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Abstract

Human pressure and climate variability are significantly threatening freshwater resources, with
cascading effects on societies and ecosystems. In this context, it is crucial to understand the
anthropogenic and climatic impacts on surface water dynamics. Here, we examine the interaction
between the variation of surface water extent and the change in five potential concurrent drivers across
river basins of the contiguous United States (CONUS) during the period 1984-2020. In particular,
built-up area, population, and irrigated land are regarded as the anthropogenic drivers, while
hydroclimatic drivers are represented by precipitation and potential evapotranspiration (PET). We
perform statistical analyses in order to quantify the change in the considered variables and then
identify significantly different spatial patterns and possible interrelations. Results show that almost
79% (169 out of 204 river basins) of the CONUS experienced an expansion of surface water extent
mainly in the continental and temperate climatic regions (mean expansion 158.33 km?). Increasing
precipitation is found to be the most widespread driver of the gain in surface water extent, affecting
nearly 70% of river basins. The remaining 35 river basins of the CONUS, mostly located in the arid
southwestern region of the country, faced a reduction in surface water extent (mean reduction
—146.73 km?). The expansion of built-up areas and increasing PET resulted to contribute to the loss of
surface water in all the river basins, followed by population growth (in ~75% of the river basins),
decreasing precipitation (in ~60% of the river basins, all situated in southwestern US), and irrigated
land expansion (in ~55% of the river basins). Our findings shed light on the potential impacts of the
variability of anthropogenic and hydroclimatic factors on hydrology and surface water resources,
which could support predictive adaptation strategies that ensure water conservation.

1. Introduction

Water is a major and unique resource for humans and the environment. Among all water resources, surface
waters, i.e., any water body that is above the ground, such as streams, rivers, lakes, and wetlands, are vital sources
for preserving the biodiversity of aquatic and terrestrial ecosystems (Poff et al 1997, Dooge 2009, V6rosmarty
etal2010). They also constitute an indispensable element for the economic wealth of society, by suppling water
for drinking, agricultural, and industrial purposes from local to global scale (FAO 2017, Wang and Xie 2018,
Wang et al 2020). However, natural and human-induced factors reshape surface water bodies, by shrinking and
expanding their extent, or moving their location with time (Granzotti et al 2018, Palazzoli et al 2022). As a result,
surface water extent and availability are changing at the global scale and future population growth and climate
change stress the need to keep these dynamics under sustainable levels (Kummu et al 2016, Rodell et al 2018,
FAO 2020).
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Climate variability significantly affects the whole hydrologic cycle by causing spatiotemporal variations of
precipitation, temperature, evapotranspiration, and soil moisture, which modify the amount, distribution
pattern, and timing of available surface water (Zhuang et al 2018, Duan et al 2019, IPCC et al 2021). In particular,
extreme events determined by precipitation and temperature variability, e.g., droughts and floods, seriously
impact surface waters (Brunner et al 2021, McKinnon and Deser 2021).

Through history humans have learnt how to control and exploit water resources exerting a critical and
constantly increasing pressure on the hydrological cycle (Ceola et al 2015, Wada et al 2017). Growing
population, urbanization, and economic development are expected to produce 55% increase of water demand
in the manufacturing, thermal electricity generation, and domestic uses by 2050 (Paterson et al 2015, Grizzetti
etal 2017, Ceola et al 2019). Similarly, the irrigated food production will increase by more than 50% by 2050
(Mancosu et al 2015, Nie et al 2021), causing extensive water abstractions, especially in arid and semi-arid
regions, which are likely to experience water scarcity (Starr & Levison 2014, FAO 2020). Furthermore, dams and
reservoir significantly alter surface water extent as well as the flow regime and morphology of rivers (Lin 2011,
Da Silva et al 2020, Di Baldassarre et al 2021). Therefore, it is fundamental to understand how changes in
anthropogenic and hydroclimatic factors induce variations in surface water extent (Palazzoli 2022).

