, from

a sample of size m1 + m2 + 1, as reliably as possible. Koutsoyiannis and Montanari [18]
generally used ∆F1 = ∆F2 = ∆F and, hence, m1 = m2 = m, except for the m lowest and the
m highest values of Q, for which they developed a special procedure, which nonetheless is
not able to extrapolate beyond the lowest and highest Q values.
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In this paper, we modify the procedure, with the aim to extrapolate beyond the range
of Q values. First, we generalize the use of equal sizes of the left and right subsamples, i.e.,
m1 = m2 = m, so that the subsample [Q] always have size 2m + 1. Similar to Equation (5),

Fq(i:2m+1) |[Q](q|Q) =
i− 0.439

2m + 1 + 0.123
(8)

For example, setting m = 50, i.e., 2m + 1 = 101, the lowest empirical probabil-
ity we can estimate would be 0.55% and the highest one would be 99.45% for i = 1
and 101, respectively. However, these estimates are too uncertain; a more reasonable
choice for m = 50 would be i = 5 and 97, resulting in probability estimates 4.5% and
95.5%, respectively.

Apparently, this procedure cannot work for Q < Q(m+1:n) and Q > Q(n−m:n). For
these cases, we choose a constant c 6= 1, so that Q(m+1:n) ≤ cQ ≤ Q(n−m:n) and estimate
the conditional distribution by enrolling the relationship

Fq|Q(q|Q) ≈ Fq|Q(q + a(1− 1/c)cQ|cQ) (9)

where a is a parameter representing a regression slope between Q and q. It can be shown
that Equation (9) is precisely valid if the process of interest is Gaussian. If not, it can be used
as an approximation. The approximation can be improved by transforming the processes
to Gaussian, e.g., using the transformation

q′ = λ ln
(

1 +
q
λ

)
(10)

where q and q′ are original and transformed variables, respectively (and likewise for Q),
and λ is a parameter. For λ→ ∞ and λ→ 0 , Equation (10) becomes equivalent to the
identity and the logarithmic transform, respectively. Yet, in comparison to the standard
logarithmic transform, Equation (10) has the advantage that it maps zero to itself.

If QL and QH are the lowest and highest values for which estimates are sought; then,
we define two values cL and cH, so that cLQL = Q(m+1:n), cHQH = Q(n−m:n). Likewise,
we estimate two values (slopes) aL and aH by regression on the lowest and highest part
(say quarter or third) of the entire sample of size n. Using the values cL, cH, aL, aH along
with Equation (9), we are able to extrapolate below and above the values Q(m+1:n) and
Q(n−m:n), respectively.

Bluecat has been tested in synthetic cases with a priori known conditional and marginal
distributions [20] as well as in real-world hydrological modelling cases [18]. The results
have been satisfactory as it always succeeds in its two targets, namely:

• To appropriately correct the D-model bias, which may differ for different ranges of Q;
• To infer the model uncertainty in terms of confidence bands, whose width may also

differ for different ranges of Q.

A schematic representation of the expanded Bluecat method is shown in Figure 1.
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Figure 1. Schematic representation of the expanded Bluecat method.

3. Data

To apply Bluecat in combination with climate models, we chose as a case study area the
entire territory of Italy. The reason we chose a big area, rather than a more hydrologically
relevant unit, such as a specific catchment, is the known fact [8,10] that the performance
of climate models improves by increasing the spatial scale. As case study variables of
hydrological interest, we chose temperature and precipitation, both averaged in terms of
area across the entire Italian territory.

As actual values of the processes of interest, we regarded those provided by the
NCEP-NCAR Reanalysis 1 [21], jointly produced by the National Centers for Environ-
mental Prediction (NCEP) and the National Center for Atmospheric Research (NCAR).
Its temporal coverage includes 4-times daily, daily and monthly values from 1948 to
the present at a horizontal resolution of 1.88◦ (~210 km at the equator). It uses a state-
of-the-art analysis/forecast system to perform data assimilation using observations and
a numerical weather prediction model. The data assimilation and the model used are
identical to the global system implemented operationally at NCEP, except in the hori-
zontal resolution. A large subset of these data is available as daily and monthly averages
(https://www.esrl.noaa.gov/psd/cgi-bin/data/testdap/timeseries.pl; accessed on 25 Febru-
ary 2022). The data were retrieved from the climexp platform (http://climexp.knmi.nl/,
section: monthly reanalysis fields; accessed 25 on February 2022), using as a geographical
mask that of Italy, readily provided by the platform. The time series are plotted in Figure 2
(temperature) and Figure 3 (precipitation) for their entire time period (1948–2021).

