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Abstract

Proteins are “social molecules.” Recent experimental evidence supports the

notion that large protein aggregates, known as biomolecular condensates,

affect structurally and functionally many biological processes. Condensate for-

mation may be permanent and/or time dependent, suggesting that biological

processes can occur locally, depending on the cell needs. The question then

arises as to which extent we can monitor protein-aggregate formation, both

experimentally and theoretically and then predict/simulate functional aggre-

gate formation. Available data are relative to mesoscopic interacting networks

at a proteome level, to protein-binding affinity data, and to interacting protein

complexes, solved with atomic resolution. Powerful algorithms based on

machine learning (ML) can extract information from data sets and infer prop-

erties of never-seen-before examples. ML tools address the problem of protein–
protein interactions (PPIs) adopting different data sets, input features, and

architectures. According to recent publications, deep learning is the most suc-

cessful method. However, in ML-computational biology, convincing evidence

of a success story comes out by performing general benchmarks on blind data

sets. Results indicate that the state-of-the-art ML approaches, based on tradi-

tional and/or deep learning, can still be ameliorated, irrespectively of the

power of the method and richness in input features. This being the case, it is

quite evident that powerful methods still are not trained on the whole possible

spectrum of PPIs and that more investigations are necessary to complete our

knowledge of PPI-functional interactions.
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1 | INTRODUCTION

Proteins are large, complex molecules that play many critical roles, participating in a variety of biological functional
processes. They are required for the organization, function, and regulation of the life span of any cell type. They can
perform chemical catalysis, supporting billions of biochemical reactions, and can be part of larger macromolecular
machines, whose structure and functional role has been partly highlighted and is the subject of ongoing research. Pro-
teins can interact with other molecules. Interaction partners include ions, small organic molecules, membrane lipids,
nucleic acids, small peptides, and proteins, to generate homo- and hetero-complexes. In the crowded cellular environ-
ment, protein through evolution have been able to develop and maintain efficiency and binding specificity for
function.1

Since the past decade, interest is growing in understanding the organization of the cell interior and its dynam-
ics in relation to its physiology.2–4 A new vision leads descriptions: apparently, proteins and other biomolecules
aggregate either transiently or permanently, depending on the cell needs, and generate molecular condensates,
broadly defined as concentrated foci, lacking a surrounding membrane, or membrane-less organelles.5 Biomolecu-
lar condensates have been documented in different compartments of eukaryotic cells, including the nucleus, the
nucleolus, and the cytoplasm. The presence of different types of membrane-less organelles is now well established,
after the first report, over a century ago, of the Cajal inclusion bodies in neuron nuclei. Condensates of different
dimensions seem to have a widespread role in cell biology, allowing the formation of stable and/or transient
aggregates whose role is under investigation to unravel cell function and complexity in normal and pathological
conditions.6–9

In this dynamic scenario, the problem of protein–protein molecular interactions (PPI) is evidently an issue. Proteins
can interact with genomic DNA and RNA to trigger transcription and protein biosynthesis, and monomeric protein
chains can give rise to stable functional complexes. Less documented is PPI that drive the formation of transient com-
plexes, apparently necessary to assemble condensates for functioning.10 A question, above all, is becoming urgent. If
PPIs are necessary to trigger biochemical reaction mechanisms and to enhance activity, how can we distinguish func-
tional PPI from spontaneous forms of aggregates that eventually may occur due to nonspecific short-range interactions?

Our knowledge of PPI is mainly based on two different types of evidence. The first one is grounds on the presence
of complexes known with atomic details in the Protein Data Bank (PDB, https://www.rcsb.org/). The other, at a higher
and much broader scale, stands from the results of different techniques which investigate the formation of protein com-
plexes at large in a cell proteome. Data analysis produces networks of interacting proteins which routinely cover frac-
tions of the different proteomes.11,12

Possibly we should be able to establish links among these layers of information to model condensate formation and
understand the role of PPI with a bottom-up approach.5

While biological descriptions seem to have reached unprecedented levels of information, powerful computational
approaches became available for data analysis. They are based on machine learning (ML), a procedure that can discover
relations, if existing, among dependent and independent data sets. By now, ML has a long-standing tradition in compu-
tational biology, and many tools are publicly available to address different problems, from bioimage analysis to protein
structure prediction and their interactions.13

In the following we will shortly describe ML and focus on the problem of PPI, listing major resources of data avail-
able to explore data associations with ML approaches. The strategy here is to briefly highlight the problems, also includ-
ing our biophysical knowledge, and how they have been tackled with ML. The main focus is however on the prediction
of PPI as network of interactions, three-dimensional (3D) protein aggregates, and PPI prediction sites (PPIs) on struc-
tures and sequences.

2 | MACHINE LEARNING

ML refers to many algorithms able to automatically build models for inference and clustering, starting from a set of data
called training set. ML can be unsupervised or supervised.

Unsupervised ML procedures aim to discover patterns and similarities in training data and to identify meaningful
clusters and data representations.

In turn, supervised ML algorithms infer mapping between two spaces (input and output), based on known training
examples.14 Supervised ML aims to implement tools that generalize the learned associations to new examples.
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Supervised ML methods can be adopted for classification or regression, depending on the discrete or continuous prop-
erty of the output space.