We hereby examine how surface water extent and potential anthropogenic and hydroclimatic drivers have
changed from 1984 to 2020 across river basins of the contiguous United States (CONUS). Long-term, spatially-
explicit, and high-resolution remote sensing data are employed to address the following crucial questions: (i)
how much have surface water extent, anthropogenic pressure, and climate changed in the last 40 years across the
CONUS? (ii) are there any specific spatial patterns in these changes? (iii) what is the influence of changes in
anthropogenic and hydroclimatic drivers on changes in surface water extent? To this aim, we identify built-up
area, population, and irrigation dynamics as relevant anthropogenic drivers, while precipitation and potential
evapotranspiration (PET) are here considered as key hydroclimatic drivers. Afterwards, we split our study period
into two epochs, 1984—1999 and 2000-2020, to analyze the variation of surface water extent and its drivers at the
river basin level across the CONUS.

2. Methods

2.1. The contiguous united states

Our investigation focuses on the study area of the contiguous United States (CONUS) as it embeds
heterogeneous hydroclimatic and socio-economic conditions, offering the opportunity to explore alarge and
composite territory, encompassing both wet and dry regions, with a spatially-varying topography, surface water
availability (Dettinger et al 2015, Tidwell et al2017), and degree of urbanization (Sun and Caldwell 2015, Fang
and Jawitz 2019). 204 river basins, corresponding to the 4-digit hydrologic units (HUC-4s) delineated following
the definition provided by the USGS (Seaber et al 1987), are employed in this study (figure 1(a)). The Koppen-
Geiger climate classification system (Beck et al 2018) is used to describe the climatic conditions of the CONUS
(Figure S1).

2.2.Data

2.2.1. Surface water extent

The Surface Water Occurrence Change Intensity layer from the Global Surface Water dataset (Pekel et al 2016) is
employed to define the change in surface water extent (SWE). This product shows where surface water
occurrence increased, decreased or remained invariant between two epochs (1984-1999 and 2000-2020)
describing both the direction of change and its intensity in terms of percentage at a 30 m spatial resolution. Here,
a75% intensity of change is selected as a representative value identifying locations that experienced a significant
and permanent change in SWE, insensitive to seasonal variations. Pixels of the Water Occurrence Change
Intensity layer having a value between —100% and —75% detect locations that encountered a surface water loss
between the two epochs, while those having a value between 75% and 100% indicate locations of surface water
gain. In this way, we create the Surface Water Loss and Surface Water Gain binary maps (figure 1(b)).

2.2.2. Anthropogenic drivers

The Global Human Settlement Layer dataset (Corbane et al 2019) is used as input data to estimate the extent of
built-up areas (BUP) and the distribution of population (POP). The GHS-BUILT layer provides a multi-
temporal classification of BUP, showing the location of built-up areas developed before 1975, between 1975 and
1990, between 1990 and 2000, and between 2000 and 2014 at a spatial resolution of 30 m. The GHS-BUILT layer
is here considered to provide a reliable representation of the impact of urban areas, human settlements, and
human activities on surface water resources (e.g., domestic and industrial uses, development of impervious areas
leading to river fragmentation). According to the definition of the two epochs here considered, for this analysis
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Figure 1. Change in surface water extent and anthropogenic and hydroclimatic factors across the CONUS from 1984 to 2020. (a) River
basins and climate classification, according to USGS HUC-4s and Képpen-Geiger system, respectively, and location of the zoom-in
areas shown in panels b-g. (b) Surface Water Gain and Surface Water Loss over the region around the Great Salt Lake, derived from the
Global Surface Water dataset (Pekel eral 2016). (c) Built-up area developed before and after 2000 over the region around New York
City, derived from the Global Human Settlement Layer dataset (Corbane et al 2019). (d) Population distribution in 2015 over the
region around the city of Los Angeles, derived from the Global Human Settlement Layer dataset (Corbane et al 2019). (e) Irrigated land
in 2002 and 2017 over the region between Little Rock and Memphis, derived from the Irrigated Agriculture Dataset for the United
States, MODIS-MirAD-US (Pervez & Brown 2010). (f) Mean annual precipitation in the period 2000-2020 over the region around the
Grand Canyon and the Colorado River, derived from Daymet Version 4 dataset (Thornton et al 2020). (g) Mean annual PET in the
period 20002020 over the region around the Grand Canyon and the Colorado River, derived from the hourly PET (hPET) dataset
(Singer et al 2021).