https://www.esrl.noaa.gov/psd/cgi-bin/data/testdap/timeseries.pl
http://climexp.knmi.nl/


Hydrology 2022, 9, 86 6 of 16
Hydrology 2022, 9, x  6 of 17 
 

 

 

 

 

Figure 2. Comparison of the actual and D-model temperature data: (upper) original monthly data; 

(middle) after the aggregation to annual scale; (lower) after the subtraction of monthly means to 

reduce the effect of periodicity. 

0

5

10

15

20

25

30

1940 1950 1960 1970 1980 1990 2000 2010 2020

M
ea

n
 m

o
n

th
ly

 t
em

p
er

at
u

re
 (

°C
)

Year

Actual - from reanalysis Predicted - from climate models

R² = 0.96

12.5

13

13.5

14

14.5

15

15.5

16

1940 1950 1960 1970 1980 1990 2000 2010 2020

M
ea

n
 a

n
n

u
al

 t
em

p
er

at
u

re
 (

°C
)

Year

Actual - from reanalysis Predicted - from climate models

R² = 0.26

-5

-4

-3

-2

-1

0

1

2

3

4

1940 1950 1960 1970 1980 1990 2000 2010 2020

Te
m

p
er

at
u

re
 d

if
fe

re
n

ce
 

fr
o

m
 m

o
n

th
ly

 m
aa

n
 (

°C
)

Year

Actual - from reanalysis Predicted - from climate models

R² = 0.02

Figure 2. Comparison of the actual and D-model temperature data: (upper) original monthly data;
(middle) after the aggregation to annual scale; (lower) after the subtraction of monthly means to
reduce the effect of periodicity.



Hydrology 2022, 9, 86 7 of 16
Hydrology 2022, 9, x  7 of 17 
 

 

 

 

Figure 3. Comparison of actual and D-model precipitation data: (upper) original monthly data; 

(lower) after aggregation to annual scale. 

As a deterministic model, we used the mean of the output data of the Coupled Model 

Intercomparison Project (CMIP6), noting that nothing would change in the methodology 

if we chose any particular member of the ensemble instead of the mean. Among the sce-

narios provided, we use the Scenario Shared Socio-Economic Pathways 245 (SSP245). The 

model outputs also go back to the past, extending over the time period of 1850–2100. They 

have again been accessed through the climexp platform (option: Monthly CMIP6 scenario 

runs; Case: CMIP6 mean). 

A comparison of the model outputs for temperature is shown in Figure 2 for the com-

mon period of the datasets. In the upper panel, depicting the monthly data, it appears that 

the model agrees well with the actual temperature, with a very high coefficient of deter-

mination (𝑅2 = 0.96). This results from the fact that the model captures the annual perio-

dicity, as materialized at the specific geographical location of Italy. If we average the pro-

cess at the annual scale to eliminate the effect of periodicity (middle panel), then the agree-

ment between the two datasets deteriorates (𝑅2 = 0.26). In particular, in recent years, the 

models predicted a considerable temperature increase, which however does not corre-

spond to reality. The lower panel of the Figure 2 also shows a comparison after reducing 

0

1

2

3

4

5

6

7

8

9

1940 1950 1960 1970 1980 1990 2000 2010 2020

M
ea

n
 m

o
n

th
ly

 p
re

ci
p

it
ai

o
n

 (
m

m
/d

)

Year

Actual - from reanalysis Predicted - from climate models

R² = 0.03

0

0.5

1

1.5

2

2.5

3

3.5

4

1940 1950 1960 1970 1980 1990 2000 2010 2020

M
ea

n
 a

n
n

u
al

 p
re

ci
p

it
at

io
n

 (
m

m
/d

)

Year

Actual - from reanalysis Predicted - from climate models

R² = 0.03

Figure 3. Comparison of actual and D-model precipitation data: (upper) original monthly data;
(lower) after aggregation to annual scale.

