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Abstract

Motivation: The advent of massive DNA sequencing technologies is producing a huge number of human single-
nucleotide polymorphisms occurring in protein-coding regions and possibly changing their sequences.
Discriminating harmful protein variations from neutral ones is one of the crucial challenges in precision medicine.
Computational tools based on artificial intelligence provide models for protein sequence encoding, bypassing data-
base searches for evolutionary information. We leverage the new encoding schemes for an efficient annotation of
protein variants.

Results: E-SNPs&GO is a novel method that, given an input protein sequence and a single amino acid variation, can
predict whether the variation is related to diseases or not. The proposed method adopts an input encoding com-
pletely based on protein language models and embedding techniques, specifically devised to encode protein
sequences and GO functional annotations. We trained our model on a newly generated dataset of 101 146 human
protein single amino acid variants in 13 661 proteins, derived from public resources. When tested on a blind set com-
prising 10 266 variants, our method well compares to recent approaches released in literature for the same task,
reaching a Matthews Correlation Coefficient score of 0.72. We propose E-SNPs&GO as a suitable, efficient and ac-
curate large-scale annotator of protein variant datasets.
Availability and implementation: The method is available as a webserver at https://esnpsandgo.biocomp.unibo.it.
Datasets and predictions are available at https://esnpsandgo.biocomp.unibo.it/datasets.
Contact: pierluigi.martelli@unibo.it
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Single-nucleotide polymorphisms (SNPs) are major sources of
human evolution. In many cases, these variations can be directly
associated with the onset of genetic diseases. Specifically, SNPs
occurring in protein-coding regions often lead to observable changes
in the protein residue sequence. Single amino acid variations (SAVs)
may have an impact at different levels, hampering protein structure,
function, stability, localization and interaction with other proteins
and/or nucleotides, hence setting the basis for the onset of patho-
logic conditions (Lappalainen and MacArthur, 2021; Vihinen, 2021
and references therein).

Public databases, such as HUMSAVAR (The UniProt Consortium,
2021) and ClinVar (Landrum et al., 2018), store a compendium of
known SAVs and provide, when available, information about the

variant clinical significance. However, clear associations to diseases are
still unknown for many SAVs, which substantially remain of Uncertain
Significance (US). Therefore, SAV annotation is an issue, and effective
computational tools are needed to provide large-scale annotation of
uncharacterized human variation data.

In the past years, several computational approaches have been
implemented, with the aim of annotating whether a protein vari-
ation is or not disease associated (Adzhubei et al., 2010; Calabrese
et al., 2009; Carter et al., 2013; Choi et al., 2012; Jagadeesh et al.,
2016; Li et al., 2009; Ng and Henikoff, 2001; Niroula et al., 2015;
Pejaver et al., 2020; Raimondi et al., 2017; Schwarz et al., 2010;
Yang et al., 2022). Methods like SIFT (Ng and Henikoff, 2001) or
PROVEAN (Choi et al., 2012) are based on the conservation ana-
lysis in multiple sequence alignments. More complex approaches
stand on different types of machine-learning frameworks. These
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include neural networks (Pejaver et al., 2020), random forests
(Carter et al., 2013; Li et al., 2009; Niroula et al., 2015; Raimondi
et al., 2017), gradient tree boosting (Jagadeesh et al., 2016; Yang
et al., 2022), support vector machines (SVMs) (Calabrese et al.,
2009) and naive Bayes classifiers (Adzhubei et al., 2010; Schwarz
et al., 2010). Each method is trained/tested on different datasets of
SAVs, either extracted directly from public resources like
HUMSAVAR (The UniProt Consortium, 2021) and/or ClinVar
(Landrum et al., 2018), or taking advantage of pre-compiled data-
sets of variations, like VariBench (Nair and Vihinen, 2013).
Different types of descriptors extract salient features of the protein
sequence and/or the local sequence context surrounding the variant
position, including physicochemical properties, sequence profiles,
conservation scores, predicted structural motifs and functional
annotations. SNPs&GO (Calabrese et al., 2009) firstly recognized
the importance of functional annotations for the prediction of vari-
ant pathogenicity and introduced the LGO feature, a score of associ-
ation between Gene Ontology (GO) (Ashburner et al., 2000)
annotations and the variant pathogenicity. The incorporation of the
LGO feature significantly improved the prediction performance of
SNPs&GO (Calabrese et al., 2009).

