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Modal clustering on PPGMMGA projection subspace
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Summary

PPGMMGA is a projection pursuit (PP) algorithm aimed at detecting and visualising
clustering structures in multivariate data. The algorithm uses the negentropy as PP index
obtained by fitting Gaussian mixture models (GMMs) for density estimation and, then,
exploits genetic algorithms (GAs) for its optimisation. Since the PPGMMGA algorithm is
a dimension reduction technique specifically introduced for visualisation purposes, cluster
memberships are not explicitly provided. In this paper a modal clustering approach is
proposed for estimating clusters of projected data points. In particular, a modal EM
algorithm is employed to estimate the modes corresponding to the local maxima in the
projection subspace of the underlying density estimated using parsimonious GMMs. Data
points are then clustered according to the domain of attraction of the identified modes.
Simulated and real data are discussed to illustrate the proposed method and evaluate the
clustering performance.

Key words: Gaussian mixture models; genetic algorithms; modal clustering; modal EM;
negentropy index; projection pursuit.

1. Introduction

Finite mixture models are an important tool in statistical data analysis. Because of
their flexibility, they have been successfully used for different purposes, from modelling
of the heterogeneity to clustering, from supervised classification to semiparametric density
estimation (McLachlan & Peel 2000a; McLachlan, Lee & Rathnayake 2019). Model-based
clustering is often used as a synonym to indicate the use of mixture models to investigate
the presence of clusters in the data.

Projection pursuit (PP) refers to a collection of algorithms aimed at finding interesting
structures in the data (Friedman & Tukey 1974; Friedman 1987). Often, the main interest
consists in detecting the presence of homogeneous and well separated groups of data. Re-
cently, a projection pursuit algorithm based on Gaussian mixture models (GMMs) has been
proposed by Scrucca & Serafini (2019). This PP algorithm employs the negentropy obtained
from a multivariate density estimated by GMMs as the PP index to be maximised. Optimi-
sation of the negentropy index is performed using genetic algorithms (GAs). The resulting
PPGMMGA algorithm estimates the optimal orthogonal projection subspace which is able
to show the directions of maximal non-normality, and for this reason it can be effectively
employed to detect and visualise the presence of clustering structures in multivariate data.
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However, being PPGMMGA a dimension reduction method, no clustering memberships are
assigned to the projected data points.

The main goal of this contribution is to propose a clustering approach based on the
modal EM algorithm which allows to estimate the modes corresponding to the local maxima
of the underlying density of projected data. Thus, groups are obtained according to the
mode to which each data point converges, thereby providing a clustering procedure for the
PPGMMGA algorithm. The modal clustering procedure discussed in this paper follows the
definition of clusters proposed by Hartigan (1975 p. 205), according to which ‘clusters may
be thought of as regions of high density separated from other such regions by regions of
low density’.

Section 2 provides a brief review of parsimonious GMMs and of the model-based
projection pursuit algorithm used to maximise the negentropy of a GMM. Section 3 con-
tains the modal clustering proposal for applying the modal EM algorithm on the estimated
projection subspace. Section 4 describes the empirical results obtained from the application
of the proposed modal EM algorithm to examples using both synthetic and real datasets.
The final section provides some concluding remarks.

2. Background

2.1. Parsimonious Gaussian mixtures

Let x be a random vector in Rp with density f (x), which we assume it can be described
by a finite mixture of Gaussian distributions:

f (x; θ ) =
G∑

g=1

�g�(x;μg , �g), (1)

where θ = {�1, �2,…, �G−1, μ1,…, μG, vech(�1),…, vech(�G)} are the parameters of the
mixture model with G components, (�1, �2,…, �G) the mixing weights, so that �g > 0
and

∑G
g=1 �g = 1, and �(x;μg , �g) the underlying multivariate Gaussian density function

of the gth component having mean μg and covariance matrix �g . Note that vech(·) is
the vector operator, which forms a vector by extracting unique elements of a symmetric
matrix.

