Supporting Information

Ruthenium(II) Tris-Pyrazolylmethane Complexes Inhibit Cancer Cell Growth by Disrupting Mitochondrial Calcium Homeostasis

Jakub Cervinka,^{a,b,#} Alberto Gobbo,^{c,d,#} Lorenzo Biancalana,^c Lenka Markova,^a Vojtech Novohradsky,^a Massimo Guelfi,^c Stefano Zacchini,^d Jana Kasparkova,^{a,e} Viktor Brabec,^{a,*} Fabio Marchetti^{c,*}

^a Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic.

^b Masaryk University, Faculty of Science, Department of Biochemistry, Kamenice 5, CZ-62500 Brno, Czech Republic

^c University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy.

^d University of Bologna, Department of Industrial Chemistry "Toso Montanari", Viale Risorgimento 4, I-40136 Bologna, Italy.

^e Palacky University in Olomouc, Faculty of Science, Department of Biophysics, Slechtitelu 27, CZ-78371 Olomouc, Czech Republic

Corresponding Authors: <u>brabec@ibp.cz</u>, fabio.marchetti1974@unipi.it. [#]J. C. and A. G. contributed equally.

Table of contents	Pages
IR spectra of ruthenium complexes (Figures S1–S9)	S2-S4
NMR spectra of ruthenium complexes (Figures S10–S35)	S5-S21
NMR analyses in D ₂ O (Figures S36–S47)	S22-S31
Experiments on chloride/water exchange (Figures S48-S49)	S32-S34
³¹ P NMR spectra of 2 in DMSO-d ₆ /DMEM-d 1:4 v/v (Figure S50)	S35
Overall data on speciation, IC ₅₀ and Log P_{ow} values of the complexes (Table S1)	S36
Biological data (Figures S51-S57 and Tables S2-S3)	S37-S40
HR-ESI-MS spectrum of 9 (Figure S58)	S41

IR spectra

Figure S2. Solid-state IR spectrum (650-4000 cm⁻¹) of 2.

Figure S3. Solid-state IR spectrum (650-4000 cm⁻¹) of **3.**

Figure S4. Solid-state IR spectrum (650-4000 cm⁻¹) of 4.

Figure S5. Solid-state IR spectrum (650-4000 cm⁻¹) of 5.

Figure S6. Solid-state IR spectrum (650-4000 cm^{-1}) of 6.

Figure S7. Solid-state IR spectrum (650-4000 cm⁻¹) of 7.

Figure S8. Solid-state IR spectrum ($650-4000 \text{ cm}^{-1}$) of 8.

Figure S9. Solid-state IR spectrum ($650-4000 \text{ cm}^{-1}$) of 9.

NMR spectra

Figure S11. ³¹P NMR spectrum (162 MHz, CDCl₃) of 1.