Recent developments in the field of deep learning focus on the
definition of new ways of representing protein sequences. Large-
scale protein language models (PLMs) are inspired and derived from
the natural language processing (NLP) field (Ofer et al, 2021). They
learn numerical vector representations of protein sequences, con-
taining important features that are reflected in the evolutionary con-
servation and in the sequence syntax (Bepler and Berger, 2021).
These numerical vectors are then adopted to encode protein se-
quence and/or individual residues in place of canonical, hand-
crafted features, such as physicochemical properties or evolutionary
information. These distributed protein representations emerge from
the application of learning models trained on large databases of se-
quence data (Bepler and Berger, 2021; Ofer et al., 2021).

Successful PLMs are routinely trained on databases composed of
hundreds of millions of unique sequences with hundreds of billions
of residues. Training is computationally demanding, routinely
requiring weeks or months of computations on high-performance
Tensor Processing Units (TPUs) and/or Graphical Processing Units
(GPUs) (Elnaggar et al., 2021; Rives et al., 2021). However, the ad-
vantage is that most of the computational cost is concentrated on
the training phase, and once models are trained they can be adopted
to embed new sequences with limited resources in terms of time,
memory and computational power.

Embeddings obtained with language models have been recently
employed for many different applications with great success, includ-
ing the prediction of protein function and localization (Littmann
et al., 2021; Stärk et al., 2021; Teufel et al. 2022), of protein contact
maps (Singh et al., 2022) and binding sites (Mahbub and Bayzid,
2022).

Several pre-trained language models currently exist in the litera-
ture (Alley et al., 2019; Asgari and Mofrad, 2015; Elnaggar et al.,
2021; Heinzinger et al., 2019; Rives et al., 2021; Strodthoff et al.,
2020), mainly differing in their specific architectures [autoregres-
sive, bidirectional, masked; see for review Bepler and Berger (2021)]
and in the datasets adopted for training.

Not limited to the encoding of protein sequence data, embedding
techniques are also applied to model the relationships existing with-
in more complex structures, such as graphs, networks, or biological
ontologies (Edera et al., 2022; Grover and Leskovec, 2016;
Kandathil et al., 2022; Perozzi et al., 2014; Zhong et al., 2019).

In this article, we attempt to fully exploit the power of language
models and embeddings for the prediction of variant pathogenicity
from the human protein sequence. On the methodological side, two
major contributions can be highlighted. Firstly, we adopt two differ-
ent and complementary embedding procedures, ProtT5 (Elnaggar
et al., 2021) and ESM-1v (Meier et al., 2021), to directly encode an
input variation without introducing any hand-crafted feature as pre-
viously done. Secondly, leveraging the idea introduced in
SNPs&GO (Calabrese et al., 2009), we explore a new way of encod-
ing functional annotations by adopting a model called Anc2Vec

(Edera et al., 2022), specifically designed for the embedding of GO
terms (Ashburner et al., 2000).

We trained an SVM using the above input encoding on a newly
generated dataset of 101 146 human disease-related and benign var-
iations obtained from the rational merging of data deposited in two
databases, HUMSAVAR (The UniProt Consortium, 2021) and
ClinVar (Landrum et al., 2018). The method is tested on an inde-
pendent, non-redundant blind set comprising 10 266 variations,
adopting stringent homology reduction and evaluation procedures.
Results obtained in a comparative benchmark and including one of
the most recent and effective methods (Pejaver et al., 2020), demon-
strate that our model performs at the level or even better than the
state-of-the-art (when available for comparison) reaching a
Matthews Correlation Coefficient (MCC) of 0.72. Based on an in-
put encoding derived solely from embedding models, our method is
fast: this makes it suitable for large-scale annotation of human
pathogenic variants.

We release our tool as a webserver at https://esnpsandgo.bio
comp.unibo.it.

