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Abstract: Let X be a p-variate random vector and X̃ a knockoff copy of X
(in the sense of [9]). A new approach for constructing X̃ (henceforth, NA)
has been introduced in [8]. NA has essentially three advantages: (i) To build
X̃ is straightforward; (ii) The joint distribution of (X, X̃) can be written
in closed form; (iii) X̃ is often optimal under various criteria. However, for
NA to apply, X1, . . . , Xp should be conditionally independent given some
random element Z. Our first result is that any probability measure μ on
R
p can be approximated by a probability measure μ0 of the form

μ0(A1 × · · · ×Ap) = E

{
p∏

i=1
P (Xi ∈ Ai | Z)

}
.

The approximation is in total variation distance when μ is absolutely con-
tinuous, and an explicit formula for μ0 is provided. If X ∼ μ0, then
X1, . . . , Xp are conditionally independent. Hence, with a negligible error,
one can assume X ∼ μ0 and build X̃ through NA. Our second result is
a characterization of the knockoffs X̃ obtained via NA. It is shown that
X̃ is of this type if and only if the pair (X, X̃) can be extended to an
infinite sequence so as to satisfy certain invariance conditions. The basic
tool for proving this fact is de Finetti’s theorem for partially exchangeable
sequences. In addition to the quoted results, an explicit formula for the
conditional distribution of X̃ given X is obtained in a few cases. In one of
such cases, it is assumed Xi ∈ {0, 1} for all i.
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1. Introduction

One of the main problems, both in statistics and machine learning, is to iden-
tify the explanatory variables which are to be discarded, for they don’t have
a meaningful effect on the response variable. To formalize, let X1, . . . , Xp, Y
be real random variables, where Y is regarded as the response variable and
X1, . . . , Xp as the explanatory variables. A Markov blanket is a minimal subset
S ⊂ {1, . . . , p} such that

Y ⊥⊥ (Xi : i /∈ S) | (Xi : i ∈ S).

Under mild conditions, a Markov blanket S exists, is unique, and {1, . . . , p} \ S
can be written as

{1, . . . , p} \ S =
{
i : Y ⊥⊥ Xi | (X1, . . . , Xi−1, Xi+1, . . . , Xp)

}
;

see e.g. [9, p. 558] and [11, p. 8]. The problem mentioned above is to identify S.
To any selection procedure concerned with this problem, we can associate

the false discovery rate E( |Ŝ\S|
|Ŝ|∨1 ), where Ŝ denotes the estimate of S provided

by the procedure. As in the Neyman-Pearson theory, those selection procedures
which take the false discovery rate under control worth special attention.

One such procedure has been introduced by Barber and Candes; see [2, 3, 5,
9, 14, 19]. Let

X = (X1, . . . , Xp).
Roughly speaking, Barber and Candes’ idea is to create an auxiliary vector

X̃ = (X̃1, . . . , X̃p),

called a knockoff copy of X, which is able to capture the connections among
X1, . . . , Xp. Once X̃ is given, each Xi is selected/discarded based on the com-
parison between it and X̃i. Intuitively, X̃i plays the role of a control for Xi,
and Xi is selected if it appears to be considerably more associated with Y than
its knockoff copy X̃i. This procedure is a recent breakthrough as regards vari-
able selection. In addition to take the false discovery rate under control, it has
other merits. In particular, it works whatever the conditional distribution of Y
given X. More precisely, for the knockoff procedure to apply, one must assign
L(X) but is not forced to specify L(Y | X). (Here and in the sequel, for any
random elements U and V , we denote by L(U) and L(U | V ) the probability
distribution of U and the conditional distribution of U given V , respectively).

Let us make precise the conditions required to X̃. For each i ∈ {1, . . . , p}
and each point x ∈ R

2p, define fi(x) ∈ R
2p by swapping xi with xp+i and
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leaving all other coordinates of x fixed. Then, fi : R
2p → R

2p is a permuta-
tion. For instance, for p = 2, one obtains f1(x) = (x3, x2, x1, x4) and f2(x) =
(x1, x4, x3, x2). In this notation, X̃ is a knockoff copy of X, or merely a knockoff,
if

(i) fi(X, X̃) ∼ (X, X̃) for each i ∈ {1, . . . , p} and (ii) X̃ ⊥⊥ Y | X.

For the knockoff procedure to apply, one must select L(X) and construct X̃.
However, obtaining X̃ is not easy. Condition (ii) does not create any problems,
for it is automatically true whenever X̃ is built based only on X, neglecting
any information about Y . On the contrary, condition (i) is quite difficult to be
realized. Current tractable methods to achieve (i) require conditions on L(X).
To our knowledge, such methods are available only when X is Gaussian [9],
or the set of observed nodes in a hidden Markov model [19], or conditionally
independent given some random element [8] and [14]. The third condition (con-
ditional independence) is discussed in Section 1.1 and includes the other two as
special cases. There are also some universal algorithms, such as the Sequential
Conditional Independent Pairs [9] and the Metropolized Knockoff Sampler [5],
which are virtually able to cover any choice of L(X). However, these algorithms
do not provide a closed formula for X̃. More importantly, they are computa-
tionally intractable as soon as L(X) is complex; see [5] and [14]. As a matter
of fact, they work effectively only for some choices of L(X) (such us graphical
models) but not for all. A last remark is that, even if one succeeds to build X̃,
the joint distribution of the pair (X, X̃) could be unknown. This is a further
shortcoming. In fact, after observing X = x, it would be natural to sample
a value x̃ for X̃ from the conditional distribution L(X̃ | X = x). But this is
impossible if L(X̃ | X = x) is unknown.

In a nutshell, the above remarks may be summarized as follows. If X is not
conditionally independent (in the sense of Section 1.1), then:

• How to build a reasonable knockoff X̃ is unknown.
• The existing numerical algorithms are computationally heavy and may fail

to work.
• Even if one succeeds to build X̃, the joint distribution of the pair (X, X̃)

is unknown.

1.1. A new approach to knockoffs construction

As noted above, while powerful and effective, the knockoff procedure suffers from
some shortcomings due to the difficulty of building a reasonable knockoff X̃.
Such shortcomings are partially overcome by a new method for constructing X̃,
based on conditional independence, introduced in [8]. Similar ideas were also
previously developed in [14]. Another related reference is [4]. In this section, we
recall the main features of this method.

Suppose that X1, . . . , Xp are conditionally independent given some random
element Z. Denote by Θ the set where Z takes values and by γ the probability
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distribution of Z. Moreover, let B be the Borel σ-field on R and

Pi(A | θ) = P (Xi ∈ A | Z = θ) for all i = 1, . . . , p, θ ∈ Θ and A ∈ B.