Figure S13. ¹³C NMR spectrum (126 MHz, CDCl₃) of 2

S6

Figure S14. ³¹P NMR spectrum (202 MHz, CDCl₃) of 2

Figure S15. ¹H NMR spectrum (501 MHz, CDCl₃) of 3

Figure S16. ¹³C NMR spectrum (126 MHz, CDCl₃) of 3

Figure S17. ³¹P NMR spectrum (202 MHz, CDCl₃) of **3**

Figure S18. ¹H NMR spectrum (501 MHz, CDCl₃) of 4

Figure S19. ¹³C NMR spectrum (126 MHz, CDCl₃) of 4

Figure S20. ³¹P NMR spectrum (202 MHz, CDCl₃) of 4

Figure S21. ¹H NMR spectrum (501 MHz, CDCl₃) of 5

Figure S22. ¹³C NMR spectrum (126 MHz, CDCl₃) of 5

Figure S23. ³¹P NMR spectrum (202 MHz, CDCl₃) of 5

Figure S25. ¹³C NMR spectrum (126 MHz, CDCl₃) of 6

Figure S26. ³¹P NMR spectrum (202 MHz, CDCl₃) of 6

Figure S27. ¹H NMR spectrum (501 MHz, CDCl₃) of 7

Figure S28. ¹³C NMR spectrum (126 MHz, CDCl₃) of 7

Figure S29. ³¹P NMR spectrum (202 MHz, CDCl₃) of 7

Figure S30. ¹H NMR spectrum (501 MHz, CDCl₃) of 8

Figure S31. ¹³C NMR spectrum (500 MHz, CDCl₃) of 8

Figure S32. ³¹P NMR spectrum (202 MHz, CDCl₃) of 8

Figure S34. ¹³C NMR spectrum (126 MHz, CDCl₃) of 9

S20

Figure S35. ³¹P NMR spectrum (202 MHz, CDCl₃) of 9

NMR data of complexes in D₂O¹

Figure S36. Complex [RuCl(κ^3 -tpm)(PPh₃)(NCMe)]Cl, 2, in D₂O

¹H NMR (D₂O): $\delta/\text{ppm}(2) = 8.41, 8.36, 8.31$ (d-br, 3H, C^{γ}H); 8.22 (d-br, 1H, C^{α}H); 7.53 (t-br, 3H, C⁶H); 7.39-7.32 (m, 12H, C⁴H + C⁵H); 7.10, 6.94 (d-br, 1H, C^{α}H); 6.65, 6.30, 6.17 (t, 3H, C^{β}H); 2.35 (s, 3H, C²H). $\delta/\text{ppm}(2^{\mathbf{W}}) = 8.44, 8.41, 8.36$ (d-br, 3H, C^{γ}H); 8.19 (d-br, 1H, C^{α}H); 7.57 (t-br, 3H, C⁶H); 7.44, 7.23 (t-br, 12H, C⁴H + C⁵H); 7.04 (d-br, 1H, C^{α}H); 6.97 (d-br, 1H, C^{α}H); 6.69, 6.32, 6.22 (t, 3H, C^{β}H); 2.39 (s, 3H, C²H). $C^{\delta}H$ not observed. ³¹P{¹H} NMR (D₂O): $\delta/\text{ppm} = 48.5$ ($2^{\mathbf{W}}$), 47.6 (2). $2^{\mathbf{W}}/2$ ratio (from ¹H NMR) = 5.1 (t₀), 11.6 (after 48h). In DMSO-d₆/DMEM-d (0.14/0.56 mL): $2^{\mathbf{W}}/2$ ratio (from ³¹P NMR) = 0 (t₀), 1.5 (after 24h). Two additional signals were detected in the ³¹P NMR spectrum ($\delta/\text{ppm} = 37.5, 37.2$ ppm).

 $^{^{1}}$ Preparation of each sample required 2 hours (t₀) stirring of a suspension of each complex in D₂O (see manuscript).

Figure S37. Complex [RuCl(κ^3 -tpm)(PPh₃){NCHN(Me)(CH)₂}]Cl, 3, in D₂O

¹H NMR (D₂O): δ/ppm (**3**) = 8.41, 8.35, 8.35 (d-br, 3H, C^{γ}H); 7.53-7.45 (m, 3H, C⁷H + C^{α}H); 7.28 (t-br, 6H, C⁶H or C⁵H); 7.14 (d-br, 1H, C^{α}H); 7.05-6.94 (m, 8H, C⁶H or C⁵H + C^{α}H + 2 CH^{Imid}); 6.53, 6.40, 6.14 (t, 3H, C^{β}H); 6.34 (m, 1H, CH^{Imid}); 3.52 (s, 3H, C⁴H). δ/ppm (**3**^W) = 8.46, 8.41, 8.39 (d-br, 3H, C^{γ}H); 7.53-7.45, 7.33 (m, 3H, C⁷H + C^{α}H); 7.33 (t-br, 6H, C⁶H or C⁵H); 7.08 (d-br, 1H, C^{α}H); 7.01-6.94 (m, 8H, C⁶H or C⁵H + C^{α}H + 2 CH^{Imid}); 6.58, 6.44, 6.18 (t, 3H, C^{β}H); 6.34 (m, 1H, CH^{Imid}); 3.57 (s, 3H, C⁴-H). *C*^{δ}*H not observed*. ³¹P {¹H} NMR (D₂O): $\delta/\text{ppm} = 52.5$ (**3**), 51.1 (**3**^W). **3**^{W/**3**} ratio (from ¹H NMR) = 3.0 (t₀), 14.0 (after 48h). In DMSO-d₆/DMEM-d (0.14/0.56 mL): **3**^W/**3** ratio (from ³¹P NMR) = 0 (t₀), 1.9 (after 24h).