In the context of computing PPIs, supervised ML is most relevant, and we will focus on it.
Different ML approaches have been developed during the last decades and the most adopted ones are shortlisted in

Box 1, being the exhaustive description of all relevant algorithms beyond the scope of this review. Methods referred to
as traditional in the recent literature,15 include shallow neural networks (NN), support vector machines (SVMs), ran-
dom forests (RFs), and probabilistic methods such as Hidden Markov Models (HMMs) and conditional random fields
(CRFs). Starting from about 2010, the field of ML-based applications has been more and more influenced by the
so-called deep ML approaches, basically derived from the evolution of traditional NNs.13,16

Notwithstanding the huge variety of available approaches, ML methods share a few key issues related to data qual-
ity, data representation, training algorithms, and validation procedures.

Training data are at the core of the learning process, since the inference rules are automatically extracted from them
with the learning procedure, ideally using the minimal amount of a priori assumptions. Therefore, the dimension and
the quality of the training set are of outmost importance. Training data should derive from experimental measures
affected by small errors. They should be reproducible and high quality and should uniformly represent all the input
space, avoiding redundancies that can bias learning toward given classes of examples. The accurate selection of the
training set is crucial for achieving good generalization performance.

A second relevant issue is data representation. Data must be wisely represented with all the features potentially rele-
vant for inference. The definition of relevant features routinely requires previous knowledge, preliminary analysis, and
data preprocessing, especially when traditional ML approaches are adopted. Deep learning approaches are more effec-
tive in extracting important features and their relations, when the training data set is large and enough representative.
Therefore, they allow the implementation of the so-called end-to-end models that integrate preprocessing pipelines.

All supervised ML methods rely on training algorithms that set the value of a (routinely large) number of trainable
parameters with the goal of finding the optimal fitting between input and output, starting from known examples pres-
ented during the training phase. The optimization criteria differ depending on the algorithm. Traditional and deep NNs
minimize an error (or cost) function with a gradient descent algorithm called back-propagation; probabilistic methods
such as HMMs and CRFs maximize probability functions with expectation–maximization or gradient-ascent protocols.

BOX 1 Machine learning methods

Traditional machine learning (ML) includes different computational methods briefly listed below.
Support vector machines (SVM) are methods estimating the optimal linear separation between two classes of

data. Nonlinear classifications can be achieved using kernels.
Probabilistic models (such as Hidden Markov Models, HMMs) are adopted to learn the most probable label-

ing of input samples (sequences, structures, and graphs) taking into consideration complex contexts.
Random forests (RF) are ensemble learning methods than decrease the prediction error rates by averaging a

multitude of simple decision trees.
Shallow feed-forward neural networks (NN) consist of simple computational units, called neurons, that com-

municate between each other through connections whose weights can be trained with the back-propagation
algorithm. Neurons are routinely organized in layers: one encodes the input; one provides the output. Input
and output can be separated by few hidden layers.

Deep learning methods are NNs with many hidden layers able to extract complex relations among input fea-
tures. Based on the type of hidden layers and connection topology different classes of deep NNs are defined.13

Recurrent networks extract relationships in sequential data through memory layers, feedback, and time-
delay loops. Long short-term memory networks belong to this class.

In convolutional networks, hidden layers consist of several filters that extract and pool local relations from
input layers organized as matrixes or tensors.

Graph convolutional networks extend learning to structures where the relations among neurons are
described by graphs. Methods tackling more complex structures are known as geometric deep learning.

In attention networks, an additional layer flexibly identifies the most relevant parts of the input.
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Training procedures are often iterative, as in the case of the gradient-based ones, and require important computational
resources, particularly for deep ML methods. Besides the trainable parameters, ML models are characterized by several
hyper-parameters that define their overall architecture. Differently from trainable parameters, hyper-parameters are
not optimized during the learning procedure and their values must be selected by performing a search in the hyper-
parameter space.13

The validation procedure is a critical step for assessing the generalization performance of trained methods, which is
its effectiveness in inferring the correct output from input data not used to learn the mapping. To this aim, a subset of
known examples must be taken apart to generate a testing set, used to evaluate different statistical scores of perfor-
mances, including accuracy, recall, precision, and correlation indexes.17

Non-redundancy among training and testing data is of outmost relevance for avoiding polarization of the method
toward a particular class of examples. Best practices require the adoption of four different and independent sets of
known examples: the training set for learning the trainable parameters, the validation set to optimize the hyper-param-
eters, the testing set to evaluate the performance, and a blind set (not including data of the training and testing set) to
ultimately score the method and for benchmarking different methods. Different schemas, such as cross-validation, can
be also applied to increase the statistical confidence of the evaluation. The adoption of a rigorous validation procedure
is fundamental to minimize the overfitting risk. Guidelines and recommendation for the use of ML methods in compu-
tational biology are extensively reported in recent literature.18,19

The need for comparative evaluation of different methods requires the compilation of blind test sets independent of
the training sets of all the evaluated tools. To this aim, different communities organize international critical assessment
experiments in which computational methods are tested on examples whose solutions are unknown and are released
only after the deadline for submitting predictions. In the context of protein–protein interaction (PPI), the critical assess-
ment of prediction of interactions (CAPRI, https://www.ebi.ac.uk/msd-srv/capri/) is regularly organized.20

The training of deep learning is mostly associated with end-to-end learning, where a complex learning system is
trained by applying a gradient-based learning to the system as a whole. The most striking success story of a combina-
tion of deep ML procedures and biophysical and bioinformatic knowledge, derived from the protein universe (protein
structure, its representation in terms of contact maps, and evolutionary information as derived from multiple sequence
alignments) is Alpha Fold221 and its score in predicting protein structures at the last benchmark of CASP14 (Critical
Assessment of Protein Structure Prediction, 14th edition, https://predictioncenter.org/casp14/). Although the algorithm
has still a modest performance in correctly recognizing intra-protein domain interactions for chains poorly represented
in the database, perspectives are promising for its extension to the computation of inter-protein interaction sites22 (see
also Section 4.3).

