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Abstract:
We derive sharp lower bounds for Lp-functions on the n-dimensional unit hypercube in terms

of their p-ths marginal moments. Such bounds are the unique solutions of a system of constrained
nonlinear integral equations depending on the marginals. For square-integrable functions, the bounds
have an explicit expression in terms of the second marginals moments.
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1. Introduction

This paper obtains lower bounds of Lp-functions on the n-dimensional unit hypercube in terms of moments
of their marginals (i.e., one-dimensional projections). The lower bound is identified as the solution of a
system of constrained nonlinear integral equations, where the marginals appear as inhomogeneous data. In
the Hilbertian case p = 2 (and only in such a case), the integral equations become linear and admit an
explicit solution (Section 2.3), implying that any square-integrable function g : Rn 3 ξ 7→ g(ξ) ∈ R such that∫
g(ξ)dξ = 1, satisfies the bound∫

g2(ξ)dξ ≥

(
n∑

i=1

∫
gi(ξi)

2dξi

)
− (n− 1), (1.1)

where ξ = (ξi)1≤i≤n and the marginal gi is the integral of g with respect to all but the i-ths argument ξi,
1 ≤ i ≤ n. Henceforth, all integrals are understood on the unit (hyper)cube of the respective integration
variable, unless explicitly stated otherwise.

This bound is reminiscent of the lower Fréchet-Hoeffding bound [7, Theorem 2.2.3] for a copula C = C(ξ)
(i.e., the joint cumulative distribution function of n-dimensional random variable with uniform marginals),

C(ξ) ≥ max

{
n∑

i=1

ξi − (n− 1), 0

}
. (1.2)

However, a closer inspection shows that such a bound is rather different from the ones considered in this
paper. First, (1.2) is a point-wise bound (which reduces to state mere positivity on the set {

∑n
i=1 ξi <

n − 1}), while (1.1) is a norm bound. Second, while copula bounds are – by construction – independent of
marginal distributions, the norm bound established in this paper depends critically on the marginals densities
considered.

The results of this paper are originally motivated by questions arising in the optimisation of options port-
folios [4], which are equivalent, by convex duality, to the minimisation of the second moment of the stochastic
discount factor, subject to constraints on its marginals. This paper investigates the more challenging setting
of an arbitrary moment (as opposed to the second moment), which leads to two related issues. First, the
problem cannot be tackled with Hilbert space techniques, but requires arguments from Banach space theory.
Second, while the second moment leads to linear first-order conditions and a minimal density that is additive
across different variables, the general case considered here entails as first-order conditions nonlinear integral
equations and a resulting more complex nonlinear decomposition of the minimal density.
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The rest of the paper is organised as follows. Section 2 sets up the general Lp-problem and offers a heuristic
derivation of the equations governing the lower estimate. The rigorous proof of the sharp lower bound follows
in Theorem 2.5. This general statement is then applied to the case p = 2 in Section 2.3, and results in Theorem
2.7. Section 2.4 reinterprets Theorem 2.5 as a regularity result for nonlinear integral equations. Section 3
provides a numerical study of the minimal solutions to the integral equations in dimension two, discussing
how the optimisers depart from the linear case p = 2. Finally, Section 4 explains the probabilistic implications
for portfolio selection.

2. Lp-bounds

Let 1 < p < ∞ and n ≥ 2. Denote by Lp([0, 1]n) the space of equivalence classes of Lebesgue-measurable

functions f on the unit hypercube [0, 1]n, for which ‖f‖p :=
(∫
|f(ξ)|pdξ

) 1
p < ∞. Lp-spaces are strictly

convex1 in that for any 0 < t < 1 and f, g ∈ Lp([0, 1]n) such that ‖f‖p = ‖g‖p = 1 and f 6= g, it holds that
‖tf + (1− t)g‖p < 1. As Lp-spaces are also reflexive, the following Banach-space analog [5, Corollary 5.1.19]
of a familiar Hilbert space result [8, Theorem 4.10] holds:

Theorem 2.1. If a normed space is rotund and reflexive, then each of its nonempty, convex, closed subsets
has a unique minimal element of smallest norm.