Note that γ is a probability measure on Θ and each Pi(· | θ) is a probability
measure on R. Since X1, . . . , Xp are conditionally independent given Z,

P (X1 ∈ A1, . . . , Xp ∈ Ap) = E

{
p∏

i=1
P (Xi ∈ Ai | Z)

}
(1)

=
∫

Θ

p∏
i=1

Pi(Ai | θ) γ(dθ) for all A1, . . . , Ap ∈ B.

Hence, one can define a probability measure λ on R
2p as

λ(A1 × · · · ×Ap ×B1 × · · · ×Bp) =
∫

Θ

p∏
i=1

Pi(Ai | θ)Pi(Bi | θ) γ(dθ)

where Ai ∈ B and Bi ∈ B for all i. In [8, Th. 12], it is shown that any p-variate
random vector X̃ such that

L(X, X̃) = λ

is a knockoff copy of X.
Thus, arguing as above, not only one builds X̃ in a straightforward way but

also obtains the joint distribution of (X, X̃), namely

P (X1 ∈ A1, . . . , Xp ∈ Ap, X̃1 ∈ B1, . . . , X̃p ∈ Bp) (2)

=
∫

Θ

p∏
i=1

Pi(Ai | θ)Pi(Bi | θ) γ(dθ).

The price to be paid is to assign L(X) so as to satisfy (1). (Recall that the
choice of L(X) is a statistician’s task). But this price is not expensive for two
reasons. The first one is quite practical. The probability measures satisfying (1)
are flexible enough to cover most real situations. Modeling X1, . . . , Xp as con-
ditionally independent (given some Z) is actually reasonable in a number of
practical problems. The second reason is theoretical and is based on the results
of this paper. Indeed, even if (1) fails, L(X) can be approximated arbitrarily
well by probability measures satisfying (1); see Theorems 3 and 4 below.

The previous approach has two further advantages. First, X̃ is often optimal
under some criterions, such as mean absolute correlation and reconstructability.
This is discussed in Example 1. However, we note by now that

cov(Xi, X̃i) = 0 if Z is such that E(Xi | Z) = 0.

Second, even if it is not Bayesian from the conceptual point of view, the previous
approach largely exploits Bayesian tools. Hence, to construct X̃ and evaluate
L(X, X̃), all the Bayesian machinery can be recovered.
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To illustrate, suppose that Pi(· | θ) admits a density fi(· | θ) with respect
to some dominating measure λi. For instance, λi could be Lebesgue measure or
counting measure. Then, the joint densities of X and (X, X̃) are, respectively,

h(x) = h(x1, . . . , xp) =
∫

Θ

p∏
i=1

fi(xi | θ) γ(dθ) and

f(x, x̃) = f(x1, . . . , xp, x̃1, . . . , x̃p) =
∫

Θ

p∏
i=1

fi(xi | θ) fi(x̃i | θ) γ(dθ)

where x and x̃ denote points of Rp. In turn, assuming h(x) > 0 for the sake of
simplicity, the conditional density of X̃ given X = x can be written as

f(x, x̃)
h(x) =

∫
Θ
∏p

i=1 fi(xi | θ) fi(x̃i | θ) γ(dθ)∫
Θ
∏p

i=1 fi(xi | θ) γ(dθ)
.

Therefore, we have an explicit formula for L(X̃ | X = x).
In the rest of this paper, to make the exposition easier, a knockoff X̃ obtained

as above (i.e., a knockoff X̃ satisfying equation (2)) is said to be a conditional
independence knockoff (CIK). To highlight the connection between X̃ and X,
we also say that X̃ is the CIK of X.

1.2. Content of this paper

This paper is basically a follow up of [8]. It consists of two results, two examples,
and a numerical experiment. The results are of the theoretical type. They aim
to characterize the CIKs, to show that they can be applied to virtually any real
situation, and to highlight some of their optimality properties. The examples
provide an explicit formula for L(X̃ | X = x) in two (meaningful) cases: mix-
tures of 2-valued (or 3-valued) distributions and mixtures of centered normal
distributions. In particular, the first example deals with the case Xi ∈ {0, 1} for
all i. Such a case is important in applications, mainly in a genetic framework.
Nevertheless, apart from our example, we are not aware of any theoretical inves-
tigation of this case. Finally, in the numerical experiment, the CIKs are tested
against simulated and real data.

In the sequel, for any d ≥ 1, a probability measure on R
d is called absolutely

continuous if it admits a density with respect to Lebesgue measure on R
d.

Moreover, P is the class of all probability measures on R
p and P0 ⊂ P is the

subclass consisting of those μ0 ∈ P of the form

μ0(A1 × · · · ×Ap) =
∫

Θ

p∏
i=1

Pi(Ai | θ) γ(dθ),

for some choice of Θ, γ and Pi(· | θ) such that Pi(· | θ) is absolutely continuous
for all i and θ.
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We next briefly describe our two results. Moreover, by means of an example,
we point out some optimality properties of the CIKs.

Our first result (henceforth, R1) is that, for all μ ∈ P and ε > 0, there is
μ0 ∈ P0 such that

dBL(μ, μ0) < ε and dTV (μ, μ0) < ε if μ is absolutely continuous.

In addition, an explicit formula for μ0 is provided. Here, dBL and dTV are the
bounded Lipschitz metric and the total variation metric, respectively. Their
definitions are recalled in Section 2.

The motivation for R1 is that, to build a CIK, one needs L(X) ∈ P0. This
is not guaranteed, however, since the choice of L(X) is not subjected to any
constraint. Hence, it is natural to investigate whether L(X) can be at least ap-
proximated by elements of P0. Because of R1, this is actually true. Roughly
speaking, R1 aims to support P0 by showing that its elements are (approxima-
tively) able to model any real situation.

In addition to the previous motivation, R1 has also some practical utility.
Suppose L(X) = μ for some μ ∈ P. To fix ideas, suppose μ is absoutely con-
tinuous. If μ is arbitrary, how to build a reasonable knockoff X̃ is unknown.
However, given ε > 0, there is μ0 ∈ P0 such that dTV (μ, μ0) < ε. Such a μ0 can
be built explicitly (recall that R1 provides an explicit formula for μ0). Denote
by T a p-variate random vector such that L(T ) = μ0. Since μ0 ∈ P0, the CIK
T̃ of T can be obtained straightforwardly. Then,

dTV

(
L(X̃), L(T̃ )

)
= dTV (μ, μ0) < ε

for any knockoff copy X̃ of X. Hence, by the robustness properties of the knock-
off procedure [3], T̃ should be a reasonable approximation of X̃.

Our second result (henceforth, R2) is a characterization of the CIKs. Let K
denote the class of the CIKs, that is

K =
{
X̃ : L(X, X̃) admits representation (2) for some Θ, γ and Pi(· | θ)

}
.

Moreover, for any knockoff X̃, say that (X, X̃) is infinitely extendable if there
is an (infinite) sequence V = (V1, V2, . . .) such that

• (V1, . . . , V2p) ∼ (X, X̃);
• V satisfies the same invariance condition as (X, X̃) (this condition is for-

malized in Section 2.2).