Parsimonious parametrisation of covariance matrices for GMMs is available through the
eigen-decomposition �g = �gUg�gU�

g , where �g = |�g|1=p is a scalar which controls the
volume, �g is the diagonal matrix of normalised eigenvalues of �g , such that |�g| = 1, which
controls the shape, and Ug is the orthogonal matrix of eigenvectors of �g controlling the ori-
entation of the ellipsoid (Banfield & Raftery 1993; Celeux & Govaert 1995). Maximum likeli-
hood estimates of the mixture parameters can be obtained using the expectation–maximisation
(EM) algorithm (Dempster, Laird & Rubin 1977; McLachlan & Krishnan 2008), whereas
information criteria, such as the Bayesian information criterion (BIC; Schwartz 1978), are
typically used for model selection. The latter concerns the decision on both the number of
mixture components and on which parsimonious parametrisation of covariances to adopt.
Other approaches are also available in the literature to reduce the number of unknown param-
eters. For instance, mixture of factor analysers, proposed in McLachlan & Peel (2000b) and
based on the work of Ghahramani & Hinton (1997), could be considered here by allowing
each Gaussian component in the mixture to be represented in a different lower-dimensional
manifold.

© 2022 Australian Statistical Publishing Association Inc.
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160 MODAL CLUSTERING ON PPGMMGA PROJECTION SUBSPACE

2.2 Model-based projection pursuit

Consider the orthogonal linear projection z = B�x∈ Rd , with d < p, and the basis
B∈Rp×d , a matrix spanning the dimension reduction subspace S(B). A remarkable result is
the linear transformation property of GMMs (see Appendix A in Scrucca & Serafini 2019),
which shows that if x follows a Gaussian mixture distribution as in (1), then any linear
projection also follows a Gaussian mixture distribution, so we can write

f (z) =
G∑

g=1

�g�(z;B�μg ,B��gB). (2)

Thus, the distribution of the projected data can still be described by a GMM with a suitable
transformation of the parameters of the Gaussian components. The basis B of the subspace
can be estimated by maximising the negentropy , a PP index that summarises deviations
from the least interesting case represented by the Gaussian distribution. The negentropy is
defined as

J (z) = h
(
�(μz, �z)

)−h(z) = 1

2
log
(
(2�e)d |�z|

)+∫ log
(
f (z)
)
f (z)dz,

where h(�
(
μz, �z)

)
is the entropy of the marginal multivariate Gaussian distribution with

mean μz and covariance �z, and h(z) is the entropy of the mixture density of the projected
data. Efficient approximations for h(z) are available, such as the unscented transformation
(UT), so the PP index can be maximised over the set of all orthonormal bases B using
genetic algorithms. For further details see Scrucca & Serafini (2019). This briefly described
algorithm is named PPGMMGA, and it is implemented in the R package ppgmmga (Serafini
& Scrucca 2019).

3. Modal clustering on PPGMMGA projection subspace

In the modal approach to clustering, clusters are defined as the local maxima of the
underlying probability density function. For a recent review of different approaches in modal
clustering see Menardi (2016), while for a more general discussion on the recent renewed
interest on modal procedures see Chacón (2020). The Modal EM (MEM) algorithm is
an iterative algorithm aimed at identifying the local maxima of a finite mixture density
function (Li, Ray & Lindsay 2007). Once the modes have been estimated, clustering of
data points is obtained according to the mode to which they converge. Recently, Scrucca
(2021) generalised the MEM algorithm to efficiently deal with Gaussian mixtures having
any parsimonious covariance matrices of the type described in Section 2.2.

To effectively apply the MEM approach on the PPGMMGA projection subspace a
density estimate is needed. In principle, the mixture density in (2) could be used as the
underlying density to base the MEM procedure. However, if this is reasonable at the population
level, in practice only an estimate of the density (2) from sample data is available. Even
more important, this estimate is typically chosen among a set of plausible models according
to a model selection criterion, such as the BIC (Fraley & Raftery 1998). Since the latter
penalises model complexity, more parsimonious models tend to be selected when the sample
size of available data is limited compared to the dimensionality of the problem. However,
the adopted parameterisation may prove to be inadequate to represent the density of the data
on the projection subspace.