Henceforth, for 1 ≤ i ≤ n denote by ξi the i-th coordinate of ξ ∈ Rn and by ξci the (n−1)-vector, in which
the latter is omitted, i.e., ξci = (ξ1, . . . , ξi−1, ξi+1, . . . , ξn). We shall integrate functions f = f(ξ) either with
respect to ξci , in which case we write fi(ξi) :=

∫
f(ξ)dξci , or with respect to ξi, and then we write

∫
f(ξ)dξi.

2.1. Heuristic Derivation

To minimise the Lp-norm ‖h‖p subject to the marginal constraints∫
h(ξ)dξci = gi(ξi), 1 ≤ i ≤ n,

consider the Lagrangian

L =
1

p

∫
|h(ξ)|pdξ − 1

n

n∑
i=1

∫
Φ(ξi)

(∫
h(ξ)dξci − gi(ξi)

)
dξi.

Setting the directional derivatives equal to zero yields the first order conditions

sign(h(ξ))|h(ξ)|p−1 =
1

n

n∑
i=1

Φi(ξi),

whence

h(ξ) = sign

(
n∑

i=1

Φi(ξi)

)∣∣∣∣∣ 1n
n∑

i=1

Φi(ξi)

∣∣∣∣∣
1

p−1

.

The marginal constraints imply

∫
sign

 1

n

n∑
j=1

Φj(ξj)

∣∣∣∣∣∣ 1n
n∑

j=1

Φj(ξj)

∣∣∣∣∣∣
1

p−1

dξci = gi(ξi), 1 ≤ i ≤ n. (2.1)

To uniquely identify2 the Lagrange multipliers Φi – which are otherwise determined up to an additive
constant – it suffices to impose the conditions∫

Φi(ξi)dξi = 0, 2 ≤ i ≤ n. (2.2)

Note that these conditions are required only for i ≥ 2.

1This property is also called rotund, cf. [5, Example 1.10.2 and Theorem 1.11.10]
2For the uniqueness proof, see the proof of Theorem 2.5.
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2.2. Main result

The discussion begins with a characterisation of minimality in Banach spaces [9, Theorem 4.21]:

Lemma 2.2. Let 1 < p <∞, f ∈ Lp, and Y be a closed subspace of Lp. The following are equivalent:

1. ‖f‖p ≤ ‖f + k‖p for all k ∈ Y .
2.
∫

sign(f(ξ))|f(ξ)|p−1k(ξ)dξ = 0 for all k ∈ Y .

A function f is orthogonal to a subspace Y if it satisfies any of the equivalent statements of Lemma 2.2.

Lemma 2.3. Let 1 < p <∞, f ∈ Lq([0, 1]n), where q = p/(p− 1), and denote by

N :=

{
φ ∈ Lp([0, 1]n)

∣∣∣ ∫ φ(ξ)dξci ≡ 0, for 1 ≤ i ≤ n
}
. (2.3)

The following are equivalent:

1.
∫
f(x)φ(x)dx = 0 for all φ ∈ N .

2. f(x) = 1
n

∑n
i=1 Ψi(xi), where Ψi lie in Lq([0, 1]), 1 ≤ i ≤ n.

Proof. The implication (2)⇒ (1) is straightforward. To show that (1)⇒ (2), note that, by Jensen’s inequality,
for any φ ∈ Lp([0, 1]n) and any 1 ≤ i ≤ n,

∫
φ(ξ)dξci ∈ Lp([0, 1]). Hence, for any φ ∈ Lp([0, 1]n),

φ̃(ξ) := φ(ξ)−
n∑

i=1

∫
φ(ξ)dξci + (n− 1)

∫
φ(η)dη ∈ N ,

and Fubini’s theorem yields∫ (
f(x)−

n∑
i=1

∫
f(ξ)dξci + (n− 1)

∫
f(ξ)dξ

)
φ(x)dx = 0.