Then, R2 states that

X̃ ∈ K ⇔ (X, X̃) is infinitely extendable.

Hence, if (X, X̃) is required to be infinitely extendable, then X must be condi-
tionally independent (given some Z) and X̃ must be the CIK of X. The proof
of R2 is based on de Finetti’s theorem for partially exchangeable sequences.
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Based on R2, a question is whether infinite extendability of (X, X̃) is a rea-
sonable condition. To answer, two facts are to be stressed. Firstly, by de Finetti’s
theorem, infinite extendability of (X, X̃) essentially amounts to conditional in-
dependence of X and X̃. Secondly, for the knockoff procedure to have a low
type II error rate, it is desirable that X and X̃ are “as independent as possi-
ble”; see e.g. [9, p. 563] and [20]. Now, to have X and X̃ as independent as
possible, a reasonable strategy is to take X and X̃ conditionally independent,
or equivalently to require (X, X̃) to be infinitely extendable.

Example 1 (Optimality of the CIKs). Suppose E(X2
i ) < ∞ and var(Xi) > 0

for all i. Obviously, X̃ should be selected so as to make the power of the knockoff
procedure as high as possible. To this end, two criterions are to minimize the
mean absolute correlation

p∑
i=1

∣∣∣∣cov(Xi, X̃i)
var(Xi)

∣∣∣∣,
and to minimize the reconstructability index
p∑

i=1
E
{
var(Xi | Li)

}−1 where Li = (X1, . . . , Xi−1, Xi+1, . . . , Xp, X̃1, . . . , X̃p).

The first criterion (mean absolute correlation) is quite popular in the machine
learning comunity. At least in some cases, however, it is overcome by the second
(reconstructability index); see [5] and [20]. Note also that

E
{
var(Xi | Li)

}
= E

{
E
(
X2

i | Li

)
− E(Xi | Li)2

}
= E

(
X2

i

)
−E

{
E(Xi | Li)2

}
≤ E

(
X2

i

)
.

Suppose now that X1, . . . , Xp are conditionally independent, given some random
element Z, and X̃ is the CIK of X. Suppose also that E(Xi | Z) = 0 a.s. for
all i. Then,

cov(Xi, X̃i) = E(Xi X̃i) = E
{
E(Xi X̃i | Z)

}
= E

{
E(Xi | Z)E(X̃i | Z)

}
= 0.

Therefore, X̃ is optimal under the first criterion. Moreover,

E(Xi | Li) = E
{
E(Xi | Z, Li) | Li

}
= E

{
E(Xi | Z) | Li

}
= 0 a.s.

Hence, E{var(Xi | Li)} = E(X2
i ) and the reconstructability index attains its

minimum value
∑p

i=1 E(X2
i )−1. Therefore, X̃ is optimal under the second cri-

terion as well.

2. Theoretical results

We first recall some (well known) definitions. A function f : Rp → R is said to
be Lipschitz if there is a constant b ≥ 0 such that∣∣f(x) − f(y)

∣∣ ≤ b ‖x− y‖ for all x, y ∈ R
p,
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where ‖·‖ is the Euclidean norm. In this case, we also say that f is b-Lipschitz
or that b is a Lipschitz constant for f .

We remind that P denotes the class of all probability measures on R
p. The

bounded Lipschitz metric dBL and the total variation metric dTV are two dis-
tances on P. If μ, ν ∈ P, they are defined as

dBL(μ, ν) = sup
g

∣∣∣∣∫
Rp

g dμ−
∫
Rp

g dν

∣∣∣∣ and dTV (μ, ν) = sup
A

∣∣μ(A) − ν(A)
∣∣

where supg is over the 1-Lipschitz functions g : Rp → [−1, 1] and supA is over
the Borel subsets A ⊂ R

p. Among other things, dBL has the property that

μn → μ weakly ⇔ dBL(μn, μ) → 0

where μn, μ ∈ P. We also note that dBL and dTV are connected through the
inequality dBL ≤ 2 dTV .

We next turn to our main results.

2.1. P0 is dense in P

Let P0 be the class of those probability measures μ0 ∈ P which can be written
as

μ0(A1 × · · · ×Ap) =
∫

Θ

p∏
i=1

Pi(Ai | θ) γ(dθ), A1, . . . , Ap ∈ B,

for some choice of Θ, γ and Pi(· | θ). To avoid trivialities, Pi(· | θ) is assumed to
be absolutely continuous for all i = 1, . . . , p and θ ∈ Θ. The latter assumption
is motivated by the next example.

Example 2 (Why Pi(· | θ) absolutely continuous). Suppose

Θ = R
p, γ = L(X) and Pi(A | θ) = 1A(θi) (3)

where θ = (θ1, . . . , θp) denotes a point of Rp. Then,

P (X1 ∈ A1, . . . , Xp ∈ Ap) =
∫
Rp

p∏
i=1

1Ai(θi) γ(dθ) =
∫

Θ

p∏
i=1

Pi(Ai | θ) γ(dθ).

Hence, without some further constraint (such as Pi(· | θ) absolutely continuous),
one would obtain P0 = P with Θ, γ and Pi(· | θ) as in (3). However, this is
not practically useful. In fact, under (3), the CIK X̃ of X is the trivial knockoff
X̃ = X, which is unsuitable to perform the knockoff procedure.

If L(X) ∈ P0, it is straightforward to obtain the CIK X̃ of X and to write
L(X, X̃) in closed form. But clearly it may be that L(X) /∈ P0. In this case, it
is quite natural to investigate whether L(X) can be approximated by elements
of P0. This is actually possible and the approximation is very strong if L(X) is
absolutely continuous.
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Theorem 3. For all μ ∈ P and ε > 0, there is μ0 ∈ P0 such that dBL(μ, μ0) < ε.
In particular, one such μ0 is

μ0(A) =
∫
Rp

Np(x, cI)(A)μ(dx) for all Borel sets A ⊂ R
p (4)

where c = ε2/2p and Np(x, cI) denotes the Gaussian law on R
p with mean x

and covariance matrix c I, i.e.

Np(x, cI)(A) = (2π c)−p/2
∫
A

exp
{
−‖y − x‖2

2c

}
dy.

Theorem 4. Suppose μ ∈ P is absolutely continuous. Then, for each ε > 0,
there is μ0 ∈ P0 such that dTV (μ, μ0) < ε. Moreover, if μ has a Lipschitz density,
one such μ0 can be defined by (4) with

c = 1
4p

(
ε

bm(B)

)2

,

where b is a Lipschitz constant for the density of μ, m is the Lebesgue measure
on R

p and B ⊂ R
p is any Borel set satisfying μ(Bc) < ε/2 and 0 < m(B) < ∞.