2 Materials and methods

2.1 Dataset
We obtained the dataset of SAVs by merging information extracted
from two resources: HUMSAVAR (accessed on August 4, 2021),
listing all missense variants annotated in human UniProt/SwissProt
(The UniProt Consortium, 2021) entries, and ClinVar (accessed on
March 29, 2021), the NCBI resource of relationships among human
variations and disease phenotypes (Landrum et al., 2018).

Both databases classify the effect of SAVs into different classes:
Pathogenic or Likely Pathogenic (P/LP), Benign or Likely Benign (B/
LB) and of US. We retained only P/LP SAVs clearly associated with
the diseases catalogued in OMIM (Amberger et al., 2019) or in
MONDO (Shefchek et al., 2020). We collected also all the B/LB var-
iations and excluded SAVs labelled as US, somatic, or with contrast-
ing annotations of the effect.

Overall, the dataset consists of 13 661 protein sequences
endowed with 111 412 SAVs, including 43 895 P/LP SAVs in 3603
proteins and 67 517 B/LB SAVs in 13 229 proteins (Table 1, last
row).

For all proteins in the dataset, we extracted GO (Ashburner
et al., 2000) annotations from the corresponding entry in UniProt.
Overall, our dataset is annotated with 17 076 GO terms, including
11 476 Biological Process (BP), 3955 Molecular Function (MF) and
1645 Cellular Component (CC). The complete dataset is available
at https://esnpsandgo.biocomp.unibo.it/datasets.

2.1.1 Cross-validation procedure and generation of the blind test

set

To avoid biases between training and testing sets, we adopted a
stringent clustering procedure to generate cross-validation sets.
Firstly, we clustered protein sequences with the MMseqs2 program
(Steinegger and Söding, 2017), by constraining a minimum sequence
identity of 25% over a pairwise alignment coverage of at least 40%.
We used a connected component clustering strategy so that if two
proteins are clustered with a third one, they both end up in the same
set. In this way, we limit sequence redundancy between training and
testing sets, enabling a fair evaluation of the results. We selected
10% of the data to construct the blind test set for assessing the gen-
eralization performance of our approach and for benchmarking it

Table 1. The dataset of SAVs adopted in this study

Dataset No. of pathogenic

SAVs

No. of neutral

SAVs

No. of proteins

Training set 39 812 61 334 12 347

Blind test set 4083 6183 1314

Total 43 895 67 517 13 661
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with other popular methods available. The remaining 90% of the
dataset was further split into 10 equally distributed subsets that
were used in a 10-fold cross-validation procedure for optimizing the

input encoding and for fixing the model hyperparameters. We also
tried a 20–80% split (20% of the data for the blind test set and 80%

for training with the 10-fold cross-validation procedure) and
obtained a very similar performance. For this reason, we list results
corresponding to the 10% blind test. When performing cross-

validation, we took care of preserving the balancing of positive and
negative examples in each subset (Supplementary Table S1).

It is worth noticing that the blind test can share similarity with
proteins included in the training sets of the other benchmarked

methods.

2.2 General overview of the approach
Figure 1 depicts the architecture of E-SNPs&GO, including three

major blocks: an Input encoding, a Predictor and an Output. The in-
put consists of a human protein sequence and a SAV occurring at a

specific position along the sequence. In the input encoding phase,
the sequence and its variant are embedded with two different proce-
dures, ESM-1v (Meier et al., 2021) and ProtT5 (Elnaggar et al.,
2021), generating for each sequence 1280 and 1024 features, re-
spectively. In order to embed the functional protein annotation of

the wild-type protein, we adopt Anc2Vec (Edera et al., 2022), com-
puting three sets of 200 features corresponding to the different
subontologies.

In the predictor, the vector representation generated in the input
encoding is then processed using a principal component analysis

(PCA), which reduces the dimensionality of the input from 5208 fea-
tures to 2400. The output feeds a SVM classifier performing the
final labelling as Pathogenic (P/LP) or Benign (B/LB). A given input

variant is predicted as pathogenic when the SVM output score �0,
benign otherwise. A final calibration step allows to convert scores

into probabilities for a variant to be pathogenic. Details of the meth-
ods included in E-SNPs&GO, are listed in the following sections.