we identified built-up locations developed before 1975, between 1975 and 1990, and between 1990 and 2000 as
representative of the urban development before the year 2000, while the most recent built-up extent (i.e., after
the year 2000) includes all the built-up locations described in the GHS-BUILT layer (figure 1(c)). Similarly, the
GHS-POP layer describes the distribution of population observed in four years (1975, 1990, 2000, and 2015) as
the number of people per cell with a spatial resolution of 250 m. From the GHS-POP layer it is possible to infer
the influence that inhabitants only produce on surface waters. For this analysis, the number of inhabitants
observed until 2000 and until 2015 define the distribution of population before and after the year 2000,
respectively (figure 1(d)).

Data of irrigated land (IRR) are complementary to built-up areas and population distribution, as they
provide an estimate of the anthropogenic surface water use for irrigation purposes. The extent of irrigated land
was obtained from the Irrigated Agriculture Dataset for the United States (MODIS MirAD-US), which supplies
irrigation data for four years (2002, 2007, 2012, and 2017) at 250 m spatial resolution (Pervez & Brown 2010). In
particular, we select the areas of irrigated agriculture observed in 2002 and 2017 as representative of the periods
before and after the year 2000, respectively (figure 1(e)).

2.2.3. Hydroclimatic drivers
The hydroclimatic variability over the period of 37 years is here estimated as changes in precipitation and PET.
The Daymet Version 4 dataset, developed with ground-based meteorological observations, provides total
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annual precipitation (in mm/yr) at a spatial resolution of 1 km (Thornton et al 2020). We derive mean annual
precipitation values (MAP) representative of the 1984—1999 and 2000-2020 epochs by averaging the total annual
precipitation (figure 1(f)). Regarding temperature, data and methodology adopted for the assessment of
temperature change are described in the Supporting Material.

2.3. Analysis of changes in surface water extent and its drivers
In order to evaluate the contribution of the change in anthropogenic (BUP, POP, and IRR) and hydroclimatic
(MAP and PET) drivers on the change in SWE before and after the year 2000, we aggregate the local-scale high
resolution data previously described at the river basin (HUC-4s) level (Palazzoli 2022). The difference in the
spatial resolution do not affect the aggregation at the river basin level, since river basins are fully resolved in
our data.

Given a generic river basin b, we assume that the net change in SWE occurred in this basin, ASWEy, can be
expressed as a combination of changes in the anthropogenic and hydroclimatic drivers as follows:

ASWE, = f (ABUP,, APOP,, AIRR,,, AMAP,, APET;) (1)

More specifically, the net change in surface water extent at the river basin level ASWE,, (km?) is calculated from
the binary maps of Surface Water Gain and Surface Water Loss, considering both the direction and the over-
threshold intensity of change, as:

ASWE, =S g() — S 1G) )
i=1 i=1

where iis a generic pixel in the considered river basin b, ny, is the total number of pixels in b, g(i) (or I(7)) is equal
to the pixel area (9-10~* km?) if i experienced a gain (or loss) in the study period, otherwise it is null.

The change in built-up area at the river basin level, ABUP,, (kmz), before and after year 2000, reads as
follows:

ny np
ABUP;, = > BUPsg09-2020(1) — Y BUPy9gs—1999(i) (3
i=1 i=1
where BUP 9541999 (1) (0r BUP,000_2020(1)) corresponds to the pixel area (9-10~* km?) if i is classified as a built-up
location during 1984-1999 (or 2000-2020), otherwise it is null.
The change in population at the river basin level, APOPy, (number of inhabitants), before and after year
2000, is:

" p
APOPy = > POPxgo—2020(i) — »_, POPyogs—1999(i) 4)
i=1 i=1
where POP19g4_1999(7) (0r POP5g00_2020(1)) corresponds to total population (number of inhabitants) observed in
iduring 1984-1999 (or 2000-2020).
The change in irrigated land area at the river basin level, AIRRy, (km?), before and after year 2000, reads as
follows:

"y

my
AIRR, = Z IRRy000-2020(1) — Z IRRy984-1999(7) (5)
i=1 i=1

where IRR 954_1990(7) (0r IRR3000_2020()) corresponds to the pixel area (6.25-107> km?) if i is classified as an
irrigated land location during 1984-1999 (or 2000-2020), otherwise it is null.