Theorems 3 and 4 are proved in the Supplementary Material.
It is worth noting that, in addition to (4), there are other laws μ0 ∈ P0

satisfying the inequalities dBL(μ, μ0) < ε or dTV (μ, μ0) < ε. Moreover, in the
second part of Theorem 4, the Lipschitz condition on the density of μ can be
weakened at the price of making μ0 slightly more involved.

The motivation of Theorems 3–4 has been mentioned in Section 1.2. In short,
if L(X) /∈ P0, the CIK X̃ of X cannot be built. However, Theorems 3–4 imply
that L(X) can be approximated by elements of P0. Hence, with a negligible er-
ror, it can be assumed X ∼ μ0 and the CIK X̃ of X can be easily obtained. This
is our main motivation. However, Theorems 3–4 have a practical implication as
well. Suppose L(X) = μ for some μ ∈ P. To fix ideas, suppose μ is absolutely
continuous with a Lipschitz density. Fix ε > 0, define μ0 ∈ P0 as in Theorem 4,
and call T a p-variate vector such that L(T ) = μ0. Since μ0 ∈ P0, the CIK
T̃ of T can be easily built. Moreover, given any knockoff copy X̃ of X, since
X̃ ∼ X ∼ μ and T̃ ∼ T ∼ μ0, Theorem 4 yields

dTV

(
L(X̃), L(T̃ )

)
= dTV (μ, μ0) < ε.

Therefore, by the robustness properties of the knockoff procedure [3], T̃ is ex-
pected to be a reasonable approximation of X̃. (Obviously, the latter claim
should be supported by a numerical comparison of the power and the false dis-
covery rate corresponding to X̃ and T̃ . Such a comparison is not trivial, however,
since X̃ is unknown for arbitrary μ).

Finally, two remarks are in order. The first is summarized by the following
lemma.
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Lemma 5. Let T̃ be the CIK of T , where T ∼ μ0 with μ0 given by (4). Then,

(T, T̃ ) ∼ (L + M, L + N)

where L, M, N are independent, L ∼ μ and M ∼ N ∼ Np(0, cI).

Proof. For any Borel sets A, B ⊂ R
p, one obtains

P (L + M ∈ A, L + N ∈ B)

=
∫
Rp

P (x + M ∈ A, x + N ∈ B)μ(dx)

=
∫
Rp

P (x + M ∈ A)P (x + N ∈ B)μ(dx)

=
∫
Rp

Np(x, cI)(A)Np(x, cI)(B)μ(dx) = P (T ∈ A, T̃ ∈ B).

Lemma 5 makes clear the structure of L(T, T̃ ) and may be useful for sampling
from such distribution.

The second remark is that, if L(X, X̃) is absolutely continuous and has a
Lipschitz density, the pair (T, T̃ ) can be taken such that

dTV

(
L(X, X̃), L(T, T̃ )

)
< ε.

In the notation μ∗ = L(X, X̃) and μ∗
0 = L(T, T̃ ), it suffices to let

μ∗
0(A) =

∫
R2p

N2p(x, cI)(A)μ∗(dx) for all Borel sets A ⊂ R
2p

where c is a suitable constant. Thus, L(X, X̃) can be approximated in total
variation by L(T, T̃ ) for any knockoff X̃ which makes L(X, X̃) absolutely con-
tinuous with a Lipschitz density. While this fact is theoretically meaningful and
supports the CIKs further, the above formula for μ∗

0 has little practical use,
since μ∗ is generally unknown (it is even unknown how to obtain X̃).

2.2. A characterization of the CIKs

Recall that

K =
{
X̃ : L(X, X̃) admits representation (2) for some Θ, γ and Pi(· | θ)

}
is the class of the CIKs of X. Such a K does not include all possible knockoffs.
Here is a trivial example.

Example 6 (Not every knockoff is a CIK). Suppose that X1, . . . , Xp are i.i.d.
with P (X1 = 0) = P (X1 = 1) = 1/2. In this case, it would be natural to take
X̃ as an independent copy of X. But suppose we let

X̃ = (X̃1, . . . , X̃p) = (1 −X1, . . . , 1 −Xp).
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Then, for all a, b ∈ {0, 1}p,

P (X = a, X̃ = b) = P (X = a) if bi = 1 − ai for each i = 1, . . . , p

while P (X = a, X̃ = b) = 0 otherwise. Based on this fact, it is straightforward
to verify that X̃ is a knockoff copy of X. However, since X2

i = Xi, one obtains

cov(Xi, X̃i) = E
{
Xi(1 −Xi)

}
− E(Xi)2

= E(Xi) −E
(
X2

i

)
− E(Xi)2 = −E(Xi)2 < 0.

Now, if X̃ ∈ K, Jensen’s inequality implies cov(Xi, X̃i) ≥ 0. Hence, X̃ /∈ K.

Based on Example 6, a question is how to identify the members of K among
all possible knockoffs X̃. To answer this question, we recall that (X, X̃) is said
to be infinitely extendable if there exists an (infinite) sequence V = (V1, V2, . . .)
such that (V1, . . . , V2p) ∼ (X, X̃) and V satisfies the same invariance condition
as (X, X̃). Formally, the latter request should be meant as follows. Given three
integers i, j, k with 1 ≤ i ≤ p and j, k ≥ 0, define a new sequence V ∗ =
(V ∗

1 , V
∗
2 , . . .) by swapping Vkp+i with Vjp+i and leaving all other elements of V

fixed, that is,

V ∗
kp+i = Vjp+i, V ∗

jp+i = Vkp+i, V ∗
r = Vr if r /∈ {kp + i, jp + i}.

Then, V is required to satisfy

V ∗ ∼ V for all 1 ≤ i ≤ p and j, k ≥ 0. (5)

Condition (5) is nothing but a form of partial exchangeability; see [1] and [10].
In fact, the main tool for proving the next result is de Finetti’s theorem for
partially exchangeable sequences.

Theorem 7. Let X̃ be a knockoff copy of X. Then, X̃ ∈ K if and only if (X, X̃)
is infinitely extendable.

The essence of Theorem 7 is that, if (X, X̃) is required to be infinitely extend-
able, then X must be conditionally independent (given some Z) and X̃ must
be the CIK of X. One reason for requiring infinite extendability has been given
in Section 1.2. Essentially, infinite extendability of (X, X̃) amounts to condi-
tional independence between X and X̃, which in turn implies optimality of X̃
under various criterions for increasing the power of the knockoff procedure; see
Example 1.

Proof of Theorem 7. Suppose X̃ ∈ K, that is, L(X, X̃) admits representation (2)
for some Θ, γ and Pi(· | θ). For all A1, A2, . . . ∈ B, define

P (V1 ∈ A1, V2 ∈ A2, . . .) =
∫

Θ

∞∏
k=0

p∏
j=1

Pj(Akp+j | θ) γ(dθ).