2.3 Input encoding: embeddings of protein sequence,

its variant and GO terms
2.3.1 Transformers for embedding of protein sequences and their

variants

Several prominent language models and corresponding embedding
generation schemes in NLP are available, and some of these have
been adapted to protein sequences to perform specific prediction
tasks (Bepler and Berger, 2021). Large-scale PLMs aim at learning a
numerical vector representation that allows reconstructing the input
sequence.

Among PLMs, transformer-based models (Vaswani et al., 2017)
aim to solve the problem of efficiently capturing long-distance inter-
actions in the sequence. Transformers are architectures that include
a self-attention mechanism to extract the context information from
the whole sequence (Vaswani et al., 2017). In general, a transformer
language model builds on top of an encoder–decoder architecture.
However, the different transformer-based PLMs only utilize either
the encoder or the decoder part. In this respect, transformer-based
PLMs can be classified in three different categories: (i) encoder-only
models use only the encoder part of the transformer accessing the
whole input sequence and are trained to reconstruct a somewhat
corrupted version of the input (e.g. masking random positions along
the sequence); (ii) decoder-only models (also called autoregressive
models) use only the decoder part accessing, at each position, all the
residues placed before the current one in the sequence and are usual-
ly trained to predict the next residue in the sequence; (iii) sequence-
to-sequence models use both the encoder and the decoder and are
trained to reconstruct a masked input sequence (Vaswani et al.,
2017).

The learned representation captures important features of the
proteins, including physicochemical, structural, functional and evo-
lutionary features (Bepler and Berger, 2021; Ofer et al., 2021). By
transfer learning, the embedded schemes are provided as input to
Predictor block (Fig. 1).

In this article, we adopt two different protein embedding
schemes, based on two different transformers models: ESM-1v
(Meier et al., 2021), an encoder-only model, and ProtT5 (Elnaggar

Fig. 1. General overview of the architecture of E-SNPs&GO. Inputs (wild-type sequence, variation and variation position) are in yellow. The architecture includes three major

blocks: an Input encoding, a Predictor and an Output. During the Input encoding, three embedding models are adopted to generate vector representations. The wild-type se-

quence (green) and the variant sequence (red) are modelled with ESM-1v (Meier et al., 2021) and ProtT5 (Elnaggar et al., 2021). The GO functional annotations (blue MF,

purple CC and pink BP) are modelled with Anc2Vec (Edera et al., 2022). The vectors within the dashed box (marked with different colors), representing the variation position

and the averaged (Avg) GO terms of the wild-type sequence, are then concatenated together to obtain a final representation consisting of 1280�2þ1024�2þ 200�3¼5208

features. This vector is fed to the Predictor, which includes a PCA to reduce the input dimensionality (from 5208 to 2400) and a SVM providing as a final output a binary clas-

sification into B/LB (negative class, Score <0) or P/LP (positive class, Score �0). We apply an Isotonic Regression (Calibration) to obtain a calibrated probability (A color ver-

sion of this figure appears in the online version of this article.)
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et al., 2021), a sequence-to-sequence model. The major difference
stands in the volume of the sequence datasets used for generating the
embedding schemes and in the adoption of different training proce-
dures. ESM-1v was trained on a single run using a dataset of 98 mil-
lion unique sequences extracted from UniRef90 (Suzek et al., 2015).
ESM-1v releases five models generated by training with five differ-
ent random seeds (Meier et al., 2021). Apparently, only a small dif-
ference in performance is obtained when the ensemble is compared
to a single model (Meier et al., 2021). Therefore, to reduce the com-
putational cost, we adopted only one model (the first one). ProtT5
(version XL U50) was trained using a two-step procedure: in a first
pass, training was performed using the large BFD database
(Steinegger et al., 2019; Steinegger and Söding, 2018), comprising
the whole UniProt as well as protein sequences translated from mul-
tiple metagenomic sequencing projects, and consisting of about 2.1
billion unique sequences. In the second pass, a fine-tuning of the
model was obtained using a smaller database derived from
UniRef50 (Suzek et al., 2015) and including 45 million unique
sequences.

