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Average (bio)equivalence tests are used to assess if a parameter, like the mean
difference in treatment response between two conditions for example, lies
within a given equivalence interval, hence allowing to conclude that the con-
ditions have “equivalent” means. The two one-sided tests (TOST) procedure,
consisting in testing whether the target parameter is respectively significantly
greater and lower than some pre-defined lower and upper equivalence limits,
is typically used in this context, usually by checking whether the confidence
interval for the target parameter lies within these limits. This intuitive and
visual procedure is however known to be conservative, especially in the case of
highly variable drugs, where it shows a rapid power loss, often reaching zero,
hence making it impossible to conclude for equivalence when it is actually true.
Here, we propose a finite sample correction of the TOST procedure, the 𝛼-TOST,
which consists in a correction of the significance level of the TOST allowing to
guarantee a test size (or type-I error rate) of 𝛼. This new procedure essentially
corresponds to a finite sample and variability correction of the TOST procedure.
We show that this procedure is uniformly more powerful than the TOST, easy to
compute, and that its operating characteristics outperform the ones of its com-
petitors. A case study about econazole nitrate deposition in porcine skin is used
to illustrate the benefits of the proposed method and its advantages compared to
other available procedures.

K E Y W O R D S

bioequivalence, interval inclusion principle, scaled average bioequivalence, similarity test, two
one-sided test

1 INTRODUCTION

Equivalence tests, also known as similarity or parity tests, have gained significant attention during the past two decades.
They originated from the field of pharmacokinetics,1,2 where they are called bioequivalence tests and have numerous
applications in both research and production.3 They find their most common application in the manufacturing of generic
medicinal drugs, where, by proving that the generic version has a similar bioavailability to its well-studied brand-name
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counterpart, the manufacturer can considerably shorten the approval process for the generic drug.4 Moreover, equiva-
lence tests have attracted growing interest in other domains and for other types of purposes, such as in production when,
for example, the mode of administration is altered or when the production site is changed,5 or in the social and behavioral
sciences for the evaluation of replication results and corroborating risky predictions.6 Very recent literature reflects the
expanding use of equivalence tests across a growing range of domains. Examples include the investigation of the equiv-
alence of virtual reality imaging measurements by feature,7 of cardiovascular responses to stimuli by sex,8 of children
neurodevelopment,9 chemotherapy efficacy and safety by treatment,10 of post-stroke functional connectivity patterns by
patient group,11 of risk-taking choices by moral type,12 and of 2020 US presidential election turnout by political advertis-
ing condition.13 Review articles have also appeared, for example, in food sciences,14 in psychology,15 in sport sciences,16

and in pharmaceutical sciences.17

Equivalence testing implies defining an equivalence region within which the parameter of interest, such as the differ-
ence between outcome means measured under two conditions, would lie, for these conditions to be considered equivalent.
Indeed, when comparing two treatments, for example, differences in therapeutic effects that belong to the equivalence
region would typically be considered as negligible or irrelevant. This is different from standard equality-of-means hypoth-
esis tests in which the null and the alternative hypothesis are interchanged and the null hypothesis states that both means
are equal rather than equivalent.

Formally, a canonical form for the average equivalence problem consists of two independent random variables 𝜃 and
𝜎𝜈 having the distributions

𝜃 ∼
(
𝜃, 𝜎

2
𝜈

)
and

𝜈𝜎
2
𝜈

𝜎
2
𝜈

∼ 𝜒2
𝜈
, (1)

where 𝜃 and 𝜎2
𝜈

respectively denote the target equivalence parameter and its variance, depending on the number of the
degrees of freedom 𝜈 which is a function of the sample size and total number of parameters. This setting is very general. It
covers cases where, for example, the bioequivalence parameter corresponds to the difference in means of the (logarithm
of pharmacokinetic) responses between two experimental conditions, or to an element of the parameter vector of a (gen-
eralized) linear mixed effect model, like the difference between the slopes of two conditions in a longitudinal study. The
hypotheses of interest are given by

H0 ∶ 𝜃 ∉ Θ1 vs H1 ∶ 𝜃 ∈ Θ1 ∶= (𝛿L, 𝛿U), (2)

where 𝛿L and 𝛿U are known constants. Without loss of generality, it can be assumed that the equivalence limits are sym-
metrical around zero. In this case, c ∶= 𝛿U = −𝛿L so that Θ1 = (−c, c). Equivalence is typically investigated via the two
one-sided tests (TOST) procedure,18 consisting in testing whether the target parameter is respectively significantly greater
than−c and lower than c, with the test size, or type-I error rate, controlled at the significance (or nominal) level 𝛼, usually
chosen as 5%.19 More precisely, the TOST is level-𝛼, meaning that its size is smaller or equal to 𝛼 (see (4) in Section 2.1, for
its formal definition). The most common way of assessing equivalence is to use the interval inclusion principle (IIP) and
check whether the 100(1 − 2𝛼)% confidence interval (CI) for the target parameter falls within the equivalence margins
(−c, c).3,20 This strategy has been shown to lead to the same test decision as the TOST procedure if the CI is equi-tailed.21,22