© 2022 Australian Statistical Publishing Association Inc.
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L. SCRUCCA 161

A limiting case of this situation is presented in Section 4.1, where a simulated dataset of
100 observations on a 50-dimensional feature space is considered. In this case the Gaussian
mixture density selected by BIC has only one component, and if this poses no problem for
estimating the PPGMMGA subspace, it clearly fails if used for estimating the modes of the
underlying density on the two-dimensional projection subspace. For this reason, a different
route is needed and, again, a parsimonious Gaussian mixture is called to the rescue.

3.1. MEM algorithm

Consider the PPGMMGA basis B estimated for a fixed dimensionality d . The projected
data can be computed as zi = B�xi for all i = 1,…, n, or equivalently in matrix form as
Z = XB. The Gaussian mixture density on the projection subspace can be written as

f (z;�) =
K∑

k=1

�k�(z;ηk , �k ), (3)

where � = {�1, �2,…, �K−1, η1,…, ηK , vech(�1),…, vech(�K )} are the parameters of the mix-
ture model with K components, (�1, �2,…, �K ) the mixing weights, so that �k > 0 and∑K

k=1 �k = 1, and �(z;ηk , �k ) the multivariate Gaussian density function of the kth compo-
nent having mean ηk and covariance matrix �k . Following the details provided in Section 2.1,
the best fitting parsimonious mixture density (3) can be selected by BIC with respect to both
the number of mixture components K and the parsimonious covariance matrices {�k}K

k=1. By
using the estimated density it is possible to identify the modes in the dimension reduction
subspace S(B), thus enabling a modal clustering approach for the identification of homoge-
neous and separated groups. The MEM algorithm is briefly described below, while further
details for interested readers, including a discussion on the number of modes in Gaussian
mixtures, are provided in Scrucca (2021).

The MEM algorithm starts at initial data points z(0)
i = zi for i = 1,…, n, then at each

iteration t, assuming the mixture parameters {�k , ηk , �k}K
k=1 as known and fixed, performs

the following steps:

E-step—update the posterior conditional probability of the projected data point zi to
belong to the kth mixture component using

�(t)
ik = �k�(z(t−1)

i ; ηk , �k )∑K
j=1 �j�(z(t−1)

i ; ηj, �j)
, for all k = 1,…, K .

M-step—update the current value of zi by solving the optimisation problem

z(t)i = arg max
zi∈Rd

K∑
k=1

�(t)
ik log�(z(t−1)

i ; ηk , �k ).

The procedure above is iterated until a convergence criterion is satisfied, or a pre-specified
maximum number of iterations is reached.

Note that the objective function in the M-step can be written as

Q(zi) =
K∑

k=1

�ik log�(zi; ηk , �k ),

© 2022 Australian Statistical Publishing Association Inc.
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162 MODAL CLUSTERING ON PPGMMGA PROJECTION SUBSPACE

so the gradient and Hessian of this function with respect to the projected vector zi are,
respectively,

∇Q(zi) = −
K∑

k=1

�ik�
−1
k (zi −ηk ), and

∇2Q(zi) = −
K∑

k=1

�ik�
−1
k .

Therefore, the M-step presents a closed-form solution given by

z*i =
(

K∑
k=1

�ik�
−1
k

)−1 K∑
k=1

�ik�
−1
k ηk . (4)

A direct application of the update equation above may yield large jumps during the
initial iterations of the algorithm for data points lying in low-density regions, thus escaping
from the region of the attracting mode to the domain of attraction of a different mode.
In other word, a data point located in a low-density region might see large jumps at the
beginning of the iterative algorithm, hence converging to a mode further from its domain
of attraction. For this reason, Scrucca (2021, section 3.1) introduced a step size to get more
reliable update at iteration t using a convex linear combination of the solution at previous
iteration, z(t−1)

i , and the new proposal z*i from (4), as follows

z(t)i = (1−�)z(t−1)
i +�z*i , (5)

where � = 1−exp{−0.1t} is a parameter that controls the step size. Following this approach,
at earlier iterations the step size is small, hence updates are done in small steps, but as the
number of iterations increase the step size converges to one and the updates become essentially
equal to the proposal z*i . The proposed modification does not break the monotonicity property
of EM (seeAppendix for the proof), although it slows the convergence somewhat by increasing
the number of iterations required.