Thus by duality,

f(ξ) =

n∑
i=1

∫
f(ξ)dξci − (n− 1)

∫
f(ξ)dξ ξ − a.e..

The functions Φi(ξi) := n
∫
f(ξ)dξci − (n − 1)

∫
f(ξ)dξ, 1 ≤ i ≤ n, are in Lq([0, 1]n), and they sum to f , as

claimed.

The previous two Lemmas combine to the following:

Corollary 2.4. Let f ∈ Lq([0, 1]n), and N ⊂ Lp([0, 1]n) as defined in (2.3). The following are equivalent:

1. sign(f)|f |1/(p−1) is orthogonal to N .
2.
∫
f(x)φ(x)dx = 0 for all φ ∈ N .

3. f(x) = 1
n

∑n
i=1 Ψi(xi), where Ψi lie in Lq([0, 1]n), 1 ≤ i ≤ n.

Theorem 2.5. Let p > 1. Any g ∈ Lp satisfies∫
|g(ξ)|pdξ ≥

∫
|Φ(ξ)|

p
p−1 dξ, (2.4)

where

Φ(ξ) :=
1

n

n∑
i=1

Φi(ξi)

and Φi are the unique solutions of the system of integral equations (2.1)–(2.2).
The estimate (2.4) is sharp, in that equality in (2.4) holds, if and only if

g(ξ) = sign
(
Φ(ξ)

) ∣∣Φ(ξ)
∣∣ 1
p−1 . (2.5)
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Proof. By Jensen’s inequality, gi :=
∫
g(ξ)dξci ∈ Lp([0, 1]) for 1 ≤ i ≤ n, hence the set

M :=

{
h ∈ Lp([0, 1]n)

∣∣∣ ∫ h(ξ)dξci = gi(ξi), 1 ≤ i ≤ n
}

is well-defined, and it is non-empty because g ∈M. The set is convex, by construction, and it is closed: Let
hn ∈ M and limn→∞ hn = h in Lp([0, 1]n). Then the sequence (hn)n≥1 is uniformly integrable, hence by
Vitali’s convergence theorem, ξi- almost everywhere,∫

h(ξ)dξci =

∫
lim
n→∞

hn(ξ)dξci = lim
n→∞

∫
hn(ξ)dξc = gi(ξi).

Denote by h∗ the unique element inM of smallest norm3. We claim that h∗ = g, where g is defined in (2.5).
To this end, recall the function space defined in (2.3). By the minimality of h∗, it follows that for any ε > 0
and any φ ∈ N

‖h∗ ± εφ‖pp − ‖h∗‖pp ≥ 0, (2.6)

and therefore, by Lemma 2.24 ∫
sign(h∗(ξ))|h∗(ξ)|p−1φ(ξ)dξ = 0, φ ∈ N .

The implication (1) ⇒ (3) in Corollary 2.4 yields

sign(h∗(ξ))|h∗(ξ)|p−1 = Φ(ξ), where Φ(ξ) :=
1

n

n∑
i=1

Φi(ξi),

with measurable functions Φi(ξi), 1 ≤ i ≤ n, depending on one variable ξi only. Because sign(h∗) =
sign(Φ(ξ)), it follows that

h∗(ξ1, . . . , ξn) = sign(Φ(ξ))
∣∣Φ(ξ)

∣∣ 1
p−1

and Φ solves the nonlinear integral equations (2.1) for 1 ≤ i ≤ n. As these equations involve the sum Φ only,
we can satisfy the extra constraints (2.2), by replacing Φi by Φi −

∫
Φi(ξi)dξi (2 ≤ i ≤ n), if necessary.

It remains to show the uniqueness. Assume that, besides Φ, also Ψ(ξ) := 1
n

∑n
i=1 Ψi(ξi) solves (2.1)–(2.2).