3 | PPIs AT DIFFERENT SCALES AND THEIR PREDICTIONS

As mentioned in the Introduction (Section 1), several studies highlight all the functions that are supported by conden-
sate formations.5 Data are still sparse, not yet collected in relational databases. They have been recently reviewed at
length, focusing on the different mechanisms of biological processes.5 However, ML applications routinely require the
development of training data sets that should be shared for comparison and benchmarking among different
implementations. We will list here which repositories contain data useful for ML developments in the field of PPIs.

3.1 | Detection of PPI at a proteome scale and their prediction

Data on PPI can describe putative direct and non-direct interactions occurring at a mesoscopic level in the cell.
In the last decades, possible insights in PPI at a mesoscopic level became available in many organisms and human

tissues, resulting from the applications of different techniques12 (Box 2 for details). Routinely, PPIs are represented as
networks, where nodes are the proteins and links are the detected interactions.

Despite many efforts, no single technique can capture all the possible interactions in a cell considering the different
sensitivity of the methods, and the intrinsic changing in protein expression, which makes it difficult to capture the real
protein content and its continuous changing over time.23 Possibly, with the advent of single-cell proteomics, more
homogeneous and non-ambiguous data will become available.24,25

Different databases have been implemented over the years, collecting data from different types of experiments.26
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Comprehensive and popular databases of PPIs are IntAct (https://www.ebi.ac.uk/intact/home) and BioGRID4.4
(https://thebiogrid.org/). Both provide free, open-source databases, and analysis tools for molecular interaction data.
All interactions derive from literature curation or direct user submissions.

Search Tool for the Retrieval of Interacting Genes/proteins (STRING, version 11.5, https://string-db.org/) is by far
the largest collection of PPIs, presently including over 20 billion interactions in about 14,000 organisms, relative to
about 68 million proteins. STRING is a database of known and predicted PPIs. The interactions include direct (physical)
and indirect (functional) associations. Indirect interactions derive from computational predictions, from knowledge
transfer between organisms, and from interactions aggregated from other (primary) databases. Other specialized data-
bases collecting experimental, as well as computed interactions at a proteome scale, are available.26

Recently, deep learning applications for predicting at large networks of PPIs were proposed.27,28 These approaches
are however validated towards data sets whose completeness and reproducibility may be an issue. While condensates
increase the complexity of the scenario, it is very hard to assess to which extent the above-mentioned data are complete.
The ratio of the number of proteins and the number of coding genes for a given organism can give an estimate of the
completeness of the proteome space; however, the number of interactions is still unknown and difficult to evaluate for
any organism, even on theoretical grounds. Recently, some improvements in networks validation were described,
including an analysis of network paths29 and its variant integrating complementary interface and gene duplication.30

More to it, when organism-specific interactomes are compared, networks of large dimensions have routinely small over-
lap. This is often due to the different experimental approaches, error rates of the experimental procedures, different
levels of protein expression and post-translational processing in the expression systems.23

3.2 | Detection and computational prediction of protein–protein binding affinities

Macromolecular assemblies in vivo are explained by a full range of molecular mechanisms, classified as active pro-
cesses, which consume energy for generating the condensate and passive thermodynamic processes, including liquid–
liquid phase separation (LLPS).5

In phase behavior, like in protein phase separation,3 besides pairwise interactions, higher multibody interactions
can occur to mediate membrane-less foci formation. The basic idea is that proteins involved in aggregate formation
should be in principle endowed with different and flexible interaction patches for their multiple interactions within the
foci and the environment.3,5 Most of our knowledge on affinity derives from in vitro experiments. For decades, mea-
sures of the pairwise binding affinities among proteins focused on characterizing thermodynamically and kinetically

BOX 2 Experimental methods for characterizing PPIs

In the last 20 years, technology-enabled experimental procedures for the large-scale determination of all puta-
tive PPIs in a system, allowing to chart the interactome of whole organisms.12

Two-hybrid screening detects binary interactions in eukaryotic cells. Two domains of a transcription complex
are fused to two different proteins (bait and prey). The interaction, also weak, between bait and prey activates
the expression of a reporter gene.31

Affinity purification is a chromatographic assay for isolating all the interactors of a bait protein from a mix-
ture32 while in co-fractionation experiments native complexes are separated with physicochemical techniques.33

In both cases, proteomics techniques, mainly based on mass spectrometry, are used to recognize proteins.34

Experimental methods largely differ in sensitivity and precision, also in relation, to the binding affinity of
the interacting proteins, their subcellular localization, and their ability in discriminating direct from indirect
interactions.35

Large-scale techniques cannot however characterize the region of the protein surfaces in which the interac-
tion takes place. To collect this information, routinely experimental data on the structure of the complex are
required, mainly based on x-ray diffractometry and/or nuclear magnetic resonance spectrometry, notoriously two
low-throughput techniques. Recently, cryogenic electron microscopy expanded the possibility to resolve the
structure of large complexes, but it is still unapplicable at the whole interactome scale.36
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conformational equilibria, in which the environmental solvent effect (routinely polar) is included. This allowed the cat-
egorization of pairwise interactions as short-lived with low binding affinity, and “obligatory,” long-lived with high bind-
ing affinity. However, the spectrum includes any possible value among the two extremes.37