2.3.2 Embedding of biological ontologies

The concept of embedding can be generalized to any kind of data
with different underlying structures, such as graphs or networks
(Grover and Leskovec, 2016; Perozzi et al., 2014). In particular, sev-
eral embedding models have been defined to provide a numerical
representation of nodes in ontologies (Chen et al., 2021; Zhong
et al., 2019). Here, we adopt Anc2Vec (Edera et al., 2022), a
method that learns a vector representation for GO terms, by preserv-
ing ancestor relationships.

Because the embedding is not context-dependent, we precom-
pute the vector representation for each possible GO term.

2.4 Predictor
2.4.1 Predictor input

For encoding variations, we firstly perform a full-sequence gener-
ation of embeddings using both the ESM-1v (Meier et al., 2021) and
the ProtT5 XL U50 (Elnaggar et al., 2021) models. Given a protein
sequence with L residues, this provides protein encodings of dimen-
sions L�1280 and L�1024, respectively. Sequence embeddings are
carried out independently on both the wild-type and the variant
sequence.

For a variation at position i in a protein sequence, we compute a
vector of 4608 features, including:

• 1280 features corresponding to ESM-1v embedding in position i

of the variated sequence.
• 1280 features corresponding to ESM-1v embedding in position i

of the wild-type sequence.
• 1024 features corresponding to ProtT5 (version XL U50) embed-

ding in position i of the variated sequence.
• 1024 features corresponding to ProtT5 (version XL U50) embed-

ding in position i of the wild-type sequence.

The ESM-1v embedding model constrains the maximal protein
length (L) to 1024 residues. For this reason, variations occurring on
longer sequences were encoded using a 201 long sequence window
centred on the variant position.

After this step, we extract all the GO terms annotated in the
UniProt entry of the wild-type protein carrying the variation.
Potential term redundancy is removed by retaining only leaf terms.
Terms from the three different GO sub-ontologies (MF, CC and BP)
are processed independently. Each annotated GO term is then
embedded as a vector of 200 features using the Anc2Vec model
(Edera et al., 2022). To obtain a single vector representation inde-
pendent of the number of terms of a given protein, we average all
the vector encodings (Fig. 1). Three final average vectors, one for
each GO sub-ontology, are concatenated obtaining a protein func-
tion encoding of 600 components.

The final variation encoding comprises 5208 features, obtained
by merging the local positional embedding (4608 features from
ESM-1V þ ProtT5 XL U50) described above and the Anc2Vec func-
tional encoding (600 features). Eventually, we encode the different
embeddings separately (see Section 3 and Table 2).

2.4.2 Model selection and implementation

The predictor includes two cascading components (Fig. 1): a PCA
for reducing the dimensionality of the input features and a binary
SVM with a Radial Basis Function (RBF) kernel, which performs the
variant classification into pathogenic or not. We optimized the
hyperparameters of both methods (such as the number of compo-
nents of PCA, the SVM cost parameter C and the gamma coefficient
of the RBF kernel) with a grid search procedure. A complete list of
hyperparameters tested and their optimal values are available in
Supplementary Table S2.

It is worth clarifying that, during both cross-validation and blind
testing, the execution of the PCA step is always computed on the
training set and then applied for projecting vectors of the testing set
in the reduced space.

All methods are implemented in Python3 using the scikit-learn
library (Pedregosa et al., 2011). ESM-1v and ProtT5 embeddings
are computed with the bio-embeddings package (Dallago et al.,
2021).

The complete machine-learning workflow is compliant with the
DOME recommendation checklist (Walsh et al., 2021), as reported
in Supplementary Table S3.

2.5 Output
The SVM adopted for classification computes a decision function
that represents the distance of the point mapping the input from the
discrimination boundary. We use this value to estimate the reliabil-
ity of the prediction, in terms of the probability of the input vari-
ation to be pathogenic (Fig. 1).