By Corollary 2.4 (3)⇒ (1), the function h := sign(Ψ)|Ψ|
1

p−1 is orthogonal to N defined in (2.3). Furthermore,
by (2.1), h − h∗ ∈ N , hence by definition of orthogonality, ‖h‖p ≤ ‖h∗‖p. In view of (2.6), h = h∗, whence
also Ψ = Φ. As Φ(ξ) = 1

n

∑n
i=1 Φi(ξi) = 1

n

∑n
i=1 Ψi(ξi) =: Ψ(ξ) almost everywhere, the extra constraints

(2.2) yield, upon integration of nΦ = nΨ with respect to dξc1, that Φ1(ξ1) = Ψ1(ξ1) almost everywhere (the
rest of the integrals vanish). Applying the constraint for i = 2, it follows that∫

Φ1(ξ1)dξ1 + Φ2(ξ2) + 0 =

∫
Ψ1(ξ1)dξ1 + Ψ2(ξ2) + 0 =

∫
Φ1(ξ1)dξ1 + Ψ2(ξ2),

whence Φ2(ξ2) = Ψ2(ξ2) ξ2-almost everywhere. Continuing similarly for 3 ≤ i ≤ n, it follows that Φi = Ψi

ξi-almost everywhere for 3 ≤ i ≤ n.

Remark 2.6. Suppose all marginals are densities. If n−1 marginal data are uniform densities, say gi(ξi) = 1
for i ∈ T ⊂ {1, 2, . . . , n} with |T | ≥ n − 1, then the corresponding solutions Φi (i ∈ T ) are constants. This
is easiest to see for T = {2, . . . , n}. Then, it can be verified that the solution of (2.1)–(2.2) is of the form
Φi = 0 for 2 ≤ i ≤ n, and Φ1 := sign(g1)|g1|p−1. If the index set T contains 1, then Φ1 will be a constant,
but not necessarily equals to 0 (see last row of Figure 1).

3See Theorem 2.1, and the paragraph preceding it concerning its applicability for Lp spaces.
4Note that |h∗|p−1 ∈ Lq , where q = p

p−1
, hence the below pairing is finite, by Hölder’s inequality.
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2.3. The L2-case

For p = 2, the system of integral equations (2.1)–(2.2) becomes linear:∫ n∑
j=1

Φj(ξj)

 dξci = ngi(ξi), 1 ≤ i ≤ n, (2.7)

∫
Φi(ξi)dξi = 0, 2 ≤ i ≤ n. (2.8)

For i = 1, Equation (2.7) yields Φ1(ξ1) = ng1(ξ1), and in conjunction with Equation (2.8), it follows that

Φi(ξi) = n

(
gi(ξi)−

∫
g1(ξ1)dξ1

)
= n

(
gi(ξi)−

∫
g(ξ)dξ

)
, 2 ≤ i ≤ n.

In view of Theorem 2.5, it follows that:

Theorem 2.7. Any g ∈ L2([0, 1]n) satisfies∫
g2(ξ)dξ ≥

n∑
i=1

∫
gi(ξi)

2dξi − (n− 1)

(∫
g(x)dx

)2

. (2.9)

The bound is sharp: equality holds if and only if g equals

Φ(ξ) :=

(
n∑

i=1

gi(ξi)

)
− (n− 1)

∫
g(x)dx.

Remark 2.8. Note that the above includes the case where g has vanishing integral. In this case, the estimate
(2.9) lacks the last term (n− 1)

∫
g(x)dx.

2.4. Regularity of Integral Equations

One can view Theorem 2.5 as a regularity result for nonlinear integral equations with constraints – the dual
problem:

Corollary 2.9. Let n ≥ 2 and p > 1. For any g ∈ Lp([0, 1]n), there exists a unique solution

Φ(ξ) = (Φ1(ξ1),Φ2(ξ2), . . . ,Φn(ξn))

of the integral equations (2.1)–(2.2) with data g, satisfying the bound

‖Φ‖q ≤ ‖g‖p,

where q denotes conjugate exponent (satisfying 1/p+ 1/q = 1).