However, it is well known that this procedure can be conservative as the size of the TOST can be considerably
lower than the (specified) significance level 𝛼. This induces a drop in power and therefore to a lower probability of
detecting truly equivalent mean effects as such. This problem is particularly noticeable in cases where 𝜎𝜈 is relatively
large. Such situations may occur, for example, when the sample size is determined using an underestimated stan-
dard deviation value obtained from a prior experiment, or with studies involving highly variable drugs and in which
the sample size that would be needed to achieve reasonable values for 𝜎𝜈 is unrealistic. For that purpose, Anderson
and Hauck23 proposed a test that has greater power than the TOST for situations where 𝜎𝜈 is relatively large. This
test, referred to here as the AH-test, can be liberal and therefore does not control the size.22 In some cases, it can
also lead to the equivalence declaration (ie, acceptance of equivalence through the rejection of the null hypothesis
in (2) at the 𝛼 level) when 𝜃, the target parameter of interest, falls outside the equivalence interval.18 Brown et al24

constructed an unbiased test that is uniformly more powerful than the TOST, however, it is computationally inten-
sive and its rejection region may exhibit rather irregular shapes in some cases.22 Berger et al22 therefore proposed a
smoothed version. These tests cannot be assessed using the IIP and the last two are difficult to interpret due to the use of
polar coordinates.25
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BOULAGUIEM et al. 835

In the specific context of average bioequivalence testing in replicated crossover designs26 for highly variable drugs, that
is, for cases with relatively large 𝜎𝜈 , regulatory authorities have recommended an alternative approach based on the linear
scaling of the bioequivalence limits according to the value of the standard deviation within the reference group, called
Scaled Average BioEquivalence (SABE),27 also referred to as Average BioEquivalence with Expanding limits (ABEL) in
some references,26,28,29 with the constraint that 𝜃 lies within the bioequivalence margins (−c, c). These recommendations
were issued by the European Medicines Agency (EMA) and the US Food and Drug Administration (FDA).20,30 The amount
of expansion is limited by the authorities, and several recent publications have shown that the size of the SABE can
be larger than the significance level 𝛼20,26,31-33 and therefore have proposed different ways to correct for it.28,34-36 These
corrections ensure that the size is smaller than or equal to 𝛼 and lead to acceptance regions that change more smoothly
with 𝜎𝜈 .

In this article, as an alternative to previous methods, we propose a finite sample correction of the TOST procedure
that simply consists in a correction of the TOST’s significance level to guarantee a size-𝛼 test when 𝜎𝜈 is known. This
correction is design-agnostic and can be used with parallel or (replicated) crossover designs, for example. The corrected
significance level 𝛼∗ is straightforward to compute and allows to define 100(1 − 2𝛼∗)% CIs used in the classical TOST.
Hence, the 𝛼-TOST essentially corresponds to a finite sample continuous variability correction of the TOST procedure,
that leads to an increased probability of declaring equivalence when it is true for large values of 𝜎𝜈 while maintain-
ing a size of exactly 𝛼 when 𝜎𝜈 is known. Indeed, the 𝛼-TOST is shown to be uniformly more powerful than the TOST
and, for small to moderate values of 𝜎𝜈 , to be nearly equivalent to the TOST with a comparable power as 𝛼∗ ≈ 𝛼 in
such cases. Since, in practice, 𝜎𝜈 needs to be estimated from the data, a straightforward estimator for 𝛼∗ is also pro-
posed. It is shown, through an extensive simulation study considering the canonical form defined in (1) and therefore
valid in a wide range of settings, that the estimator remains level-𝛼 and its size stays close to 𝛼. Our simulation study
also considers a version of the TOST that adjusts the equivalence limits 𝛿L and 𝛿U instead of the level, to guarantee a
size-𝛼 test and therefore referred to as the 𝛿-TOST. Our results show that the 𝛼-TOST is both more powerful and accu-
rate than the standard TOST and 𝛿-TOST, indicating that, when looking for a design-agnostic correction valid in general
settings, a correction on the level (𝛼-TOST) leads to better operating characteristics. A comparison of the performance
of these methods to the corrected SABE, that consists in an adjustment on both the equivalence bounds and the level,
is presented in Appendix E in a simple paired setting. More adequate and extensive comparisons, considering the dif-
ferent adjustments proposed by regulatory agencies and other authors, including variants such as the corrected SABE,
are needed in the specific case of average equivalence testing with replicated crossover designs and are left for further
research.