In a perfectly calibrated method, when a set of predictions scored
with probability P is tested on real data, we expect that the fraction
of true positives is exactly P. In this work, we adopt a procedure pre-
viously described (Benevenuta et al., 2021) to obtain a calibrated
probability that we provide in output alongside the predicted class.
In particular, we fit an Isotonic Regression (Niculescu-Mizil and
Caruana, 2005) in cross-validation and we use it to obtain a prob-
ability score on the blind test. Supplementary Figure S1 shows that
E-SNPs&GO output probabilities are very close to being perfectly
calibrated, more than other popular methods.

Keeping as a reference the probability of being P/PL, the
probability score (PP/PL) gives an integer Reliability Index from 0
(random prediction) to 10 (certain prediction) using the formula:

RI ¼ round 20� PP=LP � 0:5
�� ��� �

: (1)

2.6 Scoring indexes
We assess the performance with the following scores. P/LP varia-
tions are assumed to be the positive class, B/LB variations are the
negative class. In what follows, TP, TN, FP and FN are true positive,
true negative, false positive and false negative predictions,
respectively.

We compute the following scoring measures:

• Accuracy (Q2):

Q2 ¼
TPþ TN

TPþ TNþ FPþ FN
: (2)

• Precision:

Precision ¼ TP

TPþ FP
: (3)
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• Recall:

Recall ¼ TP

TPþ FN
: (4)

• F1-score, the harmonic mean of precision and recall:

F1 ¼ 2� Precision� Recall

Precisionþ Recall
: (5)

• Area under the receiver operating characteristic curve (ROC-

AUC).
• MCC:

MCC ¼ TP� TN� FP� FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FPÞ � ðTPþ FNÞ � ðTNþ FPÞ � ðTNþ FNÞ

p :

(6)

3 Results

3.1 Assessing the contribution of different input

encodings
To select the optimal input encoding, we performed different experi-
ments to test various combinations of input features. To this aim,
we trained in cross-validation several independent SVMþPCA mod-
els using different input features and using the MCC to score and se-
lect the optimal model.

GO terms provide global protein information. Their embedding
does not consider the specific variant position. If the prediction is
run considering only averaged embedded GO terms vector (Fig. 1),
the predictor performance is very low (MCC¼0.27, data not
shown). Different input encodings, corresponding to different pre-
dictors, perform differently (Table 2). The inclusion of GO embed-
dings in the final input is always beneficial, improving MCC by 2 or
3 percentage points in all cases (compare ESM-1v, ProtT5 and ESM-
1vþProtT5 with or without GO, respectively in Table 2).
Considering the two protein sequence embeddings, ProtT5 outper-
forms ESM-1v both with and without the additional GO informa-
tion. Most notably, the model trained on data from ProtT5 alone is
the most balanced, reaching equal precision and recall. Finally, the
concatenation of both sequence encodings and the GO embedding
provides the best performance (MCC¼0.69), leading to an increase
in precision without a corresponding decrease in recall.

Based on these results, we select the model trained with ESM-
1vþProtT5þGO as the optimal one.

3.2 Benchmark on the blind test set
We test our method adopting both a 10-fold cross-validation
procedure and an independent blind test set constructed to be
non-redundant with respect to the training dataset (see Section 2.1).
Table 3 lists the results. E-SNPs&GO obtains similar results in
cross-validation and blind test, making it very robust to generaliza-
tion. Concerning individual indexes, our method seems to be slightly
more precise than sensitive (compare Precision and Recall).

Table 3 includes also a comparative benchmark of our method
with other state-of-the-art tools, including our SNPs&GO
(Calabrese et al., 2009), SIFT (Ng and Henikoff, 2001), PolyPhen-2
(Adzhubei et al., 2010), PROVEAN (Choi et al., 2012) and
MutPred2 (Pejaver et al., 2020), one of the most recent and best-
performing approaches in the field. Methods are scored adopting
our blind test set (Section 2.1), ensuring a fair evaluation of the per-
formance of our method. However, this does not completely exclude
the presence of biases in the evaluation of the other tools (with the
exception of our SNPs&GO), since variations included in our blind
test may be present in the respective training sets, leading to poten-
tial overestimation of their performance.