Figure S38. Complex [RuCl(κ^3 -tpm)(PPh₃){NCHNHC(CH)₄C}]Cl, 4, in D₂O

¹H NMR (D₂O): δ /ppm (4) = 8.53-8.57 (m, 3H, C^{γ}H); 7.74-6.82 (m, 22H, C^{α}H + CH^{benzim}); 6.59, 6.35, 6.21 (t-br, 3H, C^{β}H); 5.38 (d-br, 1H, CH^{benzim}). δ /ppm (4^W) = 8.53-8.57 (m, 3H, C^{γ}H); .74-6.82 (m, 22H, C^{α}H + CH^{benzim}); 6.46, 6.41, 6.08 (t-br, 3H, C^{β}H); 5.38 (d-br, 1H, CH^{benzim}). C^{δ}H not observed. ³¹P{¹H} NMR (D₂O): δ /ppm = 52.2 (4^W), 49.0 (4). 4^W/4 ratio (from ¹H NMR) = 2.5 (t₀), 2.5 (after 48h). In DMSO-d₆/DMEM-d (0.18/0.52 mL): 4^W/4 ratio.

Figure S39. Complex [RuCl(κ^3 -tpm)(PPh₃){NNH(CH)₃}]Cl, 5, in D₂O

¹H NMR (D₂O): δ /ppm (**5**) = 8.37, 8.34, 8.31 (d-br, 3H, C^{γ}H); 7.60 (d-br, 1H, C^{α}H); 7.37 (t, 3H, C⁷H); 7.37 (d-br, 1H); 7.18 (t, 6H, C⁵H); 7.10 (d-br); 7.03 (d-br); 6.89-6.85 (m, 7H, C⁶H + C¹H); 6.47, 6.34, 6.25, 6.11 (t-br, 4H, C²H + C^{β}H). δ /ppm (**5**^W) = 8.41, 8.38, 8.37 (d-br, 3H, C^{γ}H); 7.72 (d-br, 1H, C^{α}H); 7.46 (t, 3H, C⁷H); 7.41 (d-br, 1H); 7.27 (t, 6H, C⁵H); 7.26 (d-br); 6.97 (d-br); 6.89-6.85 (m, 7H, C⁶H + C¹H); 6.54, 6.42, 6.29, 6.15 (t-br, 4H, C²H + C^{β}H). C^{δ}H *not observed*. ³¹P {¹H} NMR (D₂O): δ /ppm = 51.1 (**5**^W), 49.7 (**5**). **5**^W/**5** ratio (from ¹H NMR) = 0.3 (t₀), 7.4 (after 48h). In DMSO-d₆/DMEM-d (0.14/0.56 mL): **5**^W/**5** ratio (from ³¹P NMR) = 0 (t₀), 1 (after 24h).