3. Numerical Examples

For illustration, we study dimension n = 2 and consider data g1(ξ1) and g2(ξ2) of unit integral.
To solve the nonlinear integral equations (2.1)–(2.2), we discretise the involved integrals using a mesh-

size of 1/30, and solve the resulting nonlinear equations with the optim solver on R (minimising residuals),
using the exact solution in the p = 2 case as starting value; and then increasing (resp. decreasing) from the
Hilbertian case by ∆p = 10%, using repeatedly the previous numerical solution as seed for the solver. Each
example involves normal marginal densities, re-normalised so to have unit mass on [0, 1].5

5It may appear more natural to pick densities that integrate to one by default, e.g. instances of the beta distribution with
parameters α, β. However, this seemingly more natural choice leads to similar effects as explained below. For intuitive and for
numerical reasons, we found normal data more convenient.
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Figure 1 below depicts solutions for three different sets of data g1, g2, and for a range of p > 1. The
explicit solution for p = 2 (Theorem 2.7)

Φ1(ξ1) = 2g1(ξ1), Φ2(ξ2) = 2(g2(ξ2)− 1).

is plotted by dotted lines. The Figure generally shows that as p ↓ 1, the solutions Φ1,Φ2 get flatter (dashed
lines), while as p increases from 2, the solutions have more and more pronounced peaks (solid lines). In the
first row of Figure 1 the data is identical, however since

∫
Φ2(ξ2)dξ2 = 0, Φ1 and Φ2 differ by a real constant.

Moreover, the second row of the Figure uses inhomogeneous data g1, g2, centering around different means.
Finally, the last row of Figure 1 confirms the theoretical finding of Remark 2.6: the solution Φ1 on the left,
that corresponds to uniform marginal data g1, is constant also for p 6= 2.

4. Probabilistic Implications

The main result in this paper is originally motivated by the problem of selecting the portfolio of options with
maximal Sharpe ratio, which is equivalent, by convex duality, to the minimisation of the second moment of
the stochastic discount factor, subject to constraints on its marginals (cf. [4, Section 2.2]). In this financial
application, the baseline measure is described by a probability density p(ξ), which identifies the views of an
investor on the joint distribution of the prices of n risky assets S1, . . . ,Sn at some future date T (modelled
by random variables S1, . . . , Sn). Each of these is an underlying asset of European Call and Put options
with a continuum of strikes, maturing at T . The density p thus replaces the Lebesgue measure in the present
paper. The corresponding Lp-problem (p > 1) generalises equations (2.1)–(2.2) to

∫
sign

 1

n

n∑
j=1

Φj(ξj)

∣∣∣∣∣∣ 1n
n∑

j=1

Φj(ξj)

∣∣∣∣∣∣
1

p−1

p(ξ)dξci = gi(ξi), 1 ≤ i ≤ n,

∫
Φi(ξi)pi(ξi)dξi = 0, 2 ≤ i ≤ n.

The new weight p in these equations, and its n marginal densities pi constitute only a small modification
that can be treated similarly as in Section 2.2. The “inhomogeneous data” gi (1 ≤ i ≤ n) represents the
risk-neutral marginal distributions of asset Si (1 ≤ i ≤ n) which is, due to [1, 6, 3] proportional to the second
derivative of European Call options prices, with respect to their strike price.

An important implication of the result is that the solution is necessarily of the functional form g(ξ) =

sign(Φ(ξ)
∣∣Φ(ξ)

∣∣1/(p−1), where Φ(ξ) = 1
n

∑n
j=1 Φj(ξj). First, this result casts in a cautionary light the practice

of pricing complex derivatives by fitting parametric copulas to risk-neutral marginals. In general, the price
obtained from some copula family is neither replicable nor linked to an optimisation objective. Second, the
result implies that the maximal random payoff Φ (the primal object) is not an arbitrary function of the the
asset prices S1, . . . , Sn, but it additively separates in each asset, that is, it is of the form