Finally, we note that the execution time can be greatly reduced by batch updating all
the data points at once instead of working one point at time, as detailed in Scrucca (2021).

3.2. Some final comments

In the model-based clustering approach, clusters are defined by the underlying dis-
tribution used for the mixture components. For instance, GMMs assume ellipsoidal group
structures. Then, the so-called maximum a posteriori (MAP) principle is used for clustering.
On the contrary, as discussed in Section 1, modal clustering is an attempt at addressing
the definition of clusters proposed by Hartigan (1975). If data points projected onto the
PPGMMGA projection subspace show ellipsoidal structures and are well-separated then the
model-based clustering approach using GMMs and the modal-clustering via MEM algo-
rithm produce equivalent results. However, in case the groups show non-Gaussian structures
or substantially overlap on the projection subspace, the final clustering might be different.
This mostly reflects the different definition adopted by the two approaches regarding what
a cluster is. An example of such a case is discussed in Section 4.4.

© 2022 Australian Statistical Publishing Association Inc.
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Figure 1. Plot of two-group synthetic data points projected along the PPGMMGA directions with
points marked according to the known class in panel (a), and using the modal clustering solution on
panel (b). The last graph also displays the modal expectation–maximisation iteration paths towards
the attracting modes represented using the + symbol.

4. Data analysis examples

In this section we apply the proposed methodology to simulated and real datasets.

4.1. Simulated data with clustering on a subset of attributes

We consider a reduced version of the two-group synthetic dataset discussed in Friedman
& Meulman (2004). For the first group 85 observations are randomly generated from a
50-dimensional standard Gaussian distribution. The second group of 15 observations are
also drawn from a 50-dimensional Gaussian distribution, but its first p0 = 15 attributes have
mean 1.5 and standard deviation 0.2, whereas the remaining 50 − p0 attributes have zero
mean and unit standard deviation. Thus, the two groups differ only on the first p0 attributes.

Figure 1a shows the data projected onto the two-dimensional projection subspace esti-
mated by the PPGMMGA algorithm, which clearly reveals the two-group clustering structure.
It is interesting to note that the GMM selected by BIC on the original 50-dimensional features
space has a single Gaussian component. In this case, an attempt at clustering on the original
features space would produce a solution consisting of a single cluster. Nonetheless, the
estimated directions that maximise the negentropy are able to show the underlying structure
as shown in Figure 1a.

Iteration paths of MEM algorithm for each data point towards the attracting mode are
depicted in Figure 1b. The resulting modal clustering solution obtained on the projection
subspace is perfectly able to recover the two groups of observations.

4.2. Rectangular Gaussian block clusters in three dimensions with noise attributes

In this second example, we consider a simulated dataset made up of 400 observations
on eight variables. The first three variables are generated from an equal weight mixture

© 2022 Australian Statistical Publishing Association Inc.
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164 MODAL CLUSTERING ON PPGMMGA PROJECTION SUBSPACE

Table 1. PPGMMGA negen-
tropy, number of modes (m) and
adjusted Rand index (ARI) for
increasing dimension (d ) of the
projection subspace.

d Negentropy m ARI

1 0.5609 3 0.4244
2 1.0832 7 0.8653
3 1.5075 8 0.9942
4 1.5271 8 0.9942
5 1.5351 8 0.9942

of eight Gaussian distributions with mean vectors at the corners of a rectangular block in
three dimensions. The remaining five variables only contain some Gaussian noise. Details
about the mean vector for each mixture component and the common covariance matrix are
provided in Bolton & Krzanowski (2003 Appendix A).

We consider the PPGMMGA estimation of the projection subspace for varying dimen-
sions. The negentropy values for each solution with d from 1 to 5 suggest a three-dimensional
projection subspace as a reasonable choice (see Table 1). Figure 2 shows some views of
the data points projected along the estimated PPGMMGA directions with modes and data
points marked according to the cluster memberships estimated by the MEM algorithm. The
two-dimensional scatterplots in panels (a)–(c) show pairwise projections for the estimated
PPGMMGA directions, with arrows indicating the biplot vectors corresponding to the origi-
nal features. As it can be seen, only the first three variables contribute to the definition of the
PPGMMGA directions (see also the coefficients of the estimated projection basis reported
in Table 2). Finally, Figure 2d shows a static view of the data points projected onto the
estimated three-dimensional projection subspace.