Figure S40. Complex [RuCl(κ^3 -tpm)(PPh₃){N(CH)₃C(OH)CH}]Cl, 6, in D₂O

¹H NMR (D₂O): δ /ppm (**6**) = 9.53 (s-br, 1H, C^{δ}H); 8.41, 8.37, 8.37 (d-br, 3H, C^{γ}H); 7.83 (s-br, 1H, C⁵H); 7.5 (s-br, 1H, C¹H); 7.45 (m, 4H, C⁹H + C³H); 7.25 (m, 7H, C⁷H + C^{α}H); 7.06 (m, 2H, C^{α}H + C⁴H); 6.96 (m, 7H, C⁸H + C^{α}H); 6.54, 6.33, 6.15 (t-br, 3H, C^{β}H). *OH not observed*. δ /ppm (**6**^W) = 8.46, 8.42, 8.40 (d-br, 3H, C^{γ}H); 7.50-7.20 (m, 13H, C⁵H + C¹H + C⁹H + C³H + C⁷H + C^{α}H); 6.99-6.93 (m, 9H, C^{α}H + C⁴H + C⁸H); 6.58, 6.35, 6.18 (t-br, 3H, C^{β}H). *C*^{δ}H and OH not observed. ³¹P {¹H} NMR (D₂O): δ /ppm = 51.2 (**6**^W), 50.0 (**6**). **6**^W/**6** ratio (from ¹H NMR) = 0.2 (t₀), only B (after 48h). In DMSO-d₆/DMEM-d (0.14/0.56 mL): **6**^W/**6** ratio (from ¹H NMR) = 0.1 (t₀), 2.3 (after 24h).

Figure S41. Complex [RuCl(κ^3 -tpm)(PPh₃){P(OMe)₃}]Cl, 7, in D₂O

¹H NMR (D₂O): δ/ppm (7) = 8.30, 8.30, 8.28 (d-br, 3H, C^{γ}H); 8.24 (d-br, 1H, C^{α}H); 7.52-7.31 (m, 15H, C³H + C⁴H + C⁵H); 8.83, 6.74 (d-br, 2H, C^{α}H); 6.74, 6.33, 6.30 (t-br, 3H, C^{β}H); 3.47 (d, ³*J*_{HP} = 10.4 Hz, C¹H). δ/ppm (7^W) = 8.45, 8.44, 8.40 (d-br, 3H, C^{γ}H); 8.16 (d-br, 1H, C^{α}H); 7.52 (t-br, 3H, C⁵H); 7.36-7.34 (m, 7H, C³H + C^{α}H); 7.22 (t-br, 6H, C⁴H); 8.98 (d-br, 1H, C^{α}H); 6.65, 6.33, 6.30 (t-br, 3H, C^{β}H); 3.39 (d, ³*J*_{HP} = 10.4 Hz, C¹H). *C*^{δ}*H not observed*. ³¹P {¹H} NMR (D₂O): δ/ppm = 136.2 (d, ²*J*_{PP} = 56.4 Hz, P(OMe)₃), 133.4 (d, ²*J*_{PP} = 62.6 Hz, P(OMe)₃), 44.67 (d, ²*J*_{PP} = 57.1 Hz, PPh₃, 7), 43.7 (d, ²*J*_{PP} = 48.7 Hz, PPh₃, 7). 7^W/7 ratio (from ¹H NMR) = 1.3 (t₀), 5.0 (after 48h). In DMSO-d₆/DMEM-d (0.14/0.56 mL): 7^W/7 ratio (from ¹H NMR) = 0 (t₀), 0.2 (after 24h).