130 E. Dreassi et al.

Then, V = (V1, V2, . . .) is an infinite sequence satisfying condition (5). Moreover,
by (2), one obtains

P (V1 ∈ A1, . . . , Vp ∈ Ap, Vp+1 ∈ B1, . . . , V2p ∈ Bp)

=
∫

Θ
P1(A1 | θ) . . . Pp(Ap | θ)P1(B1 | θ) . . . Pp(Bp | θ) γ(dθ)

= P (X1 ∈ A1, . . . , Xp ∈ Ap, X̃1 ∈ B1, . . . , X̃p ∈ Bp)

whenever Ai, Bi ∈ B for each i. Hence, (X, X̃) is infinitely extendable. Con-
versely, suppose (X, X̃) is infinitely extendable and take an infinite sequence
V = (V1, V2, . . .) satisfying condition (5) and (V1, . . . , V2p) ∼ (X, X̃). Let Q
denote the set of all probability measures on R. By (5), V is partially exchange-
able; see e.g. [1]. Hence, by de Finetti’s theorem, there is a probability measure
π on Qp such that

P (V1 ∈ A1, V2 ∈ A2, . . .) =
∫
Qp

∞∏
k=0

p∏
j=1

qj(Akp+j)π(dq1, . . . , dqp)

for all A1, A2, . . . ∈ B; see [1] again. (Such a π is usually called the de Finetti’s
measure of V ). In particular,

P (X1 ∈ A1, . . . , Xp ∈ Ap, X̃1 ∈ B1, . . . , X̃p ∈ Bp)
= P (V1 ∈ A1, . . . , Vp ∈ Ap, Vp+1 ∈ B1, . . . , V2p ∈ Bp)

=
∫
Qp

q1(A1) . . . qp(Ap) q1(B1) . . . qp(Bp)π(dq1, . . . , dqp).

Thus, to conclude the proof, it suffices to let

Θ = Qp, γ = π, Pi(· | θ) = qi(·) for all θ = (q1, . . . , qp) ∈ Qp.

3. 2-valued and 3-valued covariates

In applications, an important special case is Xi ∈ {0, 1}. In a genetic framework,
for instance, Xi = 0 or Xi = 1 according to whether the i-th gene is absent or
present. Another meaningful case is Xi ∈ {0, 1, 2}, where Xi = 2 can be given
various interpretations. For instance, Xi = 2 could mean that the absence/pres-
ence of the i-th gene cannot be established. Despite their practical significance,
to our knowledge, these cases have not received much attention, from the theo-
retical point of view, to date. In this section, we try to fill this gap. We aim to
build a CIK X̃ when X is a vector of 2-valued or 3-valued random variables.

There are obviously various cases. For instance, some covariates are 2-valued,
other 3-valued, and the remaining ones have a continuous distribution function.
Here, we only focus on two extreme situations: either all covariates are 2-valued
or all are 3-valued.



Knockoffs 131

Suppose first Xi ∈ {0, 1} for all i. To build a CIK, X1, . . . , Xp must be
conditionally independent given a random parameter θ. Here, it is natural to
let θ = (θ1, . . . , θp) with θi ∈ (0, 1) regarded as the (random) probability of the
event {Xi = 1}. Accordingly, X1, . . . , Xp are assumed conditionally independent
given θ = (θ1, . . . , θp) with P (Xi = 1 | θ) = θi. In this case,

P (X = x) = P (X1 = x1, . . . , Xp = xp) =
∫

(0,1)p

p∏
i=1

θxi

i (1 − θi)1−xi γ(dθ)

where γ denotes the probability distribution of θ and

x = (x1, . . . , xp) ∈ {0, 1}p.

To be concrete, we also assume
θ = λ c

where λ ∈ (0, 1) is a random scalar and c = (c1, . . . , cp) ∈ (0, 1)p a vector of
known constants. Moreover, we take λ uniformly distributed on (0, 1) and we
let

s =
p∑

i=1
xi, S = {i : xi = 1}, d0 = 1, dj =

∑
i1 < · · · < ij
i1, . . . , ij /∈ S

ci1 ci2 . . . cij .

Then, after some algebra, one obtains

P (X = x) =
∏
i∈S

ci

∫ 1

0
λs

∏
i/∈S

(1 − λ ci) dλ =
∏
i∈S

ci

p−s∑
j=0

(−1)j dj
j + s + 1 .

Similarly, we can evaluate P (X = x, X̃ = x̃) where

x̃ = (x̃1, . . . , x̃p) ∈ {0, 1}p.

To this end, define

t =
p∑

i=1
x̃i, T = {i : x̃i = 1}, e0 = 1, ej =

∑
i1 < · · · < ij
i1, . . . , ij /∈ T

ci1 ci2 . . . cij .

Then,

P (X = x, X̃ = x̃) =
∏
i∈S

ci
∏
i∈T

ci

∫ 1

0
λs+t

∏
i/∈S

(1 − λ ci)
∏
i/∈T

(1 − λ ci) dλ

=
∏
i∈S

ci
∏
i∈T

ci

p−s∑
j=0

p−t∑
k=0

(−1)j+k djek
j + k + s + t + 1 .
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Finally,

P (X̃ = x̃ | X = x) = P (X = x, X̃ = x̃)
P (X = x)

=
∏
i∈T

ci

(
p−s∑
j=0

(−1)j dj
j + s + 1

)−1 p−s∑
j=0

p−t∑
k=0

(−1)j+k djek
j + k + s + t + 1 .

We now have an explicit formula for L(X̃ | X = x). In a sense, this is the
best we can do. In fact, after observing X = x, a value x̃ for X̃ can be drawn
directly from L(X̃ | X = x).

Next, suppose that Xi ∈ {0, 1, 2} for all i. To deal with this case, we assume
X1, . . . , Xp conditionally independent given λ with

P (Xi = 0 | λ) = λ (1 − ci), P (Xi = 1 | λ) = λ ci, P (Xi = 2 | λ) = 1 − λ,

where λ ∈ (0, 1) is a random scalar and ci ∈ (0, 1) a fixed known constant. We
give λ a beta distribution with parameters a > 0 and b > 0. Moreover, for all

x = (x1, . . . , xp) ∈ {0, 1, 2}p and x̃ = (x̃1, . . . , x̃p) ∈ {0, 1, 2}p,

we let

S0 = {i : xi = 0}, S1 = {i : xi = 1}, T0 = {i : x̃i = 0}, T1 = {i : x̃i = 1},
m2 = card {i : xi = 2} and n2 = card {i : x̃i = 2}.