A major problem is therefore the extension of binding affinities from in vitro to in vivo experiments,4,10 where mul-
tiple interactions may affect binding, including assembly cooperativity, molecular concentration, and properties.3,5

Rate constants (KD = kon/koff) for pairwise protein association span six orders of magnitude, from <103 M�1 s�1 to
>109 M�1 s�1, while rate constants for protein dissociations span some eight orders of magnitude, from <10�6 M�1 s�1

to >102 M�1 s�1. Apparently, fast associations are electrostatically driven, while slower ones result from major struc-
tural rearrangements upon complexations.37

PDBbind (http://pdbbind.org.cn/) is a comprehensive collection of experimentally measured binding affinity data
for all biomolecular complexes deposited in the Protein Data Bank (PDB). The current release (version 2020) provides
binding affinity data for a total of 23,496 biomolecular complexes in the PDB, comprising protein–ligand (19,443),
protein–protein (2852), protein–nucleic acid (1052), and nucleic acid–ligand complexes (149).38 PDBbind includes a
core set, providing a relatively small set of high-quality protein–ligand complexes for validating docking/scoring
methods. The data set contributes to the popular Comparative Assessment of Scoring Functions (CASF) benchmark
(http://www.pdbbind.org.cn/casf.php).

Structural Kinetic and Energetic Database of Mutant Protein Interactions (SKEMPI) contains data on the changes
in thermodynamic parameters and kinetic rate constants upon mutation, for PPIs for which a structure of the complex
is solved and is available in PDB (https://life.bsc.es/pid/skempi2/).39

3.3 | Detection of the binding affinity of protein–protein complexes with atomic
resolution

Several computational tools are available for binding affinity prediction.40 They include methods based on force fields
and docking, knowledge-based scoring of single protein–protein complexes, ensemble-based approaches, and binding-
free energy simulations.

A broad spectrum of ML machine-learning techniques, including supervised machine-learning, convolutional NNs,
and RFs have been adopted for the implementation of integrated computational tools to predict ligand-binding affinity,
relying on the atomic coordinates of protein-ligand complexes. Supervised machine-learning is applied for developing
protein-targeted scoring functions for the prediction of binding affinity41,42 (for an extensive description of recent dock-
ing methods, see Reference 40 and references therein).

The Protein Data Bank (PDB, https://www.rcsb.org/) is the main source for data with atomic resolution to ground
our knowledge of PPIs. The current version (November 2021) contains 160,543 protein files, out of which about 60%
contain complexes. Refinement resolution varies from <0.5 Å up to >4.5 Å, with most of the structures with average
values of 2–2.5 Å. The gap with the number of sequences contained in UniProt (219,174,961) is still of three orders of
magnitude. Specific and derived databases organize structures according to given properties,39 like ProtCID, a data
resource for structural information on protein interactions.43 Furthermore, curated and processed small datasets are
shared to enable benchmarking of novel methods.17

3.3.1 | Properties and representation of protein–protein interfaces

In ML, input encoding is an issue, given that a proper representation of the data is an important step for optimizing
training sets and output results. This problem can be addressed by considering the biophysical properties of the protein
interfaces as derived by a thorough analysis of the complexes known with atomic resolution in the PDB, when tackling
the problem of Protein–Protein Interaction sites prediction.

Being proteins extremely heterogeneous molecules, with a large variety of binding affinity values, properties of
protein–protein interfaces in PDB complexes (transient or obligatory) are different and often specific for a given set of
complexes.3,37

In this respect, a main problem is the recognition of PDB functional protein–protein interfaces from nonspecific
interactions due to the crystallization process and molecular packing into the unit crystal cell. In other words, not all
the complexes in the PDB are functional, and this is should be taken into consideration when selecting protein sets for
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ML training. A very general trend is that on average the size of the interface, measured as solvent accessible area buried
upon complex formation, is larger in biological interfaces compared to crystallographic ones.3 Apparently, also the resi-
due composition of the biological interfaces differs from the crystallographic ones, enriching aliphatic and aromatic
moieties. However, properties of nonfunctional interfaces seem to overlap with those of transient complexes and there-
fore a clear distinction is impossible based only on physicochemical and geometrical properties.37

Recently,23 we analyzed a large data set of PDB complexes (19,360) from different organisms and downloaded with
the constraints of being functional and solved with high resolution (in the range of 1–2.5 Å). We focused on the prob-
lem of distinguishing between homo- and heterointerfaces, finding that cysteine and to a lesser extent tryptophan are
more prone to form interfaces in heterocomplexes. In turn, phenylalanine and leucine are more abundant in
homointerfaces. Average areas of homo and heterointerfaces are about 3946 and 3551 Å,2 respectively, confirming pre-
vious observations.3,44

Evolutionary conservation is another important feature which can help in the detection of functionally important
residues, which are conserved in proteins forming complexes in related species.3,23 Conservation can be estimated by
means of multiple sequence/structural alignments (MSA). Shannon entropy and its variants are routinely adopted to
score positional conservation for each column of the MSA.23 Analyzing 9301 protein chains, we found that interface res-
idues tend to be slightly more conserved than the other surface residues,23 confirming previous observations in smaller
data sets.

In general, conservation and composition alone are not sufficient to accurately discriminate interface residues from
the remaining surface ones.

