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1. ALS staging systems 

The available ALS progression models generally rely on the ALSFRS-R staging system [1], which is a 12-item 

questionnaire rated on a 0-4 point scale evaluating the progression of disability in ALS patients; ALSFRS-R has 

been extensively used to assess treatment efficacy in clinical trials and measure disease progression [2]–[5]. 

Despite being a de facto standard, this staging system suffers from several limitations. The interpretation of an 

ALSFRS-R total raw score is hindered by the ambiguities of its different metric meanings for the different ALS 

forms [6], and by its non-linear relationship with the linear Rasch transformed measures of global function [7], 

[8]. The scale exhibits multi-dimensionality, thus it should not be used as a global total score [7]. The ALSFRS-

R scale also suffers from the “floor-effect” and is thus unable to capture late-stage clinical changes: patients 

approaching the bottom of the scale appear to be “slowing down” in their worsening because it becomes 

increasingly difficult for them to lose further raw score points [9], [10]. Finally, there is no agreed-upon threshold 

at which a change in ALSFRS-R score is viewed as an important transition point in functional status [11]. 

To overcome these limitations, other ALS staging systems have been introduced. The King’s staging system 

is based on disease burden as measured by the involvement of clinical regions and the presence of respiratory or 

nutritional failure [11], [12]. This system uses five stages, from 1 to 5, with stages 1 to 4 indicating the number of 

involved clinical regions (stage 1 also indicates the disease onset) and stage 5 being death. Although the King’s 

system is not based on ALSFRS-R scores, it can be estimated from them with 92% concordance [13]. More 

recently, the Milano-Torino staging (MiToS) system was introduced as a novel tool to measure ALS progression 

[11]. This system uses six stages, from 0 to 5, with stage 0 representing symptom onset and stage 5 being death, 

and is based on the assessment of four functional domains (movement, communication, swallowing and breathing) 

assayed by the ALSFRS-R. Whether a domain is not impaired, its MiToS value is equal to 0, whereas the MiToS 

value is equal to 1 for the domains in which patient’s independence is compromised: the MiToS score corresponds 

to the total number of functional domains in which the patient has lost independence. This scale was shown to be 

able to reliably identify relevant stages of disease in patients according to the number lost functions, to be 

consistent with sequential disease progression, to overcome the non-linearity and multidimensionality limitations 

of ALSFRS-R, and to correlate well with patients’ quality of life and health service costs [14]. 

We employed the MiToS staging system since it tackles all the limitations of the ALSFRS-R scale while at 

the same time being completely derivable from the latter. The King’s system, on the other hand, cannot always 

be fully derived from the ALSFRS-R scale, which represents a limitation. Moreover, unlike the King’s staging 

system which summarises the clinical/anatomical spread of the disease, the MiToS system is aimed towards the 

distinction of functional capabilities during the spread of the disease and is able to differentiate late ALS stages 

in a higher resolution [15]. 

2. Datasets 

The ITIS and IT datasets analysed in this work include static variables, which are either data collected at first visit 

only or time-independent covariates, and dynamic variables, that are measurements collected over subsequent 

visits. 

In detail, static variables are: medical centre, sex, onset site, familiality, genetics, age at onset, diagnostic delay, 

FTD, BMI premorbid, BMI at diagnosis and FVC at diagnosis. On the other hand, time between visits (TBV), 

time since onset (TSO), the MiToS items, and the NIV and PEG use are dynamic variables. 

2.1 Variable discretisation 

In this work we employed discrete-space/discrete-time DBNs, which encode probabilistic relationships among 

discrete variables over a discrete number of time steps; thus, we discretised the continuous variables according to 

their distribution percentiles in the training sets. For all the variables of both the ITIS and the IT datasets, we set 

the thresholds based on the tertiles. However, for some discrete variables (such as Time between visits, TBV, in 

the ITIS dataset) this led to unbalanced groups since their original values were heavily distributed around specific 

values, while the use of quartiles corrected this bias. 

For the Time since onset (TSO) variables, specifically, we implemented the discretization based on another 

requirement of the DBNs. The algorithm for DBN structure-learning relies on the assumption that the conditional 

probabilities distributions are time invariant. For example, breathing impairment at time (t-1) influences the 

breathing capability at time (t) in the same way if it is 12 months from onset or 36 months from onset. Obviously, 

this mathematical assumption does not hold in reality since the disease can proceed by following different patterns 

in its different stages. Therefore, the variable TSO  was discretized  in such a way that, within each time interval,  

the time-invariance assumption was verified.  
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Supplementary Tables 1 and 2 show the quantisation levels and the categories adopted for each variable in the 

ITIS and IT datasets, respectively. 