Φ(S1, . . . , Sn) =
1

n

n∑
j=1

Φj(Sj),

and thus can be interpreted as an option portfolio, featuring European options on each of the n individual
underlyings. Indeed, according to the Carr-Madan formula [2], each summand Φj , if regular enough, can be
written as

Φj(K) = Φj(K0) + Φ′j(K0)(K −K0) +

∫ K0

0

Φ′′j (κ)(κ−K)+dκ

+

∫ ∞
K0

Φ′j(κ)(K − κ)+dκ, K ≥ 0

and thus decomposes into the payoff of Φj(K0) units of a zero-coupon bond maturing at T (first summand),
Φ′j(K0) forward contracts with delivery price K0 (second summand) and a continuum of European puts

(with strike κ ≤ K0), and European calls (with strikes κ ≥ K0).6

6The strike K0 > 0 that separates puts from calls is arbitrary, and typically equal to the spot or forward price.

imsart-generic ver. 2014/10/16 file: bj_Cops_with_appl.tex date: July 14, 2020



Guasoni, Mayerhofer and Zhao/Minimal Densities with Prescribed Marginals 7

Acknowledgements

Paolo Guasoni was partially supported by SFI (16/IA/4443,16/SPP/3347). Eberhard Mayerhofer thanks
Natalia Kopteva for suggestions concerning Section 2.4. Mingchuan Zhao acknowledges funding through
SFI/12/RC/2289 P2.

References

[1] Douglas T Breeden and Robert H Litzenberger. Prices of state-contingent claims implicit in option prices.
Journal of Business, pages 621–651, 1978.

[2] Peter Carr and Dilip Madan. Towards a theory of volatility trading. Option Pricing, Interest Rates and
Risk Management, Handbooks in Mathematical Finance, pages 458–476, 2001.

[3] Richard C Green and Robert A Jarrow. Spanning and completeness in markets with contingent claims.
Journal of Economic Theory, 41 (1): pages 202–210, 1987.

[4] Paolo Guasoni and Eberhard Mayerhofer. Technical Note – Options Portfolio Selection. Operations
Research, 68 (3), pages 733–740,2020.

[5] Robert E Megginson. An Introduction to Banach Space Theory, volume 183. Springer Science & Business
Media, 2012.

[6] David C Nachman. Spanning and completeness with options. Review of Financial Studies, 1 (3), pages
311–328, 1988.

[7] Roger B Nelsen. An Introduction to Copulas. Springer Science & Business Media, 2007.
[8] Walter Rudin. Real and Complex Analysis. Tata McGraw-Hill Education, 2006.
[9] Harold S Shapiro. Topics in Approximation Theory, volume 187. Springer, 2006.

imsart-generic ver. 2014/10/16 file: bj_Cops_with_appl.tex date: July 14, 2020



Guasoni, Mayerhofer and Zhao/Minimal Densities with Prescribed Marginals 8

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

0.0 0.2 0.4 0.6 0.8 1.0

−
2

0
2

4

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

0.0 0.2 0.4 0.6 0.8 1.0

−
2

0
2

4

0.0 0.2 0.4 0.6 0.8 1.0

1.
5

2.
0

2.
5

3.
0

0.0 0.2 0.4 0.6 0.8 1.0

−
2

0
2

4

Fig 1. In each row, we depict the solutions of the nonlinear integral equations (2.1)–(2.2); on the left panels Φ1 and on the right
one Φ2, respectively. The dotted lines depict the explicit solution in the p = 2 case; the other lines depart from the Hilbertian
case by ∆p = 20% steps; the dashed lines depict the solutions for p = 1.8, 1.6, 1.4 and 1.2. Similarly, the solid lines depict the
numerical solutions for p = 2.2, 2.4, . . . , 3. In the first row, both marginals are Gaussian densities with equal parameter µ = 1/2
and σ2 = 10%, truncated and re-normalised so to have unit mass on [0, 1]. In the second row, the means are varied to µ = 1/3
on the left, and µ = 2/3 on the right. In the third row, g1 = 1 (uniform density).
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