Interactions patches have been measured mainly on geometrical assumptions. A residue is defined accessible when
endowed with a relative solvent accessibility higher than 20%. Once the monomer surface is computed, two main defi-
nitions of interface residues are widespread. The first, as mentioned above, is based on the different solvent accessibility
between the bound (complex) and unbound (monomer). The second definition is based on the computation of inter-
residue distances: interface residues are those having at least one residue of another subunit at a distance below a
defined threshold (routinely between 5 and 8 Å).23

Recently an alternative general framework to learn protein surface fingerprints was introduced to perform a geo-
metric deep learning. The method describes the geometric structure of the surface through its geometric features (shape
index, distance-dependent curvature) and geodesic polar coordinates.45

All the varieties of interface properties and their representations are important when ML is applied and training is
performed, as discussed in the following sections, were input features of the ML methods are listed.

4 | ML LEARNING APPROACHES FOR PPI PREDICTION

Routinely ML methods for PPI prediction take as input protein sequences or structures. Depending on the specific task
at hand, we may group methods as sequence based and structure based.

4.1 | Expanding PPI networks

Considering the sequence-based methods we can start distinguishing methods that focus on expanding PPI networks
(Section 3.1). Protein-level prediction of PPI refers to the problem of inferring an interaction score given a pair of puta-
tively interacting proteins. Approaches in this field allow to extend the current knowledge on interaction networks by
adding new edges to the graph.

Many computational tools have been devised for this task in the last decade (Table 1). These methods routinely start
from a pair of protein sequences and produce as output a probability/score for their interaction.

A major issue is the representation of variable-length protein sequences. A task is the definition of a proper and
effective procedure to transform input sequences of variable lengths into fixed-size vector encodings, to be then pro-
vided in input to the computational machinery. Several computational frameworks are now available for extracting
complex information from protein sequences and profiles of interacting and noninteracting proteins.

Feature encodings adopted in this field include basic residue composition,46 sequence profiles or Position-Specific
Scoring Matrixes (PSSMs),27,47,48 and residue physicochemical features.28,46,49–52 In all cases, residue-level encodings
are aggregated to obtain a fixed-size vector for the entire protein sequence. Methods to perform this aggregation are
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TABLE 1 Expanding PPI networks with ML methods

Name Year Method details Input features Dataset/s URL

EnAmDNN53 2020 Ensemble of Deep
Neural Networks
and Attention
mechanisms

Autocovariance and Multiscale
Local Descriptors,50 pseudo
residue composition.

Different data sets taken
from IntAct (Section 3.1)

Web server
not
available

Yang et al.28 2020 Graph embeddings Residue physicochemical
properties transformed via
Multiscale Local
Descriptors50 and
autocorrelation.

Pan dataset54 Web server
not
available

CNN-FSRF27 2019 Convolutional Neural
Networks + Random
Forest

Position-specific scoring matrix. Guo dataset derived from
Data Base of Interactive
Proteins (DIP)55

Web server
not
available

Lei et al.56 2019 Multimodal Deep
Polynomial
Networks

Amino acid mutation rate
(BLOSUM62),
hydrophobicity, and
hydrophilicity.

Several PPI datasets from
different species.

Web server
not
available

EnsDNN52 2019 Ensemble of 27 Deep
Neural Networks

Residue physicochemical
properties transformed via
Multiscale Local
Descriptors50 and
autocorrelation.

DeepPPI datasets46 Web server
not
available

DPPI47 2018 Deep Convolutional
Networks

Sequence profiles. Profppkernel benchmark
datasets.48

https://github.
com/
hashemifar/
DPPI/

DeepPPI46 2017 Deep Multi-Layer
Perceptron

Amino acid composition,
dipeptide composition,
composition, transitions, and
distributions of residue along
the sequence, pseudo-amino
acid composition.

A dataset derived from DIP;
Eight different PPI
datasets for evaluation.

Web server
not
available

Sun et al.51 2017 Stacked autoencoders
+ softmax classifier

Hydrophobicity, net charge of
side chains; polarity,
polarizability; solvent
accessible area, volume of
side chains. Fixed-size vector
representation for each
protein is obtained by auto-
covariance and conjoint triad
methods.

A positive dataset of
proteins extracted from
the human protein
reference database.
Negative examples are
obtained by pairing
proteins found in
different subcellular
compartments.

Web server
not
available

MLD-RF50 2015 Random Forest Protein sequences are divided
into a fixed number of non-
overlapping regions. Each
region is encoded with
descriptors representing
composition, transitions, and
distributions of residue
properties in the region.

Eight different PPI datasets
from several organisms
derived from DIP.

Web server
not
available

Profppikernel48 2015 Support Vector
Machine with profile
kernel57

Sequence profiles. Park and Marcotte
datasets.58 A dataset of
human PPI derived from
the Hippie database59; a
dataset of Yeast PPI
derived from DIP.

https://
rostlab.org/
owiki/
index.php/
Profppi
kernel
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different and range from simple averaging49 to more sophisticated approaches based on autocovariance,28,51,52 namely
indexes considering correlations between residues at a certain distance apart in the sequence, and multiscale local
descriptors which segment sequences into fixed-size nonoverlapping regions.50

Different machine-learning frameworks have been applied in this area. Early methods were based on traditional
learning approaches such as SVMs48,49 and RFs.50 Recently, deep-learning approaches have been adopted, including
deep fully-connected, multi-layer NNs,46,52 stacked autoencoders,51 convolutional NNs,27,47 attention mechanisms,53

and graph embeddings28 (Table 1).

4.2 | ML approaches for PPI site prediction

PPI can be tackled by predicting protein interaction sites, taking as input sequence or structure (Figure 1). Routinely
structure-based methods overperform sequence-based ones.