 

Feature Level 

Medical centre Emilia-Romagna 

 Maugeri Foundation 

 Nemo Clinical Centre 

 Hadassah Medical Centre 

 Tel Aviv Medical Centre 

 Piemonte and Valle d'Aosta 

Sex Female 

 Male 

Onset site Bulbar 

 Spinal 

Vital status Alive 

 Tracheostomised/Dead 

Age at onset [years] < 54 

 [54, 62] 

 [62, 69] 

 > 69 

Diagnostic delay [months] < 6 

 [6, 12] 

 > 12 

Time between visits [months] < 1 

 [1, 2] 

 [2, 4] 

 > 4 

Time since onset [months] < 12 

 [12, 24] 

 [24, 36] 

 [36, 48] 

 [48, 72] 

 > 72 

MiToS walking/self-care impairment Yes 

 No 

MiToS swallowing impairment Yes 

 No 

MiToS communication impairment Yes 

 No 

MiToS breathing impairment Yes 

 No 

Table 1: Quantisation levels for the variables included in the ITIS dataset. 

 
 

Feature Level 

Medical centre Emilia-Romagna 

 Maugeri Foundation 

 Nemo Clinical Centre 

 Piemonte and Valle d'Aosta 
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Sex Female 

 Male 

Site of onset Bulbar 

 Spinal 

Vital status Alive 

 Tracheostomised/Dead 

Familial Yes 

 No 

C9orf72 Yes 

 No 

FUS Yes 

 No 

SOD1 Yes 

 No 

TARDBP Yes 

 No 

WT Yes 

 No 

FTD Yes 

 No 

Age at onset [years] < 58 

 [58, 67] 

 > 67 

Diagnostic delay [months] < 6 

 [6, 12] 

 > 12 

Time between visits [months] < 2 

 [2, 3] 

 > 3 

Time since onset [months] < 11 

 [11, 21] 

 [21, 42] 

 [42, 68] 

 > 68 

BMI premorbid < 23.9 

 [23.9, 27.1] 

 > 27.1 

BMI at diagnosis < 22.7 

 [22.7, 26.2] 

 > 26.2 

FVC at diagnosis < 84 

 [84, 101] 

 > 101 

Time to NIV [months] < 22 

 [22, 39] 

 > 39 

Time to PEG [months] < 23 

 [23, 37] 

 > 37 
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MiToS walking/self-care impairment Yes 

 No 

MiToS swallowing impairment Yes 

 No 

MiToS communication impairment Yes 

 No 

MiToS breathing impairment Yes 

 No 

Table 2: Quantisation levels for the variables included in the IT dataset.   
 

3. Methods 

3.1 Dynamic Bayesian Networks 

Dynamic Bayesian Networks are a generalisation of Markov decision processes and can be used to represent 

medical knowledge explicitly in terms of causes and effects as obtained from clinical data and domain knowledge. 

A DBN is defined by its structure (set of parent-children dependencies) annotated with a set of conditional 

probability distributions (CPDs), since each node is a probabilistic function of its parents. Nodes in a DBN are 

connected through a Directed Acyclic Graph. However, DBNs allow encoding cycles and feedbacks between 

variables when considering their relationships over different time slices. Consequently, our DBN model was 

developed through a two-step iterative procedure: 1) by inferring the graph topology and 2) learning the 

parameters of each CPD (i.e., the probability that a variable assumes a specific value conditional to each possible 

joint assignment of values to its parents). The algorithm for DBN structure-learning relies on the following 

assumptions: two nodes cannot be a deterministic function of a single variable, the CPDs are time invariant, and 

variables are related to each other over a discrete number of time steps, called slices. For example, breathing 

impairment at time t-1 influences the breathing capability at time t. Finally, the CPDs are usually estimated 

through techniques like Bayesian estimation or (regularised) maximum likelihood. 

In this work, the DBN structure was inferred using the Max-Min Hill-Climbing (MMHC) algorithm [16], a 

greedy search-and-score method that starts with an initial graph (empty graph in our case) and searches the 

complete space of possible graph structures, by adding, reversing or deleting edges. The MMHC runs until a 

specific score (here the Bayesian Information Criterion) is maximised, or a specific number of iterations has been 

reached. Thus, the structure-learning phase provides the DBN topology with the highest probability of generating 

the training data. Subsequently, parameters of CPDs were computed through a maximum a posteriori estimation 

for each node. 

The entire learning procedure was implemented in R, by using bnstruct [17], a package performing DBN 

inference on discrete and categorical data even in the presence of missing values, which is the case of our data 

and a common situation in the clinical context. Furthermore, bnstruct makes use of state-of-the-art algorithms for 

network learning and also provides methods for bootstrap resampling of the data and inference. bnstruct also 

allows the encoding of the domain knowledge, by applying constraints to the network topology; that can be set to 

forbid clinically or biologically non-sense relations among variables (see next section). These constraints also 

permit the exploration of only part of the solution space, reducing the computational complexity of learning the 

DBN, a task that is in general NP-hard. It has to be noticed that, although reducing the learning complexity, these 

choices could bring to a local minimum. On the other hand, a search of the global optimum on the entire space of 

possible solutions would have been computationally infeasible.  