As a deterministic model, we used the mean of the output data of the Coupled Model
Intercomparison Project (CMIP6), noting that nothing would change in the methodology if
we chose any particular member of the ensemble instead of the mean. Among the scenarios
provided, we use the Scenario Shared Socio-Economic Pathways 245 (SSP245). The model
outputs also go back to the past, extending over the time period of 1850–2100. They have
again been accessed through the climexp platform (option: Monthly CMIP6 scenario runs;
Case: CMIP6 mean).

A comparison of the model outputs for temperature is shown in Figure 2 for the
common period of the datasets. In the upper panel, depicting the monthly data, it appears
that the model agrees well with the actual temperature, with a very high coefficient of
determination (R2 = 0.96). This results from the fact that the model captures the annual
periodicity, as materialized at the specific geographical location of Italy. If we average
the process at the annual scale to eliminate the effect of periodicity (middle panel), then
the agreement between the two datasets deteriorates (R2 = 0.26). In particular, in recent
years, the models predicted a considerable temperature increase, which however does
not correspond to reality. The lower panel of the Figure 2 also shows a comparison
after reducing the effect of periodicity, but at the monthly scale; this was performed
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by subtracting the original values from the actual monthly means. Now, the D-model
data show little correspondence to reality (R2 = 0.03). Yet, the Bluecat method can be
applied without problems, as it has been tested even with D-models that are irrelevant
to reality. Specifically, it was demonstrated [20] that, even in this case, Bluecat corrects
the bias and properly evaluates uncertainty (which obviously is high, if the D-model is
irrelevant to reality).

Likewise, Figure 3 shows similar comparisons for precipitation. Now, the agreement
of D-model with reality is poor both on the annual and the monthly scale (R2 = 0.03).
In particular, at the monthly scale, the D-model exhibits very low variability and, at
the annual scale, it shows a horizontal line of stagnancy, which is different from what
actually happens.

4. Results

For the temperature case, we applied Bluecat to the monthly differences from the
means to avoid the construction of a more complex cyclostationary version of Bluecat,
which would substantially reduce the available size of the dataset (e.g., in a monthly
cyclostationary model, we would have 1/12 of the data for each month). Figure 4 shows
the results of the application of Bluecat to the temperature data. The graph depicts the
true value and the S-prediction in terms of confidence limits vs. the D-prediction. The
median S-prediction is also shown. The confidence limits are for a confidence coefficient of
90% (F = 0.05 and 0.95 for the low and high prediction, respectively). With reference to
Equation (8), to estimate the value corresponding to a certain F, we solved the equation for i
and rounded it to the nearest integer, and then calculated the q value as that corresponding
to the ith smallest value in the sample of 2m + 1 values. If the D-model was a good
representation of reality, the median line would be close to the equality line and the
confidence band would be narrow. In contrast, a totally irrelevant representation would
result in a horizontal straight line with a wide confidence band. Here the situation is in
between these two extreme cases. Yet, the performance of the D-model is not very good as
the equality line is not enveloped by the confidence limit for high Q-predictions.
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Therefore, as shown in Figure 5, the evolution resulting from the S-model is quite
different from that of the D-model. In the upper panel of the figure, it is seen that the
increase rate of the future temperature according to the S-model is smaller than that
predicted by the D-model. The reason why this happens becomes obvious in the lower
panel of the figure, which focuses on recent years. Specifically, in the past ten years, the
D-model has already departed from reality and, therefore, the departure increases in the
future. This behaviour has recently been called the hot model problem [22], and, as seen in the
rightmost area of the graph in Figure 5, it is properly resolved by the S-model of Bluecat.
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Figure 5. True values and predictions by D-model and S-model (median and 90% confidence limits)
of temperature in Italy: (upper) entire period; (middle and lower) focus on 20-year periods.
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Another notable feature in Figure 5 is the zig-zag shape of all predictions (D and S).
This can easily be attributed to the excessive intensity of periodicity in the D-model. A
simple remedy of this problem is shown in Figure 6, where the monthly S-model values
have been replaced by running averages with a 12-month time step.
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Figure 6. As Figure 5, but with S-model results (median and 90% confidence limits) replaced by
running averages over 12 months.