Figure S42. Complex [RuCl(κ^3 -tpm)(PPh₃)(CNCy)]Cl, 8, in D₂O

¹H NMR (D₂O): δ /ppm (**8**) = 8.36, 8.28, 8.28 (d-br, 3H, C^γH); 8.17 (d-br, 1H, C^αH); 7.43-7.54 (m, 15H, C⁷H + C⁸H + C⁹H); 6.92, 6.52 (d-br, 2H, C^αH); 6.59, 6.32, 6.13 (t-br, 3H, C^βH); 4.18 (m, 1H, C²H); 1.86 (m, 2H, C⁴H); 1.69 (m, 2H, C³H); 1.51-1.30 (m, 6H, CH^C^y). δ /ppm (**8**^W) = 8.41, 8.34, 8.34 (d-br, 3H, C^γH); 8.14 (d-br, 1H, C^αH); 7.55 (t-br, 3H, C⁹H); 7.42 (m, 6H, C⁷H); 7.27 (t-br, 6H, C⁸H); 7.11, 6.65 (d-br, 2H, C^αH); 6.62, 6.34, 6.18 (t-br, 3H, C^βH); 4.17 (m, 1H, C²H); 1.85 (m, 2H, C⁴H); 1.67 (m, 2H, C³H); 1.40-1.26 (m, 6H, C-H^C^y). *C*^δ*H not observed*. ³¹P {¹H} NMR (D₂O): δ /ppm = 48.1 (**8**), 47.5 (**8**^W). **8**^W/**8** ratio (from ¹H NMR) = 0.5 (t₀), 9.1 (after 48h). In DMSO-d₆/DMEM-d (0.14/0.56 mL): **8**^W/**8** ratio (from ¹H NMR) = 0 (t₀), 0.2 (after 24h).

Figure S43. Complex [RuCl(κ^3 -tpm)(PPh₃){CNCH₂P(O)(OEt₂)₂}]Cl, 9, in D₂O

¹H NMR (D₂O): δ /ppm (**9**) = 8.40, 8.32, 8.32 (d-br, 3H, C^γH); 8.18 (d-br, 1H, C^αH); 7.36 (m, 9H, C⁶H + C⁸H); 7.23 (t-br, 6H, C⁷H); 6.87, 6.49 (d-br, 2H, C^αH); 6.61, 6.22, 6.15 (t-br, 3H, C^βH); 4.79 (m, 2H, C²H, *D₂O superimposed*); 3.98 (m, 4H, C³H); 0.98 (m, 6H, C⁴H). δ /ppm (**9**^W) = 8.48, 8.42, 8.38 (d-br, 3H, C^γH); 8.19 (d-br, 1H, C^αH); 7.62 (t-br, 3H, C⁸H); 7.47 (t-br, 6H, C⁶H or C⁷H); 7.31 (t-br, 6H, C⁶H or C⁷H); 7.16, 6.65 (d-br, 2H, C^αH); 6.65, 6.39, 6.26 (t-br, 3H, C^βH); 4.79 (m, 2H, C²H, *D₂O superimposed*); 4.20 (m, 4H, C³H); 1.36 (t, 6H, ³*J*_{HH} = 7.1 Hz, C⁴H). C^δH *not observed*. ³¹P {¹H} NMR (D₂O): δ /ppm = 46.4 (s, PPh₃); 17.3 (s, PCH₂, **9**), 40.6 (s, PPh₃); 29.9 (s, PCH₂, **9^W**). **9^W/9** ratio (from ³¹P {¹H} NMR) = 0 (t₀), 2.8 (after 48h). In DMSO-d₆/DMEM-d (0.14/0.56 mL): **9^W/9** ratio (from ¹H NMR) = 0 (t₀), 0.3 (after 24h).

Figure S44. ¹H NMR spectrum (301 MHz, D_2O) of $3 + 3^W$ (see Figure S37) at t₀ (blue) and after 48h (red).

Figure S45. ³¹P NMR spectrum (121 MHz, D₂O) of $\mathbf{3} + \mathbf{3}^{W}$ (see Figure S37) at t₀ (blue) and after 48h (red).

Figure S46. ¹H NMR spectrum (501 MHz, D₂O) of **3** immediately after the preparation of the sample (only **3** is observed).

Figure S47. ³¹P NMR spectrum (202 MHz, D₂O) of **3** immediately after the preparation of the sample (only **3** is observed).