Table 1 contains, in addition to the negentropy for increasing dimensionality of the
projection subspace, the number of modes found by the MEM algorithm and the accuracy
of the proposed modal clustering procedure. This is measured by the Adjusted Rand Index
(ARI; Hubert & Arabie 1985), a measure of agreement between two partitions, which attains
unit value when the two partitions perfectly agree. Overall, the MEM algorithm is able to
recover almost perfectly the true clusters for d �3.

4.3. Chironomus larvae data

This dataset comes from a study on morphometric attributes of Chironomus larvae
(Atchley & Martin 1971). A sample of 149 larvae was collected from three different species:
cloacalis, frommeri and staegeri. For each larva, 17 features of the larval head capsula were
measured; for a detailed description of the dataset we refer the reader to Montanari & Viroli
(2010).

Figure 3a shows the data projected from the original 17-dimensional feature space
to the two-dimensional projection subspace estimated by the PPGMMGA algorithm. The
estimated modes and the corresponding modal clustering solutions are shown in Figure 3b,
together with the paths induced by the MEM algorithm. The 3-mode clustering structure

© 2022 Australian Statistical Publishing Association Inc.
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Figure 2. Pairwise scatterplots (panels (a) to (c)) and a static view of 3D scatterplot (panel (d)) of
PPGMMGA projections with data points marked according to the clusters assigned by the modal
expectation–maximisation procedure and the corresponding modes, represented using + symbol.

identified is then compared with the true larvae species in Figure 3c, showing a quite good
agreement with only one misclassified observation and an adjusted Rand index of 0.981
(slightly larger than the ARI reported in Montanari & Viroli (2010)).

Table 2. Estimated PPGMMGA pro-
jection basis for the d =3 solution.

PP1 PP2 PP3

X1 −0.2885 −0.9041 −0.3080
X2 0.8964 −0.3706 0.2394
X3 0.3343 0.2101 −0.9168
X4 −0.0097 −0.0203 −0.0425
X5 −0.0184 −0.0149 −0.0361
X6 0.0099 0.0026 0.0111
X7 −0.0297 −0.0203 −0.0626
X8 0.0020 −0.0097 −0.0109
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Figure 3. Chironomus larvae data graphs: (a) plot of data points projected along the PPGMMGA
directions; (b) plot of the modal clustering solution identified by the MEM algorithm with the estimated
modes represented by a + symbol; (c) plot of data points marked according to the true species of the
larvae with different symbols, and different colours for the identified clusters (circled point represents
the misclassified observation).

4.4. Coffee data

The coffee dataset (Streuli 1973) contains 12 chemical measurements on 43 samples
of Arabica or Robusta coffee from 29 countries. Scrucca & Serafini (2019) analysed the
coffee data by fitting a one-dimensional PPGMMGA model. Figure 4a shows the data
points projected along the estimated direction, clearly suggesting that coffee varieties can
be clustered on this one-dimensional subspace. Graph on Figure 4b reports the underlying
density estimated by GMM and used by the MEM algorithm, together with the ascending
paths for each projected data point towards the closest mode. The clustering obtained perfectly
recovers the latent coffee varieties.

In Section 3.2 the modal clustering approach via MEM algorithm and the model-
based clustering approach using the MAP principle were discussed and contrasted. The
considerations made therein can now be illustrated in practice using the coffee dataset. In
particular, Figure 5 reports the clustering results obtained using the two approaches on the
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Figure 4. Histogram of coffee data points projected along the first PPGMMGA direction marked by
the true variety of coffee on panel (a). Underlying density estimated by Gaussian mixture models
employed by the modal expectation–maximisation algorithm on panel (b), with step lines showing
the iteration paths towards the attracting modes represented by a + symbol. Rug points along the
x-axis on both graphs represent the projected data points.