One might potentially think to attribute the difference of the temperature increase
rates of the D-model and S-model to the fact that the latter is stationary, while the former is
not. However, this is not the case. The actual reason of the difference is the departure of the
model from reality in the latest period. It is easy to demonstrate that Bluecat would behave
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well if the D-model had a better performance, which means that its stationary formulation
is not a problem. This is graphically depicted in Figure 7 (upper panel), where to make the
D-model closer to reality, we replaced the D-model series with the weighted sum of true
and D-model values with weights of 0.75 and 0.25, respectively. As seen in the figure, in
this case, the S-model remains very close to the D-model even in the distant future (2100).
While the entire methodology is based on stationarity, it captures the trendy shape of the
D-model, provided that the latter is close to reality.
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Figure 7. Modified Figure 5 for two hypothetical cases, in which the D-model values are reconstructed
so as to be (upper) very close to reality, by replacing the D-model series with the weighted sum of true
and D-model values with weights of 0.75 and 0.25, respectively, and (lower) completely irrelevant to
reality, by randomly rearranging the time order the true values.

For the completeness of the investigation, the lower panel of Figure 7 depicts a case
where the D-model is totally irrelevant to reality. To implement this hypothetical case, we
reordered the D-model series at random, so as to become uncorrelated to the true values. As
expected, in this case, the S-model in effect disregards the D-model, producing horizontal
lines of the future evolution, as expected for a stationary model. Even by disregarding the
D-model, the S-model provides useful information, which is the stationary distribution
function of the predictand.
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For the precipitation case, in which the seasonal variation in Italy is not prominent,
we applied Bluecat to the original monthly values. A second difference from the temper-
ature case is that the rainfall distribution is far from normal and, therefore, we used the
transformation of Equation (10) to normalize it. The resulting value of parameter λ is
2 mm and the transformation, indeed, yielded a perfect fit to the Gaussian distribution.
Figure 8 shows the results of the application of Bluecat to the transformed precipitation
data. The graph depicts the true value and the S-prediction in terms of confidence limits
vs. the D-prediction. Notice that the ranges shown in both the horizontal and the vertical
axes are intentionally identical. The fact that the true values cover the entire range, while
the D-prediction values cover only a small portion of that range, is a result of the poor
performance of the D-model. The median S-prediction is also shown, while the confidence
limits are again for a confidence coefficient of 90% (F = 0.05 and 0.95 for the low and
high prediction, respectively). It is seen in the figure that, for low precipitation values,
the D-model is poor—the median S-model prediction is flat—but this improves for the
highest predicted precipitation values, where the median line is close to the equality line.
As already discussed (Figure 3), the D-model underpredicts the actual variability of precip-
itation. Clearly, as shown in Figure 8, this is corrected by Bluecat (compare the ranges of
the plotted values on the horizontal and vertical axes).
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Figure 8. True values vs. D-model predictions for precipitation, transformed for normalization, along
with S-model predictions (median and 90% confidence limits). The vertical dotted lines define the
area out of which extrapolation is necessary.

The evolution resulting from the S-model is shown in Figure 9, after back-transforming
to the natural rainfall vales. The substantial effect of the S-model, in this case, is that it
widened the range of variability and corrected the bias. Generally, the D-model did not
provide any substantial information and, even if we disregarded it, the results would
not differ much. It must be further noted that, as the required range for extrapolation is
not wide (see the vertical dotted lines in Figure 8), even without using the normalizing
transformation, the results are practically the same (not included in figures as the lines
would be indistinguishable from those already shown).
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Figure 9. True values and predictions by D-model and S-model (median and 90% confidence limits)
of precipitation in Italy: (upper) entire period; (middle and lower) focus on 20-year periods. (Nb. A
normalizing transformation by Equation (10) with λ = 2 mm/d is used, while the plotted values are
back transformed).