Then,

P (X = x) =
∫ 1

0

∏
i

P (Xi = xi | λ) Γ(a + b)
Γ(a)Γ(b) λ

a−1(1 − λ)b−1dλ

= Γ(a + b)
Γ(a)Γ(b)

∏
i∈S1

ci
∏
i∈S0

(1 − ci)
∫ 1

0
λa+p−m2−1(1 − λ)b+m2−1dλ

= Γ(a + b)
Γ(a)Γ(b)

Γ(a + p−m2) Γ(b + m2)
Γ(a + b + p)

∏
i∈S1

ci
∏
i∈S0

(1 − ci)

and

P (X = x, X̃ = x̃)

=
∫ 1

0

∏
i

P (Xi = xi | λ)P (Xi = x̃i | λ) Γ(a + b)
Γ(a)Γ(b) ×

× λa−1(1 − λ)b−1dλ = Γ(a + b)
Γ(a)Γ(b)

Γ(a + 2p−m2 − n2) Γ(b + m2 + n2)
Γ(a + b + 2p) ×

×
∏
i∈S1

ci
∏
i∈T1

ci
∏
i∈S0

(1 − ci)
∏
i∈T0

(1 − ci).
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Hence, even in this case, we have an explicit formula for L(X̃ | X = x), that is

P (X̃ = x̃ | X = x) = P (X = x, X̃ = x̃)
P (X = x)

= Γ(a + 2p−m2 − n2) Γ(b + m2 + n2) Γ(a + b + p)
Γ(a + b + 2p) Γ(a + p−m2) Γ(b + m2)

∏
i∈T1

ci
∏
i∈T0

(1 − ci).

4. Mixtures of centered normal distributions

In this section, θ = (θ1, . . . , θp) is a vector of strictly positive random variables
and X1, . . . , Xp are conditionally independent given θ with

Xi | θ ∼ N1(0, θi) for each i = 1, . . . , p.

Mixtures of centered normal distributions allow to model various real situa-
tions while preserving some properties of the Gaussian laws. For this reason, they
are quite popular in applications; see e.g. [15] and references therein. Among
other things, they are involved in Bayesian inference for logistic models [16] and
they arise as the limit laws in the CLT for exchangeable random variables [7,
Sect. 3]. A further motivation for this type of data is that E(Xi | θ) = 0. Hence,
the CIKs are optimal and in particular

cov(Xi, X̃i) = 0 for all i;

see Example 1.
To build a CIK, a “prior” γ on Θ = (0,∞)p is to be selected. Quite surpris-

ingly, to our knowledge, the choice of γ seems to be almost neglected in the
Bayesian literature (apart from the special case θ1 = · · · = θp); see e.g. [13]. We
next propose two choices of γ. As in Section 3, we let θ = λ c where λ > 0 is a
scalar and c = (c1, . . . , cp) a vector such that ci > 0 for all i.

4.1. First choice of γ

We first assume that λ is random but c is not. Equivalently, we suppose that the
ratios θi/θj = ci/cj are non-random and known. While simple, this assumption
makes sense in various applications, for instance in a financial framework.

The random variable λ is given an inverse Gamma distribution with param-
eters a > 0 and b > 0, that is, λ has density ψ(x) = ba Γ(a)−1x−a−1 exp (−b/x)
for x > 0. In this case, the density of (X, X̃) is

f(x, x̃) =
∫ ∞

0

p∏
i=1

fi(xi | λ, c) fi(x̃i | λ, c)ψ(λ) dλ

where x and x̃ are points of R
p and fi(· | λ, c) is the density of N1(0, ci λ).

Hence,

f(x, x̃) = ba

(2π)p Γ(a)
∏p

i=1 ci

∫ ∞

0
λ−a−p−1 exp

{
− 1
λ

(
b +

p∑
i=1

x2
i + x̃2

i

2ci

)}
dλ
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= ba Γ(a + p)
(2π)p Γ(a)

∏p
i=1 ci

(
b +

p∑
i=1

x2
i + x̃2

i

2ci

)−(a+p)

.

Similarly, the density of X is

h(x) =
∫ ∞

0

p∏
i=1

fi(xi | λ, c)ψ(λ) dλ

= ba Γ(a + p/2)
(2π)p/2 Γ(a)

√∏p
i=1 ci

(
b +

p∑
i=1

x2
i

2ci

)−(a+p/2)

.

It is worth noting that f and h are densities of Student’s-t distributions. We
recall that the m-variate Student’s-t distribution with k degrees of freedom is
the absolutely continuous distribution on R

m with density

ϕ(x) = Γ[(m + k)/2]
Γ(k/2) (kπ)m/2

√
detΣ

(
1 + (1/k)xTΣ−1x

)−(m+k)/2 for each x ∈ R
m,

where Σ is a symmetric positive definite m × m matrix. Hence, one obtains
ϕ = f if m = 2p, k = 2a and Σ = b a−1 diag(c1, . . . , cp, c1, . . . , cp) and ϕ = h if
m = p, k = 2a and Σ = b a−1 diag(c1, . . . , cp).

Finally, the conditional density of X̃ given X = x can be written as

g(x̃ | x) = f(x, x̃)
h(x) = Γ(a + p)

(2π)p/2 Γ(a + p/2)
√∏p

i=1 ci

(b +
∑p

i=1
x2
i

2ci )
a+p/2

(b +
∑p

i=1
x2
i+x̃2

i

2ci )a+p
.

Once again, g(· | x) is the density of a Student’s-t distribution (with parameters
depending on x). To see this, it suffices to let m = p, k = 2a + p, and

Σ = 2
2a + p

(
b +

p∑
i=1

x2
i

2ci

)
diag(c1, . . . , cp).

Thus, we have an explicit formula for g(· | x) and this is quite useful in appli-
cations. A numerical example is in Section 5.

4.2. Second choice of γ

Suppose now that c is random and independent of λ. Let c be given an absolutely
continuous distribution with density q. Then, f , h and g turn into

f(x, x̃) =
∫

(0,∞)p

∫ +∞

0

p∏
i=1

fi(xi | λ, c) fi(x̃i | λ, c)ψ(λ) q(c) dλ dc,

h(x) =
∫

(0,∞)p

∫ +∞

0

p∏
i=1

fi(xi | λ, c)ψ(λ) q(c) dλ dc and g(x̃ | x) = f(x, x̃)
h(x) .
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As an example, c1, . . . , cp could be taken i.i.d. according to a uniform distribu-
tion on some bounded interval B ⊂ (0,∞), i.e.,

q(c) = 1
length(B)p

p∏
i=1

1B(ci).

In general, the above integrals cannot be explicitly evaluated. Hence, sam-
pling from g(· | x) is not easy, but it is still possible by computational methods.
For instance, we could proceed as follows. Since g(· | x) is proportional to f(x, ·),
we focus on f(x, ·). Then, to sample from f(x, ·), we adopt a data augmentation
strategy where λ and c are treated as auxiliary variables. The idea is to consider
the density function

g∗(x̃, λ, c | x) ∝
p∏

i=1
fi(xi | λ, c) fi(x̃i | λ, c)ψ(λ) q(c)

and perform a Gibbs sampling on the variables (x̃, λ, c). We conclude this section
by listing the full conditional distributions required to run the algorithm.

• Let x̃−i = (x̃1, . . . , x̃i−1, x̃i+1, . . . , x̃p). The full conditional distribution of
(x̃i | x̃−i, λ, c) is proportional to fi(· | λ, c). This means that x̃i can be
sampled from a centered normal distribution with variance λci.