The change in mean annual precipitation at the river basin level, AMAP}, (mm/yr), before and after the year
2000, is estimated by computing the difference between the spatial average of local values as follows:

Z:lil MAP900-2020(7) B Z:li] MAP 9841999 (%)

My ny

AMAP;, = (6)

where MAP6g4_1999(7) (0r MAP,(00_2020(7)) is the mean annual precipitation measured in pixel i during
1984-1999 (or 2000-2020).

Finally, the change in PET at the river basin level, APET}, (mm/yr), before and after the year 2000, is defined
as the difference between the spatial average of pixel-based mean annual PET, which reads:

Zzl PET5000—2020(7) B Zfil PET 9841999 (1)

Ny ny

APET;, = 7

where PET 1984 1999(7) (0r PET2000_2020(7)) is the mean annual PET measured in pixel i during 1984-1999 (or
2000-2020).
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Afterwards, we check for significantly distinct spatial patterns of ASWE,,, ABUPy,, APOP,, AIRRy,
AMAPy, and APET), based on the prevalent climatic characteristics of each river basin, according to the
Koppen-Geiger classification, by applying the Kruskal-Wallis test (see Supporting Material for more details).

To test the hypothesis that surface water extent varies as a consequence of the variation in the anthropogenic
and hydroclimatic drivers, first we check for any correlation among the considered variables. Then, we divide
river basins experiencing ASWEy, > 0 from those facing ASWE,, < 0 and we compare ASWE,, against the
direction of change of each driver in order to determine their relevance (i.e., we assume that ABUP,, < 0, APOP,,
<0, AIRRy, < 0, AMAP, > 0, and APET}, < 0 should contribute to ASWE,, > 0, whereas ABUP;, > 0, APOP,,
> 0, AIRRy, > 0, AMAP;, < 0, and APET}, > 0 should contribute to ASWEy, < 0). Afterwards, we evaluate the
Pearson’s correlation coefficient, r, between the positive and negative variations of SWE and each driver, by also
considering groups of river basins sharing the same prevailing climatic condition. Finally, a Principal
Components Analysis (PCA) is carried out to reduce the dimensionality of the considered dataset.

3. Results

3.1. Spatial and climatic patterns of basin-scale change in surface water extent and anthropogenic and
hydroclimatic drivers

The majority of the CONUS (169 river basins covering 78.64% of the study area) experienced a net gain of
surface water extent (ASWE,, > 0), while a net loss of surface water (ASWE,, < 0) is found in the remaining 35
river basins (figure 2(a)). By grouping river basins according to their prevalent Képpen-Geiger climatic region,
we find that river basins with a continental and temperate climate experienced on average a net increase of
surface water extent, while those having an arid climate present on average a mild decrease of surface water
(figures 2(b) and S2). Since the tropical climate is prevalent only in a single river basin located in Southern
Florida, no statistically-robust prediction can be inferred for river basins with these climatic conditions. The
distinct behavior of ASWE}, as a function of the main climatic region is also confirmed by the Kruskal-Wallis
test, showing statistically significant differences among river basins with arid and continental climates, arid and
temperate climates, continental and temperate climates (Table S1).

When analyzing changes in anthropogenic drivers, we find ABUP}, > 0 for all river basins, since built-up
area extent increased from 1984—1999 to 2000-2020, especially over the Eastern US and along the West Coast
(figure 2(¢)). The largest built-up area expansion results to have occurred in river basins with a temperate
climate, followed by those with a continental and arid climate (figure 2(d)). The Kruskal-Wallis test shows that
ABUP,, presents distinct trends as a function of the main climatic regions, with statistically significant
differences between river basins with arid and continental and arid and temperate climates (Table S1).

With reference to population, we observe APOPy, > 0 in most of the river basins (167, covering 81.55% of
the CONUS), while a decreasing trend in population (APOP}, < 0) is found across the remaining 37 river basins,
mainly located in the northeastern and the central area of the country (figure 2(e)). In particular, population
increased the most in river basins with a dominant temperate climate, followed by arid and continental climates
(figure 2(f)). Also in this case, statistically significant differences are found in terms of APOP}, as controlled by
the climatic classification. Moreover, the climatic groups that markedly differ from each other are arid and
temperate and continental and temperate climates (Table S1).