In Table 3, it appears that in this benchmark our method is per-
forming at the state-of-the-art. Among tested approaches,
PROVEAN, SIFT and PolyPhen-2, reporting MCCs of 0.57, 0.53
and 0.50, respectively, are scoring lower than our previous
SNPs&GO (that achieves an MCC of 0.58). Our E-SNPs&GO and
MutPred2, score with significantly higher MCC values of 0.72 and
0.71, respectively. Noticeably the embedding procedure seems to
grasp all the properties extracted by an ensemble of different predic-
tors of functional, structural and physicochemical properties, such
as the one used by MutPred2 (including over 50 tools). Looking at
individual scoring measures, MutPred2 appears more sensitive while
our method reports a higher precision.

A detailed ablation study performed to evaluate the effect of the
GO terms on the prediction scores (Supplementary Table S4), indi-
cates that the CC sub-ontology slightly outperforms the others.

3.3 Prediction of variants of uncertain significance
We tested E-SNPs&GO on a dataset of 2588 proteins annotated
with 9165 variants of uncertain significance (VUS) extracted from
HUMSAVAR (accessed on May 12, 2022). Given that they are un-
certain, we cannot assess our performances on this dataset.
However, we can sample our predicted annotation in terms of
probability and reliability [Equation (6)]. Setting as a reference the
probability of being P/LP, Figure 2 shows the distribution of E-
SNPs&GO predictions over the whole VUS set as a function of
probability and reliability index. A total of 4537 variations are P/LP
(pathogenicity probability �0.5), while 4628 are B/LB

Table 2. Performance of different embedding schemes

Input encoding Q2 (%) Precision (%) Recall (%) F1-score (%) ROC-AUC (%) MCC

ESM-1v 82.4 (61.5) 80.4 (62.6) 77.0 (62.8) 78.6 (61.9) 81.6 (61.5) 0.64 (60.03)

ESM-1vþGO 83.3 (61.4) 81.7 (62.5) 78.1 (62.7) 79.8 (61.8) 82.6 (61.4) 0.66 (60.03)

ProtT5 83.0 (61.3) 79.8 (61.9) 80.0 (62.8) 79.9 (61.7) 82.6 (61.4) 0.65 (60.03)

ProtT5þGO 83.7 (61.1) 81.8 (61.9) 79.2 (62.5) 80.5 (61.5) 83.1 (61.3) 0.67 (60.02)

ESM-1vþProtT5 83.6 (61.4) 81.8 (62.3) 78.6 (62.9) 80.1 (61.8) 82.9 (61.5) 0.66 (60.03)

ESM-1vþProtT5þGO(-PCA) 83.1 (60.8) 81.0 (61.4) 78.0 (61.5) 79.4 (61.1) 82.8 (60.8) 0.66 (60.02)

ESM-1vþProtT5þGO(þPCA) 85.1 (60.9) 82.4 (61.7) 79.1 (61.7) 80.7 (61.1) 84.1 (60.9) 0.69 (60.02)

Note: We adopted a 10-fold cross-validation on a training set comprising 101 146 human variations (Table 1) for testing the effect of different input encodings

on the performances of the method. Standard deviation (between brackets) is computed over the 10 cross-validation sets and scoring indexes (defined in Section

2.6) are average values.

ESM-1v (2�1280¼ 2560 features).

ESM-1v þ GO (2�1280þ 3�200¼ 3160 features).

ProtT5 (2�1024¼2048 features).

ProtT5þGO (2�1024þ 3�200¼ 2648 features).

ESM-1v þ ProtT5 (2�1280þ 2�1024¼ 4608 features).

ESM-1v þ ProtT5þGO (�PCA) (2�1280þ 2�1024þ 3�200¼ 5208 features), no PCA used.

ESM-1v þ ProtT5þGO (þPCA) (2�1280þ 2�1024þ 3�200¼ 5208 features), PCA used to reduce dimensionality.
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(pathogenicity probability <0.5). The reliability index increases as
the probability goes towards 1 or 0 for P/LP and B/LB predictions,
respectively [Equation (6)]. In the dataset, 3210 P/LP and 2908 B/LB
predictions score with a reliability [RI, Equation (6)] �6, accounting
for the 67% of VUS. The remaining 33% is predicted with RI lower
than 6. For further validation, VUS predictions are available at
https://esnpsandgo.biocomp.unibo.it/datasets.