The article is organized as follows. The 𝛼-TOST is presented in Section 2 from a suitable formulation of the TOST.
Its statistical properties as well as a simple algorithm to compute 𝛼∗ are also provided. In Section 3, an extensive sim-
ulation study is used to compare the empirical performances of the 𝛼-TOST, 𝛿-TOST and standard TOST. In Section 4,
we consider a case study for which we apply the TOST and the 𝛼-TOST, as well as other available methods, in order
to showcase the advantages of our proposed design-agnostic approach. Finally, Section 5 discusses some potential
extensions.

2 EQUIVALENCE TESTING

In this section, we present the methodology for deriving a corrected statistical equivalence test. We first present the TOST
and its properties. We then define the 𝛼-TOST procedure through a natural correction of the TOST, derive its statistical
properties, propose an iterative procedure to compute the corrected level 𝛼∗ and show that this procedure is exponentially
fast. We also show that the 𝛼-TOST is uniformly more powerful than the TOST.

2.1 The TOST procedure

For testing the hypotheses in (2), the TOST uses the two following test statistics:

ZL ∶= 𝜃 + c
𝜎𝜈

and ZU ∶= 𝜃 − c
𝜎𝜈

,
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836 BOULAGUIEM et al.

where ZL tests for H01 ∶ 𝜃 ⩽ −c vs H11 ∶ 𝜃 > −c, and ZU tests for H02 ∶ 𝜃 ⩾ c vs H12 ∶ 𝜃 < c. At a significance level 𝛼, the
TOST therefore rejects H0 ∶= H01 ∪H02 (ie, 𝜃 ∉ Θ1) in favor of H1 ∶= H11 ∩H12 (ie, 𝜃 ∈ Θ1) if both tests simultaneously
reject their marginal null hypotheses, that is, if

ZL ⩾ t𝛼,𝜈 and ZU ⩽ −t𝛼,𝜈 ,

where t𝛼,𝜈 denotes the upper 𝛼 quantile of a t-distribution with 𝜈 degrees of freedom. The corresponding rejection region
of the TOST is given by

C1 ∶=
{
𝜃 ∈ R, 𝜎𝜈 ∈ R+

||| c ⩾ |||𝜃
||| + t𝛼,𝜈𝜎𝜈

}
. (3)

Consequently, equivalence cannot be declared with the TOST for all 𝜎𝜈 > 𝜎max ∶= c∕t𝛼,𝜈 , even for 𝜃 = 0 (see also Figure 6
of Section 4).

With respect to the TOST’s size, given 𝛼, 𝜃, 𝜎𝜈 , 𝜈, and c, the probability of declaring equivalence can be expressed as
follows37:

p(𝛼, 𝜃, 𝜎𝜈, 𝜈, c) ∶= Pr
(

ZL ⩾ t𝛼,𝜈 and ZU ⩽ −t𝛼,𝜈 ,
||| 𝛼, 𝜃, 𝜎𝜈, 𝜈, c

)

= Q𝜈

(
−t𝛼,𝜈 ,

𝜃 − c
𝜎𝜈

, 𝜆

)
− Q𝜈

(
t𝛼,𝜈 ,

𝜃 + c
𝜎𝜈

, 𝜆

)
, (4)

where 𝜆 ∶= c
√
𝜈

𝜎
𝜈
t
𝛼,𝜈

and Q𝜈(t, y, z) corresponds to a special case of Owen’s Q-function38 defined as

Q𝜈(t, y, z) ∶=
√

2𝜋

Γ
(

1
2
𝜈

)
2

1
2
(𝜈−2)∫

z

0
Φ

(
tx
√
𝜈

− y

)

x𝜈−1
𝜑(x)dx,

where 𝜑(x) and Φ(x) denote the probability and cumulative distribution functions of a standard normal distribution,
respectively.