Regarding the extent of irrigated land, we find AIRRy, > 0 in 136 river basins (67.47% of the CONUS), while
in the remaining 68 river basins irrigated agriculture shrank, especially in the western region of the CONUS
(figure 2(g)). AIRRy, increased the most in river basins with a continental and temperate climate, while in river
basins with an arid climate the change in the extent of irrigated land was less pronounced (figure 2(h)). The
difference between AIRRy, values grouped as a function of climatic regions results to be statistically significant,
with only arid and continental climates presenting remarkable differences (Table S1).

With reference to the changes in hydroclimatic variables, we find AMAPy, > 0 in 132 river basins (54.64% of
the CONUS), the majority of which is located in Eastern US, while the remaining 72 river basins, characterized
by AMAP,, < 0, are found in Western US (figure 2(i)). More specifically, as shown in figure 2(j), AMAP,,
increased the most in continental and temperate climates, while it generally decreased in arid climates.
Statistically significant differences of AMAP,, emerge according to climatic regions, especially between arid and
continental and arid and temperate climates (Table S1).

Concerning PET change, most of the river basins of the CONUS (198 out of the 204, covering 96.52% of the
CONUS) experienced APETy, > 0 (figure 2(k)). In particular, APET}, increased the most in arid climates,
followed by temperate and continental climates (figure 2(1)). Also in this case, remarkable differences in APET),
are found, in particular between arid and continental climates, arid and temperate climates, and continental and
temperate climates (Table S1).
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Figure 2. Spatial and climatic patterns of basin-scale change in surface water extent, anthropogenic and hydroclimatic drivers
occurred between 1984-1999 and 2000-2020 across the CONUS. The left column shows the spatial distribution, where river basins
experiencing the maximum increase and decrease are highlighted with an upward and downward yellow triangle, respectively (for
more details, see Supporting Material). The right column shows boxplots of changes grouped according to the prevalent Képpen-
Geiger climatic region of each river basin. The boxplot edges indicate the first and third quartiles, with the thick horizontal line
representing the median value. (a), (b) Net change in surface water extent, ASWE,. (c), (d) Change in built-up area extent, ABUP,.
(e), (f) Change in total population, APOPy,. (g), (h) Change in irrigated land, AIRRy,. (i), (j) Change in mean annual precipitation,
AMAP,. (k), (1) Change in mean annual PET, APET,,.

Opverall, the largest variations in SWE, BUP, POP, IRR, and MAP within the temperate and continental
regions (boxplots in figure 2), while the largest change in PET and TMP is observed in arid areas (figures 2(1) and
S4(b)). A comparable distribution of changes is found at the climatic subtype level (Figures S3 and S5), with the
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Table 1. Correlation (Pearson’s r coefficient) between the change in surface water extent and its
anthropogenic and hydroclimatic drivers. River basins are grouped according to the direction of
change in surface water extent and to the main climatic conditions. Only one river basin of the
CONUS has a tropical climate, thus no correlation is found within this climatic group. Cross
correlation values among drivers are reported in table S2.

All river basins Arid Continental Temperate
ASWE,>0 # of basins 169 34 74 60
ABUP, 0.051 0.067 0.007 —0.072
APOPy 0.104 —0.019 0.004 —0.113
AIRRy 0.202 —0.119 0.297 0.315
AMAP, 0.080 0.486 —0.135 0.114
APET, —0.074 —0.577 0.018 0.033
ASWE,<0 # of basins 35 24 10 1
ABUPy 0.165 0.319 0.101 —
APOPy 0.433 0.402 —0.270 —
AIRRy, —0.078 —0.033 0.141 —
AMAP, —0.075 0.211 0.188 —
APET,, —0.087 —0.368 —0.331 —

continental region with no dry season and cold summer having the most remarkable increasing trends in SWE,
BUP, and POP and the largest reduction in IRR. Whereas, all the arid subtypes show the largest decrease in SWE
corresponding to the largest increase in PET and TMP. Additional results based on temperature anomalies
(ATMPy,) are provided in figures S4, S5, and table S1 of the Supporting Material.