• The full conditional distribution of (λ | x̃, c) is proportional to

ψ(λ)
λp

exp
{
− 1
λ

p∑
i=1

x2
i + x̃2

i

2ci

}
.

Hence, since ψ is the inverse gamma density with parameters a and b, the
full conditional of λ is still an inverse gamma with parameters

a∗ = a + p and b∗ = b +
p∑

i=1

x2
i + x̃2

i

2ci
.

Obviously, λ could be also given a different distribution. In this case, the
corresponding full conditional is probably more involved, but one may use
a metropolis within Gibbs step.

• Let c−i = (c1, . . . , ci−1, ci+1, . . . , cp). The full conditional distribution of
(ci | x̃, λ, c−i) is proportional to

q(c)
ci

exp
{
− 1
ci

x2
i + x̃2

i

2λ

}
.

Sampling from the above is not straightforward and may require a metropo-
lis within Gibbs step.
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5. A numerical experiment

In this section, the CIKs are tested numerically against both simulated and
real data. To this end, X is assumed to be as in Section 4.1. Hence, L(X) is a
mixture of centered normal distributions and θ = λ c, where the scalar λ has an
inverse gamma distribution with parameters a and b while c = (c1, . . . , cp) is a
vector of strictly positive constants.

To learn something about the impact of the parameters, the experiment has
been repeated for various choices of a, b and c. The obtained results are quite
stable with respect to a and b but exhibit a notable variability with respect to
c. In the sequel, a and b have been selected so as to control the mean and the
variance of λ (which hold b/(a − 1) and b2

(a−1)2(a−2) , respectively, for a > 2).
In case of real data (Section 5.2) a and b have been also tuned based on the
observed value of X. The choice of c is certainly more delicate. As in Section 4.2,
one option could be modeling c as a random vector (rather than a fixed vector).
For instance, c1, . . . , cp could be i.i.d, according to a uniform distribution on
some interval, and independent of λ. However, in this section, c is taken to
be non-random. This choice has essentially three motivations. First, it may
be convenient in real problems, in order to account for the different roles of the
various covariates. Second, it is practically simpler since computational methods
are not required. Third, if c is non-random, a direct comparison with Section
6.3 of [18] is easier.

One more remark is in order. To compare different knockoff procedures, three
popular criterions are the power, the false discovery rate, and the observed
correlations between the Xi and their knockoffs X̃i. However, as regards the
CIKs of Section 4.1, the third criterion is superfluos, since cov(Xi, X̃i) = 0 for
all i. Indeed, under the third criterion (as well as under the reconstructability
criterion), the CIKs of Section 4.1 are superior to any other knockoff procedure;
see Example 1.

5.1. Simulated data

According to the usual format (see e.g. [9] and [18]) the simulation experiment
has been performed as follows.

• A subset I ⊂ {1, . . . , p} such that |I| = 60 has been randomly selected
and the coefficients β1, . . . , βp have been defined as

βi = 0 if i /∈ I and βi = u√
n

if i ∈ I.

Here, n is a positive integer and u > 0 a parameter called signal amplitude.
• n i.i.d. observations

X(j) = (X1j , . . . , Xpj), j = 1, . . . , n,

have been generated from a p-variate Student’s-t distribution with 2a de-
grees of freedom and matrix Σ = b a−1 diag(c1, . . . , cp). Given X(j), the
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corresponding response variable Y (j) has been defined as

Y (j) =
p∑

i=1
βiXij + ej

where e1, . . . , en are i.i.d. standard normal errors.
• For each j = 1, . . . , n, we sampled m CIKs, say X̃(1,j), . . . , X̃(m,j), from

the conditional distribution of X̃(j) given X(j) = x(j) where x(j) is the
observed value of X(j). Precisely, for each k = 1, . . . ,m, the value of
X̃(k,j) was sampled from the p-variate Student’s-t distribution with 2a+p
degrees of freedom and matrix

Σ = 2
2a + p

(
b +

p∑
i=1

x2
ij

2ci

)
diag(c1, . . . , cp).

• For each k = 1, . . . ,m, the knockoff selection procedure has been applied
to the data {

Y (j), X(j), X̃(k,j) : j = 1, . . . , n
}

so as to calculate the power and the false discovery rate, say pow(k) and
fdr(k). To do this, we exploited the R-cran package knockoff:

https://cran.r-project.org/web/packages/knockoff/index.html

This package is based on the comparison between the lasso coefficient
estimates of each covariate and its knockoff.

• The final outputs are the arithmetic means of the powers and the false
discovery rates, i.e.,

pow = (1/m)
m∑

k=1
pow(k) and fdr = (1/m)

m∑
k=1

fdr(k).

To run the simulation experiment, we took m = n = p = 1000 and a the-
oretical value of the false discovery rate equal to 0.1. As already noted, the
experiment has been repeated for various choices of the parameters a, b, c, u.
Overall, the results have been quite stable with respect to all parameters but
c. The specific results reported here correspond to a = 6, b = 10, ci = i and
u = 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 1, 1.5, 2, 2.5, 3.

The observed results, in terms of pow and fdr, are summarized in Figure 1.
The performance of the CIKs appears to be excellent, even if it slightly gets
worse for small values of the amplitude u. It is worth noting that, as regards
the power, the behavior of the CIKs is even optimal. This was quite expected,
however, because of the optimality of the CIKs discussed in Example 1.

5.2. Real data

We next turn to real data. In this case, the CIKs can be compared with some
other knockoff procedures, namely: The Benjamin and Hochberg method [6],

https://cran.r-project.org/web/packages/knockoff/index.html
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Fig 1. Results from the simulation experiment: False Discovery Rate (left) and Power (right)
performances for the CIKs with Signal amplitude equal to 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45,
0.5, 1, 1.5, 2, 2.5, 3

Fig 2. Results from the real example: False Discovery Rate (left) and Power (right) perfor-
mances across methods and drugs.

denoted by BHq; The fixed X knockoff [2], denoted by Fixed-X; The model-X
Gaussian knockoff [9], denoted by Model-X; The second-order knockoff [9, 18],
denoted by Second-order. The comparison is based on the power, the false dis-
covery rate, and the number of false and true discoveries. The results reported
here correspond to a = 4, b = 3 and ci = i.

We focus on the human immunodeficiency virus type 1 (HIV-1) dataset [17],
which has been used in several papers on the knockoff procedure; see e.g. [2, 18].
The dimension of our dataset is n = 846 and p = 341, where n denotes the num-
ber of observations. The knockoff filter is applied to detect the mutations asso-
ciated with drug resistance. In fact, the HIV-1 dataset provides drug resistance
measurements. Furthermore, it includes genotype information from samples of
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HIV-1, with separate data sets for resistance to protease inhibitors, nucleoside
reverses transcriptase inhibitors, and non-nucleoside RT inhibitors. We deal with
resistance to protease inhibitors, and we analyze separately the following drugs:
amprenavir (APV), atazanavir (ATV), indinavir (IDV), lopinavir (LPV), nelfi-
navir (NFV), ritonavir (RTV) and saquinavir (SQV).