Machine-learning approaches (in particular, traditional ML methods) strongly rely on hand-crafted feature engi-
neering and selection to perform the prediction task they are designed for. In the context of sequence- and structure-
based PPI-site prediction methods, descriptors used to encode individual surface residues derive from a broad range of
sources (Table 2).

4.2.1 | Input features for sequence-based approaches

Sequence-based methods (Table 2) only extract feature descriptors from the primary protein sequence. Descriptors rou-
tinely adopted in this area can be roughly classified into four major categories: (i) residue primary encoding;
(ii) evolutionary information; (iii) residue physicochemical properties; and (iv) predicted structural features.

The residue one-hot representation (a vector with 19 zeros except one for the residue at hand) is routinely adopted
for the basic encoding of the protein primary sequence in many tasks in computational biology. Despite its simplicity,
one-hot encoding is not appropriate to capture important information encoded in protein evolution. To this aim, PPI-
site prediction methods adopt richer protein encodings that rely on evolutionary information extracted from multiple
sequence alignments (MSA), such as sequence profile and/or position-specific scoring matrices (PSSM) as well as differ-
ent types of conservation scores.60–64 Evolutionary descriptors are very informative but require the execution of compu-
tationally intensive alignments to find enough related sequences for the target protein. Recently, powerful techniques,
traditionally adopted in the field of Natural Language Processing (NLP) to learn embedded representations of words
and sentences of natural language, have been imported into the field of computational biology to learn embeddings for
protein sequences.65,66 Some of these approaches have been recently adopted also in the field of PPI site prediction.60,67

These embeddings represent a trade-off between the simple one-hot encoding and the more informative but computa-
tional demanding evolutionary information.

Residue physicochemical properties such as residue hydrophobicity, charge, polarity, volume, and/or conforma-
tional propensities have been included in the input of many prediction methods in the last years.60,62,67,68 These proper-
ties are routinely extracted from databases such as the AAindex69 or obtained using dimensionality reduction
procedures of precomputed residue properties.70

The absence of structural information is complemented in sequence-based approaches using predicted structural
features including relative solvent accessibility,60–62,64,67,71 secondary structure,61,62,67 protein flexibility and disorder.60

TABLE 1 (Continued)

Name Year Method details Input features Dataset/s URL

Bock & Gough49 2001 Support Vector
Machine

Residue charge,
hydrophobicity, and surface
tension.

A positive dataset of 2664
proteins obtained from
the DIP. Negative
examples were obtained
by random sampling of
synthetic pairs from DIP.

Web server
not
available
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4.2.2 | Sequence-based ML methods

Many sequence-based approaches (Table 2) for the prediction of PPI sites are based on traditional machine-learning
methods processing sequence features discussed above. ML techniques routinely applied include SVMs,68,71 RFs or
other tree-based approaches,61,63,71 shallow NNs,67 and simple regression algorithms.62,64

In some cases, the specific machine-learning approach is accompanied by other ML-based techniques for data
preprocessing/balancing68 and for automatic feature selection.71

A subset of sequence-based methods,72,73 routinely partner-specific approaches that identify pairs of interacting
residues between two input partners, are based on the analysis of protein coevolution. This is an unsupervised ML
framework that, starting from MSA, attempts to detect putative interchain residue contacts analyzing the pattern of
co-variation across protein–protein interfaces.

Recently, deep-learning methods appeared also in the field of PPI-site prediction from the sequence. Specifically,
approaches that are well-suited for the analysis of sequence data, such as deep recurrent NNs and long-short term
memory networks, have been applied.60 Moreover, architectures based on convolutional NNs have been implemented
for processing both local and global sequence contexts.74

FIGURE 1 Schematic overview of ML methods for PPI-site prediction from structure and sequence

10 of 21 CASADIO ET AL.
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TABLE 2 Sequence-based ML methods for PPI-site prediction

Name Year
Partner
specificity Method details Input features

Dataset/s
(Dset, DB) URL

DELPHI60 2020 No Ensemble learning of
convolutional and
gated recurrent
unit networks

3-mer amino acid
embedding
(ProtVec1D),
residue position,
position-specific
scoring matrix,
conservation,
predicted relative
solvent accessibility,
interface propensity,
predicted disorder,
hydrophobicity,
number of residue
atoms, charge,
potential hydrogen
bonds, graph-shape
index, polarizability,
volume, isoelectric
point, helix, and
sheet probability.

ZhangDataset,
Dset_44852;
Dset_186,
Dset_7264;
Dset_164.75

https://delphi.
csd.uwo.ca/

DeepPPISP74 2020 No Convolutional Neural
Networks

Position-specific
scoring matrix,
secondary structure,
one-hot encoding.

Dset_186,
Dset_7264;
Dset_164.75

Web server not
available

Wang et al.68 2020 No Dataset balancing +
Support Vector
Machines

Sequence profile,
profile entropy,
conservation.

Dataset derived
from the Ansari
dataset.76

No web server
available

ProNA202067 2020 Neural Networks Predicted secondary
structure, predicted
solvent accessibility,
and
physicochemical
features.

Hamp dataset.48 http://www.
predictprotein.
org

SCRIBER62 2019 No Multi-level Logistic
Regression

Propensity for
binding, predicted
solvent accessibility,
conservation,
hydrophobicity,
polarity, charge,
predicted secondary
structure,
physicochemical
properties, residue
position.

ZhangDataset,
Dset_44852

http://biomine.
cs.vcu.edu/
servers/
SCRIBER/

SeRenDIP61,77 2019 No Random Forest Conservation, residue
specificity in
homodimers and
monomers,
sequence length,
backbone dynamics,
predicted solvent
accessibility, and
secondary structure.