S31

Experiments on chloride/water exchange. Compound **3** was dissolved in H₂O and maintained at 40 °C for 24h. The solution was then cooled to room temperature, the solvent was evaporated, and the obtained solid was washed with diethyl ether (2 x 3 mL). The isolated yellow powder was dissolved in CD₃OD, then ¹H NMR and ³¹P NMR spectra of the solution were recorded immediately after the preparation of the sample (red), and after 24h at room temperature (green). Both **3** and **3^W** (see Figure S37) were identified in the first recorded spectrum. After 24h, only **3** was detected (see Figures S49-S50). ¹H NMR (CD₃OD): δ /ppm = 9.68 (s, 1H, C^{δ}H); 8.47, 8.46, 8.40 (d, 3H, ³*J*_{HH} = 2.9 Hz, C^{γ}H); 7.44 (d-br, 1H, C^{α}H); 7.41 (t, 3H, ³*J*_{HH} = 7.4 Hz, C⁷H); 7.24 (t, 6H, ³*J*_{HH} = 7.8 Hz, C⁵H); 7.14 (m, 2H, C^{α}H + CH^{Imid}); 7.06 (t-br, 6H, C⁶H); 7.02 (d-br, 1H, C^{α}H); 6.99 (t-br, 1H, CH^{Imid}); 6.52, 6.35, 6.20 (t-br, 1H, C^{β}H); 6.26 (t-br, 1H, CH^{Imid}); 3.50 (s, 3H, C⁴H). ³¹P{¹H} NMR (CD₃OD): δ /ppm = 51.1.

Figure S48. ¹H NMR spectra (301 MHz) of **3** in CD₃OD solution. Red: from isolated solid following chloride/water exchange in H₂O at 40 °C; green: same sample maintained in CD₃OD solution at room temperature for 24h; blue: from **3** not undergoing chloride/water exchange.

Figure S49. ³¹P NMR spectra (121 MHz, CD₃OD) of **3** in CD₃OD solution. Red: from isolated solid following chloride/water exchange in H₂O at 40 °C; green: same sample maintained in CD₃OD solution at room temperature for 24h; blue: from **3** not undergoing chloride/water exchange.

Figure S50. ³¹P NMR spectrum (121 MHz, DMSO-d₆/DMEM-d 1:4 v/v) of **2**, at t_0 (blue) and after 24h at 37 °C (red).

Table S1. Relative amounts of aquo-complexes in D₂O at t₀ and after 48h at 37 °C; relative amounts of aquo-complexes in DMSO-d₆-DMEM-d (1:4 v/v, except 1:3 v/v in the case of **4**) at t₀ (see manuscript) and after 24h at 37 °C; average of IC₅₀ values related to cancer cell lines; Log P_{ow} values (see also Table 2). Data of **1** are not reported because the aquo-species was not observed in this case.

Compound	Aquo species % in D₂O at t₀	Aquo species % in D₂O after 48h	Aquo species % in DMEM-d/ DMSO-d₀ at t₀	Aquo species % in DMEM-d/ DMSO-d₀ after 24h	Average IC₅₀	Log P _{ow}
1	-	-	-	-	2.5 ± 0.3	1.18 ± 0.05
2	80	92	0	59	32.4 ± 3.8	-0.33 ± 0.07
3	75	93	0	66	42.8 ± 4.2	-0.15 ± 0.03
4	67	70	0	59	31.6 ± 3.4	0.58 ± 0.06
5	25	88	0	50	34.0 ± 3.6	-0.05 ± 0.05
6	15	99	9	70	41.4 ± 7.4	1.11 ± 0.07
7	57	83	0	16	7.1 ± 1.0	-0.02 ± 0.05
8	33	90	0	16	9.9 ± 1.5	0.34 ± 0.01
9	0	73	0	17	35.2 ± 5.0	-0.20 ± 0.05

Table S2. IC₅₀ values (μ M) for HCT116 cell line determined by the SRB and MTT tests after 72 h of treatment.^a

	SRB	MTT
1	0.45 ± 0.05	1.5 ± 0.1
2	16 ± 1	25 ± 2
3	16 ± 2	25 ± 1
4	21 ± 3	25 ± 2
5	20 ± 3	30 ± 2
6	20 ± 2	31 ± 2
7	5.8 ± 0.6	6.7 ± 0.4
8	5.2 ± 0.5	8 ± 2
9	29 ± 3	35 ± 6

^aData represent a mean \pm SD from at least three independent experiments.