3.2. Contribution of anthropogenic and hydroclimatic drivers on changes in surface water extent

In order to verify if the variations in the considered anthropogenic and hydroclimatic drivers observed before
and after the year 2000 may have influenced the expansion and shrinkage of surface waters that occurred during
the same time period, we first explore any correlation among variables and we then assess the overlap between
the directions of change, by distinguishing between river basins experiencing either a net gain (ASWE, > 0) ora
netloss (ASWE,, < 0) in surface water extent.

Concerning the interdependency among drivers, we find mild to low correlations (Table S2), except for
ABUP}, and APOPy, (r =0.71 for all river basins, reaching its maximum value equal to 0.92 in arid river basins
experiencing ASWE;, > 0). Based on these results and given that, in most of the climatic regions, the datasets
employed for estimating ABUP,, and APOP,, provide similar, though complementary information, all
anthropogenic and hydroclimatic drivers are considered in the forthcoming analysis.

Then we look at the correlation between ASWED and all the drivers, either distinguishing or not for the gain
or loss of SWE (table 1) and for the main climatic classification (Table S2). Generally, we find low to mild
correlations, with larger values (I r | > 0.4) only across arid areas and between the gain in SWE and changes in
population. Similar results also emerge from the PCA, where we divided river basins with ASWE, >0 from
ASWE,,<0. Focusing on the river basins with ASWE,, >0, we find a clear distinction along PC1 (explaining
38.76% of the total variance, see also figure S6(a) for PCA eigenvalues) between river basins with an arid climate,
primarily associated to negative values of PC1, and river basins with a temperate and continental climate,
distributed over both positive and negative values of PC1 (figure 3(a)). The magnitude and direction of the
coefficients associated to the original variables (vectors in figure 3(a)) reveal that changes in built-up area,
population, and precipitation are the drivers that affect the most PC1. On the other hand, PC2 is mostly
influenced by the climatic drivers (positive and negative association with precipitation and PET, respectively)
and irrigated land (positive association). Moving to the group of river basins with ASWE}, <0, the PCA shows a
remarkable and clear distinction between clusters of river basins with different climatic conditions (figure 3(b)),
with the 24 arid river basins mainly located along the negative values of PC1 (explaining the 40.34% of the total
variation, see also figure S6(b)), while the remaining 11 river basins (10 with a continental climate and one with a
temperate climate) are associated to positive values of PC1. Precipitation and PET are the variables contributing
the most to the first component PC1, whereas the anthropogenic factors are those influencing the most PC2.

Regarding the overlap among direction of change of the drivers, we find that the most widespread driver
concurring to ASWE;, > 0is AMAP,, > 0, observed in the majority of river basins (118 out of 169, covering
50.22% of the CONUS), mainly located in the eastern region of the CONUS (figure 4(a)). All the remaining
drivers contribute to ASWE}, > 0in less than 30% of the river basins, with ABUP,, < 0 never contributing
(figure 4(b)). A simultaneous contribution of all drivers, except for built-up areas, to ASWE,, > 0 is observed in 2
river basins only (1.48% of the CONUS), while none of the drivers concur to an increase in surface water extent
across 23 river basins (11.51% of the CONUS).
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Figure 3. Biplots for changes in anthropogenic (ABUP},, APOPy,, and AIRRy,) and hydroclimatic (AMAPy, and APET},) drivers
(correlation matrix PCA). (a) River basins with ASWE;,>0. (b) River basins with ASWE,<0. Data are colored based on the prevalent
climatic condition associated to each river basin. Labeled vectors (arrows) indicate the loadings, i.e., the magnitude and direction of
influence of each driver along the principal components. The ellipses represent the core area with a confidence interval of 68%,
highlighting the separation between the observation groups.