Hou dataset78;
Dset_186,
Dset_7264

http://www.ibi.
vu.nl/
programs/
serendipwww/

(Continues)
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4.2.3 | Input features for structure-based approaches

In structure-based approaches (Table 3), the availability of the protein structure allows the extraction of physicochemi-
cal and evolutionary features not only for a single surface residue but also considering its local surface structural
context.82,84

An important class of features adopted by structure-based approaches fall in the category of geometrical
descriptors extracted from the input protein structure. These include average depth85 and protrusion86 indexes
computed over the set of atoms belonging to each surface residue, indexes describing the local surface shape87

or curvature,88 2D/3D Zernike descriptors of voxelized protein surface representations89,90 and geometric
invariant fingerprint descriptors.91

Other common features extracted from the protein three-dimensional structure include measures of protein flexibil-
ity as derived from crystallographic B-factors, secondary structure motifs, and residue solvent accessibility.

For the same monomer, the value of the features can change if different conformations are considered. This is par-
ticularly relevant when addressing the problem of PPIs. Indeed, the structure of the isolated monomer (unbound struc-
ture) is in some cases very different from that of the same protein extracted from a complex (bound structure), because
of the conformational rearrangements induced by the interaction. Therefore, using features extracted from bound
instead of unbound monomers can introduce biases when predicting interaction sites.

TABLE 2 (Continued)

Name Year
Partner
specificity Method details Input features

Dataset/s
(Dset, DB) URL

BIPSPI-sequence63 2018 Yes XGBoost, tree bosting Residue one-hot
encoding, sequence
profile, position-
specific scoring
matrix,
conservation.
Sliding window-
based context.

Docking
Benchmark v.5
(DBv5)79; DBv480;
DBv381; CAPRI
targets82; A
dataset of 117
dimers (DImS).

http://bipspi.
cnb.csic.es/
xgbPredApp/

SSWRF71 2016 No Random Forest +
Support Vector
Machines

Position-specific
scoring matrix,
hydrophobicity,
predicted relative
solvent accessibility.

Dset_186,
Dset_7264;
Dset_16475

http://202.119.
84.36:3079/
SSWRF-PPI/
SSWRF-PPI.
html

EVComplex72 2014 Yes Direct coupling
analysis based on
mean field
approximation

Multiple sequence
alignment.

330 protein
complexes
extracted from in
E. coli, literature-
curated
interactions and
PDB83

https://
evcouplings.
org/complex

GREMLIN73 2014 Yes Direct coupling
analysis based on
maximization of
pseudo-likelihoods

Multiple sequence
alignment.

18 protein
complexes
defined in this
study.

http://gremlin.
bakerlab.org/
cplx_submit.
php

PSIVER64 2010 No Naïve Bayes classifier
with kernel density
estimation

Position-specific
scoring matrix and
predicted
accessibility.

Two datasets
comprising 186
and 72
heteromeric
complexes
(Dset_186 and
Dset_72)

https://
mizuguchilab.
org/PSIVER/
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4.2.4 | Structure-based ML methods

In the last decade, the field of structure-based PPI site prediction has been dominated by traditional ML methods. The
major difference with sequence-based methods is clearly the availability of the protein three-dimensional structure all-
owing to extract of very informative geometrical and structural features as described above. These descriptors, routinely
computed for the subset of residues placed on the protein molecular surface, are then processed by traditional
approaches including SVMs,82,89,92,93 shallow NNs,93 RFs,63,94 and Markovian probabilistic graphical models such as
hidden-Markov SVMs95 and CRFs.82,96,97 Markov models are well-suited for sequential data like protein sequences,
being able to capture the potential relationships among adjacent residues in the protein surface,82,97 mapped on the pro-
tein sequence.

Deep-learning has recently emerged in the field of structure-based PPI site predictors.45,98 The main direction in this
area involves the application of techniques under the umbrella of geometric deep learning approaches.99 These
approaches are useful for modeling data that cannot be easily represented into a standard Euclidean space, that is, data
having an underlying non-Euclidean structure such as graphs or networks. The goal of geometric deep learning is to
provide key basic operations that are at the basis of successful deep learning on Euclidean data (e.g., convolutional, or
recurrent operations) also for the case of non-Euclidean data.

Recently,45 an approach has been described based on a geometric invariant fingerprint91 representation of the pro-
tein surface and the generalization of the standard convolution operator to protein surfaces described by means of a
local geodesic polar system of coordinates. Briefly, a discretized representation of the surface is computed, and features
assigned to each vertex of the resulting mesh. Then, for each vertex, a local patch is extracted with predefined geodesic
radius. After patch extraction, the position of each vertex is mapped in radial and angular coordinates with respect to
the center of the patch, adding information about spatial relationships between features. The canonical convolution
operator is then generalized to this geodesic representation using a system of Gaussian kernels whose parameters are
learned. These kernels act as the “filters” in the canonical convolutional layer.

Following this trend, another recent work98 describes the application of graph convolutional networks for the pre-
diction of PPI sites starting from protein structure. The protein molecular surface is represented as a graph where verti-
ces are residues while edges highlight the proximity of two residues within a predefined distance threshold (Cα–Cα

distance below 14 Å). On the resulting graph, different graph convolutional layers are applied in cascade, generalizing
the basic convolution operator to graphs. After a cascade of N graph convolutions, the final layer is processed by a stan-
dard NN and transformed to per-residue interaction probabilities.