0.0

0.3

0.6

0.9

−2 0 2 4

C
om

po
ne

nt
 d

en
si

ty

0.0

0.3

0.6

0.9

−2 0 2 4

M
ix

tu
re

 d
en

si
ty

−2 0 2 4
PP1

MAP clustering

−2 0 2 4
PP1

MEM clustering

R
ob
us
ta

A
ra
bi
ca

R
ob
us
ta

A
ra
bi
ca

(a) (b)

(c) (d)

Figure 5. A graphical comparison of model-based clustering versus modal clustering on the
one-dimensional PPGMMGA projection for the coffee dataset. The two Gaussian components of
the mixture (weighted by the mixing proportion) are shown in panel (a), whereas the corresponding
mixture density is reported in panel (b). The clustering solutions obtained by applying the maximum
a posteriori principle and the modal expectation–maximisation algorithm are shown, respectively, in
panels (c) and (d).
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168 MODAL CLUSTERING ON PPGMMGA PROJECTION SUBSPACE

one-dimensional PPGMMGA projection. Panel (a) shows the two Gaussian components
of the mixture estimated on the first PPGMMGA direction, with the corresponding MAP
clustering on panel (c). On the contrary, panel (b) contains the estimated mixture density,
with the corresponding MEM clustering on panel (d). According to the MAP principle, data
points are assigned to the cluster whose corresponding component density (weighted by
the mixing proportion) is the largest. Note that one data point is assigned to the group of
Robusta despite being of type Arabica and quite far from the other data points assigned to the
same cluster. However, this appears reasonable under the model-based perspective because
the estimated conditional probability for that point is larger for Robusta than for Arabica
(and this is due to the large estimated variance for the second component). By adopting,
instead, a modal clustering perspective, the mixture density must be used to identify the
modes, and data points are assigned to the closest clusters represented by such modes. In
this case, the classification obtained perfectly matches the true coffee varieties. Indeed, the
previously misclassified data point is now assigned to the Arabica cluster because its domain
of attraction is the same as for the other Arabica coffees.

5. Concluding comments

PPGMMGA is a linear projection method introduced by Scrucca & Serafini (2019)
with the aim of visualising multivariate data when a clustering structure is sought. The
PPGMMGA algorithm estimates the directions of maximal non-normality as measured by
the negentropy PP index. Being a linear mapping from a potential high-dimensional features
space to a subspace of reduced dimensionality, it involves linear transformations, such as
rotation and reflection, of the original data. Thus, if a clustering structure is present in the
original features space, PPGMMGA should preserve it and, hopefully, magnify it.

However, if visualisation is an important step in understanding the underlying structure
of the data, an automatic procedure for the identification of homogenous groups would
be desirable. In this paper we introduce a modal clustering approach to address this issue.
Working on the projection subspace estimated by the PPGMMGA method, a modal EM algo-
rithm is proposed for identifying the modes of the density estimated by fitting parsimonious
Gaussian mixture models.

The proposed approach can, in principle, be applied to any dimension reduction method,
such as local linear embedding (LLE; Roweis & Saul 2000), t-distributed stochastic neighbour
embedding (t-SNE; Van Der Maaten & Hinton 2008) and uniform manifold approximation
and projection (UMAP; McInnes, Healy & Melville 2018). We defer the investigation of
these extensions to future work.

Appendix

We prove here that the inclusion of the step size in (5) does not break the monotonicity
property of MEM, that is, f (z(t)i ) � f (z(t−1)

i ), for any iteration t. First, we note that by the
ascending property of the MEM algorithm for any mixture we have that f (z*i ) � f (z(t−1)

i )
(see Li, Ray & Lindsay 2007, Appendix A), where z*i is the proposal from (4) at current
iteration t, z(t−1)

i is the solution at iteration t −1, and f (·) is the mixture density (3). Then,
at iteration t of the algorithm we have
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L. SCRUCCA 169

f (z(t)i )= f ((1−�)z(t−1)
i +�z*i )

� (1−�)f (z(t−1)
i )+�f (z*i ) (by the monotonocity along the learning path)

= f (z(t−1)
i )+�(f (z*i )− f (z(t−1)

i ))

� f (z(t−1)
i ). (since f (z*i )− f (z(t−1)

i )� 0 and ��0)
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