(a) (b)
100
2 75 118
>
o
5
ABUP<0 3 50
°  apor<0 2 53
AIRR,<0 25 28
. AMAP,>0 - 6
e ’
APET,<0 ABUP,<0 APOP,<0 AIRR,<0 AMAP,>0 APET,<0
©) o 3 35 (d)
e -l g
3 20 21
[}
* ABUP>0 3 0
®  APOP>0 &
@  ARRB0 25
@ awap<o 3
. APET,>0 ABUP,>0 APOP,>0 AIRR;>0 AMAP,<0 APET,>0

Figure 4. Spatial overlap of potential contributors to a change in surface water extent. (a) River basins with ASWE,,>0, supposed to be
triggered by ABUP,, <0 (black circle), APOP,<0 (orange circle), AIRR, <0 (yellow circle), AMAP, >0 (blue circle), and APET, <0
(cyan circle). (b) Frequency of occurrence of each anthropogenic and hydroclimatic driver to ASWE}, >0, where values over the bin of
each contributor indicate the number of river basins. (c) River basins with ASWEb <0, supposed to be triggered by ABUPb>0 (black
circle), APOPb>0 (purple circle), AIRRb>0 (green circle), AMAPb<0 (pink circle), and APETb>0 (red circle). (d) Frequency of
occurrence of each anthropogenic and hydroclimatic driver to ASWEb<0, where values over the bin of each contributor indicate the
number of river basins.

Within the group of river basins with ASWE,, < 0, we find that all anthropogenic and hydroclimatic drivers
significantly contributed to this condition, with more than 50% of river basins for each driver and with both
ABUP}, and APET), increasing in all the 35 river basins (figures 4(¢), (d)). A simultaneous contribution of all
drivers to a net loss in SWE is found in 8 river basins (10.65% of the CONUYS).

4. Discussion and conclusions
In order to prevent uncontrolled alterations of hydrological cycle and support predictive adaptation strategies in

response to the impacts of human dynamics and climate variability on water resources, it is fundamental to
investigate the extent to which anthropogenic and hydroclimatic factors influence variations of surface water
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bodies. Benefiting from the use of long-term, spatially-explicit, and high-resolution remote sensing data, we
explore how SWE and potential anthropogenic and hydroclimatic drivers have changed from 1984 to 2020
across the river basins of the CONUS.

Some limitations need to be acknowledged. Our study focuses on surface water resources, neglecting the
groundwater component, even though it often constitutes a critical source of water, especially for irrigation
purposes in arid areas of the US. We restrict the analysis to surface waters as in 2015 they represented the main
source of water in the US, accounting for 74% water withdrawals of the country, with many western states used
surface water as their primary source also for irrigation (Dieter et al 2018). From a methodological point of view,
global estimates of the anomalies in the Terrestrial Water Storage (TWS) provided by the Gravity Recovery and
Climate Experiment (GRACE) dataset (Rodell et al 2018) may be employed to derive data of groundwater
dynamics. However, GRACE spatial resolution (~50 km at the equator) is much coarser compared to that of the
Global Surface Water dataset (30 m). In addition, GRACE temporal coverage does not go back further than
2002. Yet, future analysis should include groundwater to account for impacts caused by irrigation and climate
variability on water storage of river basins.

Another constraint comes from the use of the Global Surface Water dataset to estimate changes in surface
water extent. In particular, the adoption of data from the Surface Water Occurrence Change Intensity layer
(Pekel eral 2016) led us to evaluate changes in both anthropogenic and hydroclimatic factors within the epochs
1984-1999 and 2000-2020, to estimate variations over the same temporal windows. This approach does not
allow to examine changes that might occur at a finer temporal resolution, rather than within a 20-year period.
However, the choice of the Global Surface Water dataset, instead of other existing surface water datasets, relies
on the advantage that it meets our need for data describing long-term changes in surface water bodies at high
spatial resolution (Yamazaki et al 2015).

An additional limitation is associated to irrigation data. The MIrAD-US dataset, here employed to determine
changes in the extent of irrigated agriculture, was developed using a combination of remotely sensed data and
irrigation statistics and census. We acknowledge that satellite images allow to monitor high spatial and temporal
variability of irrigated land, yet they might be unable to detect the presence of irrigated areas in humid regions
that overall may produce a remarkable amount of water consumption (Pervez and Brown 2010). Furthermore,
irrigation statistics and census may produce a lack of accuracy due to surveyed data that rely on surveys and
questionnaires as well as self-reported information (Thenkabail et al 2009, Ajaz et al 2019). However, the overall
mapping of irrigated land here employed is still superior to other existing products of irrigated agriculture in the
CONUS (Pervez and Brown 2010).