4.2.5 | A recent benchmark

A recent benchmark98 compared sequence-based and structure-based methods on blind test sets, including different
number of proteins ranging from 135 and 31, respectively. What is interesting in the benchmarking is the inclusion of
SPPIDER,93 a shallow learning-based method among ones based on deep learning. Scoring performances are lower for
sequence-based than structure-based ones. However, among the structure-based ones SPPIDER is performing at the
same level of MaSIF-site,45 the deep learning method recently introduced that, in turn, is slightly outperformed by
GraphPPIS98 (Table 2). However, scoring values, measured as Matthews correlation coefficient and Area Under the Pre-
cision Recall Curve are about 0.3 and 0.4, respectively. Notwithstanding all the recent technological advancements, and
rather independently of the method adopted, results of the benchmark98 suggest that there is still large room for
improvement, since the theoretical maximum for both scoring indexes is one.

4.3 | Recent advancements

ML generative models can efficiently explore subregions of the protein space to highlight sequence functional
properties,111 while the mathematical representation of biomolecular data can reduce ML dimensionality and simplify
structural representation.112

With the advent of deep language models, and the concomitant explosive growth of available protein sequences,
D-SCRIPT now associates genome to “phenome” with sequence-based, structure aware, and PPI proteome scale
prediction.113
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After AlphaFold2 models, the fraction of the dark structural proteome decreased from 26% to 10%, allowing a cover-
age increase of the critically important sets of disease-associated genes and mutations.114

One method115 integrates information from three different levels, including protein sequence, distance map, and
structure (similarly to AlphaFold221,22) and enables rapid solutions of structural problems, including PPIs. When tested
on a set comprising 68 protein complexes from Escherichia coli, known with atomic resolutions, the method satisfactory
predicts some 43% of the known interfaces, and 82% of the associated protein structures.115 Apparently, the procedure
starting from protein sequence can bypass traditional approaches requiring modeling of individual subunits, followed
by docking procedures.115

Furthermore, other papers still in bioRxiv, support the notion that the problem of predicting the interfaces of pro-
tein complexes, can take advantage of the deep learning-based methods included in AlphaFold2. AlphaFold-Mul-
timer116 filters 4433 recent protein complexes and produces high accuracy predictions of the interfaces in 23% of cases.
Docking of protein models can be improved by adopting AlphaFold2 and a docking method (ClusPro)117 and
heterodimeric protein complex interactions can be better predicted by including AlphaFold2.118

All this work suggests that indeed the computational power of deep learning developments can efficiently extract
information at different levels of our knowledge of PPI interaction. Presently, improved protein structure predictions
seem to pave the way to improve PPI prediction methods.

4.4 | The issue of false positives

When evaluating scores, routinely ML methods compare their computed outputs with the expected ones. What are the
expected ones? Based on structure complexes we can define known interactions as those that should be correctly
predicted; however, given the scenario that is outlined in the introduction and the models at the proteomic scale of
PPIs, it is difficult to estimate the real number of interactions that a protein can make in the crowded milieu of the cell.

For this reason, even benchmarking on very strict blind tests can be biased by wrong assumptions. The problem of
false positives and their prediction is barely addressed. Recently when presenting, GraphPPIS,98 authors discussed the
problem by predicting unbound and bound structures for the same complexes, reaching the conclusion that the perfor-
mance of methods trained on bound structures decreases when tested on unbound monomers. This suggests that long-
range contacts are difficult to capture, and that the overall interaction surface is poorly represented, despite the accu-
racy in generating features for residues in contact.

We recently found that proteins in the Cajal granules have a number of interactors much larger than average in the
human interactome (as reported in IntAct and BioGRID). The number of interactors moderately correlates with the
number of residues predicted as flexible sites (with MobiDB)100; correlation increases when the number of predicted
PPIs is considered (with ISPRED4, sequence based) and increases when the PPIs that are also flexible are retained.
Apparently, the inherent flexibility of the residues may help in adjusting the interacting surface to multiple proteins.23

This experiment confirms that flexibility, which is routinely considered associated with nonspecific interactions5 can
also integrate some functional PPIs. However, the property “being flexible” does not necessarily imply “being involved
in a functional interaction site.”23

5 | FINAL REMARKS

Despite large volumes of experimental data, advanced computational resources, and ML algorithms, we like to con-
clude that our knowledge of PPI is limited. Presently, it is difficult to solve the complexity of PPI in cells, considering
the presence of both transient and nontransient aggregates, different compartments, and macromolecular condensates.
Therefore, our PPI data at the proteomic level need still improvement to highlight all the possible interactions both in
space and time. On the other hand, complexes solved with atomic resolution may represent overall only a limited set of
the possible functional interactions that each protein can have in the crowded cell interior. However, it is very difficult
to distinguish between functional and nonfunctional interaction surfaces. ML learning and particularly deep learning
models are presently extremely successful in different research fields, including protein structure prediction. Still, when
benchmarked on the task of PPI predictions, results, although promising, indicate limitations, including recent
advancements. In relation to the problem of predicting PPI sites, no significant difference is found among shallow and
deep learning,98 suggesting that our representations of the interacting surfaces are still insufficient to capture all the
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details of the binding affinities, which may differ depending on the cell type, requirement, and regulation. More exam-
ples, particularly protein complexes with high atomic resolution will eventually fill the gap among the potentiality of
the methods and protein–protein interface description. Given this scenario, the problem of distinguishing with compu-
tational tools between functional and nonfunctional protein interactions remains open.
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