3.2 Rules for learning the networks 

When learning the structure of the network from the training set, the following information can be provided:  

1. the mandatory edges, i.e. the edges between variables that must be present in the network  

2. the possible edges, i.e., the edges that can be found during the learning phase. They can be defined by 

grouping variables in separate (disjoint) layers: then, by default, variables in a given layer j can depend 

only on variables from layers i ≤ j. Users, however, can also allow or deny specific dependencies between 

layers.  
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3.2.1 Rules on the ITIS network 

The mandatory edges set for the network on the ITIS dataset are: 

● the dependency of Onset site from Sex 

● the dependencies of the variables MiToS at time t from the variable Time Since Onset (TSO) 

● the dependencies of the variable Survival from the variable Time Since Onset (TSO).  

The layering structure was defined as follows: 

● Layer 1: Sex, Age onset 

● Layer 2: Medical centre  

● Layer 3: Onset site  

● Layer 4: Diagnostic delay  

● Layer 5: MiToS variables at time (t-1) 

● Layer 6: Time Between Visits 

● Layer 7: MiToS variables at time t 

● Layer 8: Survival 

● Layer 9: Time Since Onset  

The following rules were then defined among the layers:  

● Layer 1 can not depend on itself or any other layer.  

● Layer 2 can not depend on itself or any other layer.  

● Layer 3 can only depend on itself and layer 1.  

● Layer 4 can only depend on layers 1, 2 and 3.  

● Layer 5 can not depend on itself or any other layer.  

● Layer 6 can only depend on layer 2 and 5.  

● Layer 7 can depend on any other layer, except for itself and layers 6 and 8.  

● Layer 8 can depend on any other layer, except for itself and layers 6 and 7. 

● Layer 9 can not depend on itself or any other layer.  

3.2.2 Rules on the IT network 

The mandatory edges set for the network on the IT dataset are: 

● the dependencies of the variables MiToS at time t from the variable Time Since Onset (TSO) 

● the dependency of the variable Survival from the variable Time Since Onset (TSO) 

● the dependency of the variable Time Between Visits (TBV) from the variable Time Since Onset (TSO)   

The layering structure was defined as follows: 

● Layer 1: Sex, Genetics (TARDBP, C9orf72, SOD1, FUS, or wild type WT), BMI premorbid 

● Layer 2: Familiality  

● Layer 3: Medical centre  

● Layer 4: Age onset, FTD, Onset site, FVC diagnosis, BMI at diagnosis 

● Layer 5: Diagnostic delay  

● Layer 6: MiToS, NIV, PEG variables at time (t-1)  

● Layer 7: Time Between Visits  

● Layer 8: MiToS, NIV, PEG variables at time t  

● Layer 9: Survival  

● Layer 10: Time Since Onset  

The following rules were then defined among the layers:  

● Layer 1 can not depend on itself or any other layer.  

● Layer 2 can only depend on layer 1.  

● Layer 3 can not depend on itself or any other layer.  

● Layer 4 can only depend on itself and layers 1 and 2.  

● Layer 5 can only depend on layers 1 to 4.  

● Layer 6 can not depend on itself or any other layer.  
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● Layer 7 can only depend on layers 3, 6 or 10.  

● Layer 8 can depend on any other layer, except for itself and layers 7 and 9. 

● Layer 9 can depend on any other layer, except for itself and layers 7 and 8. 

● Layer 10 cannot depend on itself or any other layer.  

3.3 Bootstrap-based DBN learning 

In order to assess the confidence of the identified edges, a bootstrap procedure can be performed. The bootstrap 

technique generates different samples of a dataset and, for each sample, learns a DBN. The result is not a directed 

acyclic graph (DAG) and therefore it cannot be used to learn conditional probabilities, but a weighted partially 

DAG (WPDAG). In this latter graph, edges (i, j) weigh the number of times an edge going from node i to node j 

appears in a Bayesian network learned from a bootstrap sample [17]. These numbers represent a measure of the 

confidence on the presence of each edge.  

We performed such analysis by employing 100 bootstrap samples. Figures 2 and 3 reported below show the 

resulting WPDAGs, for the ITIS and the IT datasets, respectively. For each network, the grey intensity of each 

edge corresponds to the number of trained bootstrapped DBNs where that edge was identified (from light grey = 

1, to black = 100). With respect to the networks reported in the manuscript (manuscript’s Figure 1), here the 

relationships between the same variable at consecutive times (e.g. the impairments in the MiToS domains) are not 

reported as auto-loops, but as edges from the variable at time (t) to the same variable at time (t+1). Moreover, in 

this analysis, we did not impose any mandatory edge in order to assess what indication emerged from the data. 

In both the networks, we can observe how a number of edges identified with high rate through the bootstrap 

procedure (the edges in black colour) correspond to those constituting the DBNs learned on the whole training 

sets and reported in the manuscript’s Figure 1.  

 
Figure 2: DBN obtained with 100 bootstrap on the ITIS training set, without mandatory edges. 
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Figure 3: DBN obtained with 100 bootstrap on the IT training set, without mandatory edges. 
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