Besides these shortcomings, our analysis is able to unravel the interrelations between dynamics of surface
water extent, human pressure, and climate variability at the regional level (river basin scale).

Our results show that the majority of the CONUS experienced a net gain of SWE, with only 35 river basins
out of the 204 of the study area facing a reduction of their water surfaces. The increase in the extent of surface
water involved areas mainly characterized by temperate and continental climatic conditions, while the decrease
in surface water was for the most part observed within the arid southwestern region of the US and in some
measure within river basins located in the Northeast with a temperate climate.

Variations in the headwaters of a large basin might control changes on its downstream river basins. To
account for this, we assess changes in SWE and its drivers across the 18 water resource regions (WRRs) of the
CONUS (Figure S7 and figure S8), corresponding to the 2-digit hydrologic units, HUC-2s, defined in Seaber et al
(1987). Changes in the extent of surface water at the WRR scale (ASWEgg) overall reproduce those observed at
the river basin level, with most of the WRRs (14 WRRs) experiencing an expansion of SWE and only 4 WRRs in
the arid southwestern US facing a reduction of surface water (Figure S7), yet some interesting findings emerge.
In particular, despite a ASWEwgg > 0is found for the Rio Grande Region (WRR 13) and the Lower Colorado
Region (WRR 15), their downstream river basins face a netloss of SWE. Conversely, the Arkansas-White-Red
Region (WRR 11) shows a gain in SWE, yet its downstream river basin exhibits a decreasing trend.

These results on variations in SWE at the WRR level well compare with recent findings on changing river
discharge (Shieral 2019). Indeed, trends in annual river discharge for the period 19602010 perfectly agree with
the expansion in SWE that we observe across the Mississippi and Colorado Rivers (WRRs 8, 10, 11,and WRRs
14, 15, respectively) and the reduction in SWE across the St. Lawrence, Rio Grande, and Columbia Rivers (WRRs
4,13,and 17, respectively).

In our analysis, increasing precipitation results to be the major driver of a net gain in SWE (around 75% of
169 river basins, mainly located over the eastern area of the CONUS), while urbanization and temperature rise
are found to be the most widespread factors influencing a netloss in SWE (100% of 35 river basins), thus
confirming recent findings by Scanlon et al (2021). Therein, the role of climatic and human drivers on the
variability of the Terrestrial Water Storage (TWS) observed in 14 major US aquifers during the period
2002-2017 was investigated. Although TWS includes groundwater component as well, similarities between the
observed changes in TWS and SWE further validate our study. The TWS increase in the eastern and
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northwestern region of the US favoured by low drought intensity is in agreement with the gain in SWE and the
associated increasing precipitation that we observed in our data. Moreover, the substantial reduction of TWS in
southwestern US that emerged in Scanlon et al (2021) matches the loss of SWE that we find in the same area (see
figure 2(a), where the yellow downward triangle identifies the river basin with the largest decrease in SWE).
Across this region, Scanlon et al. also found the highest correlation between precipitation variability and TWS
anomalies, which is consistent with our findings (see correlation between ASWE, and AMAP,, for river basins
with ASWE,, > 0 intable 1).

Furthermore, it is likewise relevant to elaborate more on the potential role of reservoirs and dams as an
additional anthropogenic driver of changes in SWE. To examine this aspect, we analyze data from the US
National Inventory of Dams (including more than 91,000 dams across the CONUS) and find that dams
significantly influence the expansion of surface water extent, rather than the reduction, since larger increases in
the extent of surface water occur in river basins with a higher number of dams, especially in regions with a
continental climate (r = 0.51, see figure S9).

Findings from this study clearly highlight how arid areas, besides being exposed to climate variability, are
vulnerable to changes in anthropogenic activities as well. By altering surface water extent, anthropogenic and
climatic factors might compromise surface water availability, with cascading negative consequences for humans
and the environment. In particular, future anthropogenic and climatic dynamics will increase the risk that
current human water needs will no longer be satisfied and will pose an increasing stress on ecosystems.
Therefore, this study will help sustainable water development and the identification of predictive adaptation
strategies that prevent future water shortages induced by climate and human behavior.
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