Figure S51. Comparative linear relationship between IC₅₀ in HCT116 cells and amount of Ru taken up to the cells.

Figure S52. Evaluation of cell death by apoptosis quantified by FACS after Annexin V and PI staining. Density plot profiles of untreated HCT116 cells (K) or treated with staurosporine (Staur, 10 μ M), ethanol (EtOH, 5% v/v) and Ru complexes 1 (6 μ M), 7 (30 μ M), 8 (20 μ M) for 24 h. Concentrations of Ru complexes correspond to 4xIC_{50,72h}.

Figure S53. The kinetics of apoptosis and necrosis immediately after treatment of HCT116 cells with **1**, **7**, and **8** at their equitoxic concentrations $(4xIC_{50,72h})$. Differences of time when signals cross baseline were calculated and are indicative of cell death type. Positive controls staurosporine and EtOH, known apoptosis and necrosis inducers, respectively, were also included. The necrosis signal precedes the signal related to apoptosis for the EtOH treatment. For the staurosporine and all three tested Ru-complexes, the apoptotic signal is manifested significantly (3.6-13.6 h) earlier than the signal indicating necrosis.

Table S3. IC₅₀ values (μ M) determined by the MTT test after 72 h of treatment.^a

	CHO-K1	MMC-2
1	6.3 ± 0.2	7.7 ± 0.2
7	25.6 ± 0.5	33 ± 2
8	16 ± 4	16 ± 3
cisplatin	54 ± 6	5.5 ± 0.8

^aThe results are expressed as mean values: SD from at least three independent experiments.

Figure S54. Immunofluorescent staining of tubulin in HCT116 cells either untreated (control) or treated with complexes **1**, **7** or **8**. The primary antibody (anti- α -Tubulin, Abcam, 1:200 dilution, 1 h) and Alexa Fluor conjugated secondary antibody (Goat Anti-Rabbit, Abcam, 1:500 dilution, 1 h) were used to visualize α -tubulin. DAPI was used to stain the cell nuclei (blue). Scale bar represents 20 µm.

Figure S55. Immunofluorescent staining of actin in HCT116 cells either untreated (control) or treated with complexes **1**, **7** or **8**. Actin was stained with Alexa Fluor 488 conjugated Phalloidin (ThermoFisher Scientific, 1:50 dilution, 20 min). DAPI was used to stain the cell nuclei (blue). Scale bar represents 20 μm.

Figure S56. Representative TMRE histograms. HCT116 cells were treated for 5 h with equitoxic concentrations corresponding to $4xIC_{50}$ values (panel A) or treated with Ru complexes at the equimolar concentration (10 μ M) (panel B).

Figure S57. Representative bright-field images of HCT116 colonospheres. Four-day spheroids were either untreated (control, panel A) or treated with 1 (B), 7 (C), 8(D) or cisplatin (E) at their 20 μ M concentrations and incubated for a further 72 h. Scale bar represents 100 μ m.

Figure S58. HR-ESI-MS analysis of **9**. Top: FIA-ESI-Q-ToF mass spectrum after blank subtraction (10 ppm solution in acetonitrile, HPLC-MS grade); bottom: zoomed portion of the spectrum highlighting the isotopic cluster of the ion corresponding to the cation of the analyzed complex; the red rectangles mark the expected m/z values and intensities calculated for the formula $[C_{34}H_{37}CIN_7O_3P_2Ru]^+$.