Then, for given values of 𝛼, 𝜎𝜈 , and 𝜈, the TOST’s size is defined as the supremum of (4),39 and is given by

𝜔(𝛼, c, 𝜎𝜈, 𝜈) ∶= sup
𝜃 ∉ Θ1

p(𝛼, 𝜃, 𝜎𝜈, 𝜈, c) = p(𝛼, c, 𝜎𝜈, 𝜈, c) = Q𝜈

(
−t𝛼,𝜈 , 0, 𝜆

)
− Q𝜈

(
t𝛼,𝜈 ,

2c
𝜎𝜈

, 𝜆

)
. (5)

We can then deduce that the TOST is level-𝛼, by noting that, for 𝜎𝜈 > 0, we have

𝜔(𝛼, c, 𝜎𝜈, 𝜈) < Q𝜈

(
−t𝛼,𝜈 , 0, 𝜆

)
=

√
2𝜋

Γ
(

1
2
𝜈

)
2

1
2
(𝜈−2)∫

𝜆

0
Φ

(

−
t𝛼,𝜈x
√
𝜈

)

x𝜈−1
𝜑(x)dx

<

√
2𝜋

Γ
(

1
2
𝜈

)
2

1
2
(𝜈−2)∫

∞

0
Φ

(

−
t𝛼,𝜈x
√
𝜈

)

x𝜈−1
𝜑(x)dx = Pr

(
T𝜈 ⩽ −t𝛼,𝜈

)
= 𝛼, (6)

where T𝜈 denotes a random variable following a t-distribution with 𝜈 degrees of freedom, so that

lim
𝜎
𝜈
→ 0

𝜔(𝛼, c, 𝜎𝜈, 𝜈) = 𝛼.

Thus, while the TOST is indeed level-𝛼, it actually never achieves a size of 𝛼, except in the theoretical case of 𝜎𝜈 = 0,
as already highlighted by several authors.36 When 𝜎𝜈 is small, the difference between the size and 𝛼 is marginal, but
as 𝜎𝜈 approaches or exceeds c∕t𝛼,𝜈 , this difference increases, leading to a high probability of the TOST failing to detect
equivalence when it exists. As a solution to this issue, we suggest an alternative approach, the 𝛼-TOST, that corrects the
size of the TOST for a large range of values of 𝜎𝜈 and still allows to assess equivalence by means of confidence intervals,
as depicted in Figure 5 of Section 4.
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BOULAGUIEM et al. 837

2.2 The 𝜶-TOST

A corrected version of the TOST can theoretically be constructed by adjusting the significance level and using 𝛼∗ instead
of 𝛼 in the standard TOST procedure, where

𝛼
∗ ∶= 𝛼∗(𝜎𝜈) = argzero

𝛾∈[𝛼,0.5)
[𝜔(𝛾, c, 𝜎𝜈, 𝜈) − 𝛼] , (7)

with 𝜔(𝛾, c, 𝜎𝜈, 𝜈) defined in (5). The dependence of 𝛼∗ on 𝛼 and 𝜈 is omitted from the notation as these quantities are
known. A similar type of correction was also used to amend the significance level of the SABE procedure by Labes
and Schütz28 and Ocaña and Muñoz35 (see also Palmes et al40 for power adjustment). However, in these cases, the
corrected significance level was reduced (instead of increased like in (7)) so that the size does not exceed the sig-
nificance level of 𝛼. The aim of these corrections is therefore not the same as the one proposed here. Furthermore,
the size of the 𝛼-TOST is guaranteed to be exactly 𝛼 when 𝜎𝜈 is known, which is not the case for these competing
methods.

In Appendix A, we demonstrate that the existence of 𝛼∗ relies on a simple condition that is satisfied in most settings
of practical importance. In particular, this requirement can be translated into a maximal value for the estimated standard
error 𝜎𝜈 , that is 𝜎𝜈 < 2c

Φ−1(𝛼+0.5)
. Moreover, since, 𝛼∗(𝜎𝜈) is a population size quantity as it depends on the unknown quantity

𝜎𝜈 , a natural estimator for its sample value is given by

𝛼
∗ ∶= 𝛼∗(𝜎𝜈) = argzero

𝛾∈[𝛼,0.5)

[
𝜔(𝛾, c, 𝜎𝜈, 𝜈) − 𝛼

]
. (8)

Hence, in practice, based on the (estimated) corrected significance level 𝛼∗, the 𝛼-TOST procedure rejects the
non-equivalence null hypothesis in favor of the equivalence one at the significance level 𝛼, if ZL > t1−𝛼∗,𝜈 and ZU <

−t1−𝛼∗,𝜈 . In Appendix B, we study the asymptotic properties of 𝛼∗ and show that 𝛼∗ = 𝛼∗ + op
(
𝜈
−1). Informally, this

result implies that the uncertainty associated to 𝛼∗ is (asymptotically) negligible compared to the uncertainty associ-
ated to 𝜃 and 𝜎𝜈 as these terms have slower convergence rates in that 𝜃 = 𝜃 + p(𝜈−1∕2) and 𝜎𝜈 = 𝜎𝜈 + p(𝜈−1). This
result also suggests that the 𝛼-TOST procedures based on 𝛼∗ or on 𝛼∗ are expected to provide very similar finite sample
performances.