5. Discussion and Conclusions

The Bluecat methodology, which was initially proposed as a hydrological modelling
tool, appears to provide scientific means for incorporating climate predictions within
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hydrological modelling. Its theory is simple, transparent and easily understandable. Its key
characteristic is the inference of the conditional distribution Fq|Q(q|Q) = P

{
q ≤ q

∣∣∣Q = Q
}

,
where Q is the prediction of a deterministic model (D-model—in our case, the climate
model) and q is the true value of the predicted quantity. This conditional distribution is
tantamount to a stochastic representation (S-model) of the true value. The advance from
the D-model to the S-model offers two important functions:

• It appropriately corrects the D-model bias.
• It infers the model uncertainty in terms of confidence bands.

Both the bias and the uncertainly characterization may differ for different ranges of
Q, where the differences are automatically captured by the S-model by its construction.
The conditional distribution is inferred from merely the data, i.e., concurrent values of
model outputs Q and true values q. The assumptions for inferring Fq|Q(q|Q) from the set
of concurrent pairs (“observations”) of values (qτ , Qτ) are the following:

• If the conditioning value Q lies within the range of “observations”, the conditional
distribution is inferred using a subset of pairs (q, Q) with adjacent Q values. Namely,
those pairs satisfying Q− ∆Q1 ≤ Q ≤ Q + ∆Q2 are chosen, where ∆Q1 and ∆Q2 are
properly specified to form a sample of pairs (q, Q) that allows the empirical estimation
of the conditional probabilities Fq|Q(q|Q) ≈ P

{
q ≤ q

∣∣∣Q− ∆Q1 ≤ Q ≤ Q + ∆Q2

}
.

• Otherwise, an extrapolation is made by the following method: A constant c 6= 1
is chosen so that cQ lie within the range of “observations” and the above method
be applicable by replacing or Q with cQ. Then, the conditional distribution is esti-
mated by enrolling the relationship Fq|Q(q|Q) ≈ Fq|Q(q + a(1− 1/c)cQ|cQ), where
a is a parameter representing a regression slope between Q and q. This parameter
is locally determined for the high or low values of Q, depending on the direction
of the extrapolation.

The application of the expanded Bluecat method is also very simple as it does not
require any sophisticated computational means. All these characteristics make Bluecat an
ideal tool for enhancing collaboration of scientists with practitioners and decision makers.

Traditionally, the task of combining climate models within hydrology is termed “down-
scaling”, as hydrological models require finer scales than those resolved in climate models.
An additional (and most important) job of the downscaling techniques is to adjust climate
model outputs (such procedures are sometimes termed “bias correction” of statistics), mak-
ing them consistent with local measurements. In this, downscaling techniques resemble
the proposed method. However, our method has substantial differences from downscaling
techniques, including the following:

• The scales of the application of the Bluecat’s S-model are not necessarily different
from that of the climate D-model. They could be precisely the same, as in the present
application to Italy. In this respect, Bluecat makes the D-model consistent with real-
ity irrespective of spatial scale. Apparently, the case where the scales are different
(e.g., smaller area of the S-model with respect to that corresponding to the D-model) is
also served by the proposed methodology, without any change with respect to what is
described above.

• The Bluecat methodology considers both the time sequence and the amplitude of the
D-model and actual series. It does not make a lumped fitting on the entire set of past
data to find unique parametric relationships to be applied to the adaptation of the
future values (as usually conducted in downscaling techniques). Nor does it regard
the future values as correct ones that only need downscaling. Rather, it treats past and
future values produced by the D-model in the same manner—as representing a model
and not the truth.

• In addition to modifying a D-model series, correcting it for bias, Bluecat advances it to
a stochastic representation, thus characterizing the uncertainty that is illustrated in
this paper in terms of confidence bands.
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In fact, the stochastic representation is much more than drawing confidence bands. Its
real power emerges in stochastic simulation, by which a system can be tested in a Monte
Carlo approach so that the uncertainty of the process of actual interest (e.g., river stage
or discharge, reservoir outflow and inundated area) is eventually evaluated. This has not
been included in the scope of this paper, but is currently under research, whose results will
be reported in the future.

Some features of the Bluecat framework have not been included in this study in order
to keep it as simple as possible. These features include a more sophisticated calibration
approach, relying on a split-sample technique with different calibration and validation
periods, which was not necessary in this paper. Additionally, they include the concept of
knowable moments (K-moments [19]) for a more robust estimation of empirical distribution
quantiles, while it is also useful for the construction of a simulation framework.
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