3.4 E-SNP&GO web server
E-SNPs&GO web server is available at https://esnpsandgo.biocomp.
unibo.it. The server allows users to submit up to 1000 variations per
single job. Upon job completion, the results can be visualized on the
web page and downloaded in either a tab-separated or a JSON file.

We measured the average E-SNPs&GO runtime by submitting
100 different jobs each including 1000 variations randomly selected
from the blind test set. In order to estimate the real execution time

for the end user, this experiment was performed in the machine host-
ing the web server, equipped with one AMD EPYC 7301 CPU with
12 cores, 48 GB of RAM and no GPU available. On average, we ob-
tain a running time of 12.4 6 4.4 s per variation, when submitting
the maximum allowed number of variations per job (1000 varia-
tions). This highlights a significant improvement over time-
consuming approaches using canonical features such as evolutionary
information extracted from multiple sequence alignments.

4 Conclusions

We introduce E-SNPs&GO, a method based on language models for
annotating whether a single-nucleotide variation is or is not P/LP.
We adopt two different protein embedding procedures based on
transformers, ESM-1v (Meier et al., 2021) and ProtT5 (Elnaggar
et al., 2021). Both embedding methods have been developed and
tested on protein variant related problems, such as deep mutational
scanning (Marquet et al., 2021; Meier et al., 2021). Here, we ad-
dress the problem of annotating pathogenic versus benign varia-
tions. To this aim, we also add an embedding scheme for functional
annotations of wild-type proteins, Anc2Vec (Edera et al., 2022), a
method that learns a vector representation for GO terms by preserv-
ing ancestor relationships. When benchmarked towards state-of-the-
art methods available, E-SNPs&GO well compares to the recently
developed MutPred2.0 (Pejaver et al., 2020), which includes as in-
put sequence features derived from some 50 predictors and outper-
forms previously published methods. Evidently, protein language
models learn all the relevant information that can be eventually
introduced as input by predictors addressing different tasks.

We prove that embedding models overpass the problem of hav-
ing as input thousands of different features in order to collect all the
relevant features for a reliable annotation of the human pathogenic
variations.
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Table 3. Benchmark of our and other top scoring methods available in literature

Input encoding Q2 (%) Precision (%) Recall (%) F1-score (%) ROC-AUC (%) MCC

E-SNPs&GOa Cross-validation 85.1 (60.9) 82.4 (61.7) 79.1 (61.7) 80.7 (61.1) 84.1 (60.9) 0.69 (60.018)

E-SNPs&GOa Blind test set 86.8 85.7 80.1 82.8 85.6 0.72

SNPs&GOa Blind test set 79.8 84.8 63.2 72.4 77.5 0.58

MutPred2.0b Blind test set 85.6 78.6 87.7 82.9 85.9 0.71

PROVEANc Blind test set 78.2 68.7 83.0 75.2 79.0 0.57

SIFTd Blind test set 74.4 62.7 88.0 73.2 76.7 0.53

PolyPhen-2e Blind test set 72.3 60.6 89.5 72.2 75.1 0.50

Note: The benchmark is performed on a test set comprising 10 266 human variations (Table 1, 10% of the total number of SAVs) that is blind with respect to

our training set. It could be redundant with respect to the training sets of other methods, leading to a possible overestimation of their performances. We also re-

port our performances in cross-validation for comparison. We increased the size of the blind test set up to 20% of the number of SAVs and the E-SNPs&GO

MCC score values were negligibly affected (0.5%, data not shown).
aE-SNPs&GO: this article; SNPs&GO (Calabrese et al., 2009).
bMutPred2.0 (Pejaver et al., 2020).
cPROVEAN (Choi et al., 2012).
dSIFT (Ng and Henikoff, 2001).
ePolyPhen-2 (Adzhubei et al., 2010).

Fig. 2. Distribution of predicted pathogenicity probabilities for the dataset of VUS.

The value 0.5 discriminates between B/LB and P/LP prediction. Probability values

close to either 0 or 1 correspond to prediction with a high reliability index

[Equation (1)]
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