Figure 2 summarizes the performances of the five methods across different
drugs in terms of power and false discovery rate. It turns out that, in most
cases, the CIKs are performing well. Compared to the other procedures, the
CIKs are performing better in terms of power for APV, IDV and LPV whilst
are performing worse for SQV. In terms of false discovery rate, the CIKs perform
better than others for RTV whilst are performing worse for LPV, NFV and SQV.
Figure 3 shows the performances of the five methods for each drug related to
their discoveries. We note that the number of true discoveries with the CIKs is
higher compared to BHq and Fixed-X for all the drugs and similarly to Second-
order and Model-X. We also highlight the performance of the CIKs in RTV with
respect to the other methods.

To sum up, though the CIKs are not the best, they guarantee a good balance
between power and false discovery rate and its performance is analogous to that
of the other methods. For instance, as regards APV, ATV, IDV, LPV, NFV,
the CIKs have a similar number of true discoveries with respect to Second-order
and X-Model but also a fewer number of false discoveries.

Supplementary Material

We close the paper by proving Theorems 3 and 4. For c > 0 and z ∈ R
p, we

denote by φz(·) the density function of Np(z, cI), i.e.

φz(x) = (2π c)−p/2 exp
{
−‖x− z‖2

2c

}
for all x ∈ R

p.

Proof of Theorem 3. Define c = ε2/2p and

μ0(A) =
∫
Rp

Np(x, cI)(A)μ(dx) for all Borel sets A ⊂ R
p.

To see that μ0 ∈ P0, it suffices to let

Θ = R
p, γ = μ and Pi(· | θ) = N1(θi, c),

where θi denotes the i-th coordinate of θ = (θ1, . . . , θp) ∈ R
p. Obviously, Pi(· | θ)

is absolutely continuous. Moreover, since

Np(x, cI) = N1(x1, c) × · · · × N1(xp, c) for all x = (x1, . . . , xp) ∈ R
p,

one obtains

μ0(A1 × · · · ×Ap) =
∫

Θ

p∏
i=1

Pi(Ai | θ) γ(dθ) for all A1, . . . , Ap ∈ B.
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Fig 3. Comparison of different knockoff filters in terms of discoveries for each type of drug.
The black part denotes the true discoveries whilst the gray part denotes the false discoveries.
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We next prove dBL(μ, μ0) < ε. Fix a 1-Lipschitz function g : Rp → [−1, 1].
Then, ∫

Rp

g dμ0 =
∫
Rp

∫
Rp

g(y)φx(y) dy μ(dx).

Since g is 1-Lipschitz and ∫
Rp

‖y − x‖2 φx(y) dy = p c,

it follows that∣∣∣∣∫
Rp

g dμ0 −
∫
Rp

g dμ

∣∣∣∣ =
∣∣∣∣∫

Rp

∫
Rp

{
g(y) − g(x)

}
φx(y) dy μ(dx)

∣∣∣∣
≤

∫
Rp

∫
Rp

∣∣g(y) − g(x)
∣∣φx(y) dy μ(dx)

≤
∫
Rp

∫
Rp

‖y − x‖φx(y) dy μ(dx)

≤
∫
Rp

√∫
Rp

‖y − x‖2 φx(y) dy μ(dx) = √
p c = ε√

2
.

Therefore,

dBL(μ, μ0) = sup
g

∣∣∣∣∫
Rp

g dμ0 −
∫
Rp

g dμ

∣∣∣∣ ≤ ε√
2
< ε.

Proof of Theorem 4. Let m denote the Lebesgue measure on R
p. Suppose μ is

absolutely continuous and denote by f a density of μ (with respect to m). Given
ε > 0, there is a function f0 on R

p such that:

• f0 is a probability density (with respect to m);
•
∫
Rp |f(x) − f0(x)| dx < ε;

• f0 is of the form f0 =
∑k

j=1 aj 1Rj , where k is a positive integer, aj > 0 a
constant, and Rj a bounded rectangle, i.e.

Rj = I1j × · · · × Ipj

where Iij is a bounded interval of the real line for each i = 1, . . . , p;

see e.g. Theorem (2.41) of [12, p. 69]. Define μ0 as the probability measure on
R

p with density f0. Since μ and μ0 are both absolutely continuous,

dTV (μ, μ0) = (1/2)
∫
Rp

∣∣f(x) − f0(x)
∣∣ dx < ε/2 < ε.

Moreover, μ0 can be written as

μ0 =
k∑

j=1
aj m(Rj) (U1j × · · · × Upj)
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where Uij is the uniform distribution on the interval Iij . Hence, letting

Θ = {1, . . . , k}, γ{θ} = aθ m(Rθ) and Pi(· | θ) = Uiθ,

one obtains

μ0(A1 × · · · ×Ap) =
k∑

θ=1

aθ m(Rθ)
p∏

i=1
Uiθ(Ai) =

∫
Θ

p∏
i=1

Pi(Ai | θ) γ(dθ)

for all A1, . . . , Ap ∈ B. Hence, μ0 ∈ P0.
This proves the first part of the Theorem. To prove the second part, suppose

f is Lipschitz and define μ0 by (4) with c = 1
4p ( ε

bm(B) )
2, where b is a Lipschitz

constant for f and B ⊂ R
p a Borel set satisfying μ(Bc) < ε/2 and 0 < m(B) <

∞. Since μ0 ∈ P0, as shown in the proof of Theorem 3, we have only to prove
that dTV (μ, μ0) < ε. The density f0 of μ0 can be written as

f0(x) =
∫
Rp

φx(y) f(y) dy.

Therefore,

dTV (μ, μ0) =
∫
Rp

(
f(x) − f0(x)

)+
dx

≤
∫
Bc

f(x) dx +
∫
B

∣∣f(x) − f0(x)
∣∣ dx

= μ
(
Bc

)
+
∫
B

∣∣∣∣∫
Rp

{
f(x) − f(y)

}
φx(y) dy

∣∣∣∣ dx
≤ μ

(
Bc

)
+
∫
B

∫
Rp

∣∣f(x) − f(y)
∣∣φx(y) dy dx

≤ μ
(
Bc

)
+ b

∫
B

∫
Rp

‖y − x‖φx(y) dy dx

≤ μ
(
Bc

)
+ b

∫
B

√∫
Rp

‖y − x‖2 φx(y) dy dx

= μ
(
Bc

)
+b

∫
B

√
p c dx

= μ
(
Bc

)
+ bm(B)√p c

= μ
(
Bc

)
+ (ε/2) < ε

where the last inequality is because μ(Bc) < ε/2. This concludes the proof.
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