In Section 3, we consider an extensive Monte Carlo simulation study to compare the empirical performances of differ-
ent methods when 𝜎𝜈 needs to be estimated. For the 104 simulation settings we considered (ie, 100 values for 𝜎𝜈 and 100
for 𝜈 covering most combinations of interest, see Simulation 2 in Table 1), we find that the empirical size of the 𝛼-TOST is
generally closer to the nominal level 𝛼 in comparison to the other methods (see Figure 2 in Section 3). We also find that
in less than 1% of the settings, the 𝛼-TOST procedure can be slightly liberal, with a maximal empirical size of 0.05311 (see
Figure D3 in Appendix D). However, this behavior can mostly be explained by the randomness associated to our large
scale simulation.

The corrected significance level 𝛼∗ can easily be computed using the following iterative approach. At iteration k, with
k ∈ N, we define

𝛼
∗(k+1) = 𝛼 + 𝛼∗(k) − 𝜔

(
𝛼
∗(k)
, c, 𝜎𝜈, 𝜈

)
, (9)

with𝜔(𝛼, c, 𝜎𝜈, 𝜈) given in (5) and where the procedure is initialized at 𝛼∗(0) = 𝛼. This simple iterative approach converges
exponentially fast to 𝛼∗ as it can be shown that

|||𝛼
∗(k+1) − 𝛼∗||| <

1
2

exp(−bk),

for some positive constant b (see Appendix C for more details).
Finally, since the conclusion of 𝛼-TOST considers an interval computed using a smaller value than t𝛼,𝜈 compared to

the TOST, the 𝛼-TOST rejection interval is necessarily larger than its TOST counterpart as 𝛼∗ > 𝛼. This implies that the
𝛼-TOST is uniformly more powerful than the TOST, and explains cases like the one encountered in the porcine skin case
study presented in Section 4, in which equivalence is declared using the 𝛼-TOST but not with the TOST (which has an
empirical power of zero given 𝜎𝜈).
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838 BOULAGUIEM et al.

T A B L E 1 Parameter values used in each simulation, where c denotes the tolerance limit, 𝜈 the number of degrees of
freedom, 𝜃 the target parameter and 𝜎

𝜈
its standard deviation, 𝛼 the target significance level and B the number of Monte Carlo

samples per simulation.

3 SIMULATION STUDY

In this section, we conduct an extensive Monte Carlo simulation study with parameters settings per simulation reported
in Table 1. Simulations 1 to 3, performed under the canonical form defined in (1) and therefore valid in a wide range of
settings, assess the empirical performances of the 𝛼-TOST and compare them to the ones of the standard TOST and 𝛿-TOST
methods, where the latter, defined below, considers a correction on the equivalence limits rather than on the level to reach
a size of 𝛼. Simulation 4, presented in Appendix E, investigates the empirical performances of these methods with the
ones of the design-specific SABE and corrected SABE, where the latter consists in an adjustment on both the level and the
equivalence limits. In that simulation, we consider a paired design setting that is closely related to the example considered
in our case study and that allows us to estimate the within-subject variability of the reference treatment required by
SABE-like methods. All simulations consider a target significance level of 5%, a value of c equal to log(1.25) and 105 Monte
Carlo samples per configuration.

Formally, the 𝛿-TOST is defined as follows

𝛿
∗ ∶= 𝛿∗(𝜎𝜈) = argzero

𝛿∈[c,∞)
[𝜔(𝛼, 𝛿, 𝜎𝜈, 𝜈) − 𝛼] . (10)

Using the same arguments as in Appendix A, we can easily demonstrate that a unique solution always exists, regardless
of the value of the standard error for the 𝛿-TOST. However, an exponentially fast iterative algorithm cannot be used to
find the solution for this method. This highlights an important practical advantage of the 𝛼-TOST over the 𝛿-TOST and,
to a larger extent, over the corrected SABE, which relies on both Monte Carlo integration and numerical optimization
procedures to define its correction (see Appendix E).

In our simulations, the empirical performances of the TOST, 𝛼-TOST and 𝛿-TOST are defined using the following
steps:

1. Simulation: for a given Monte Carlo sample b = 1, … ,B:
(a) simulate a value for 𝜃b ∼ (𝜃, 𝜎𝜈) given the values 𝜃 and 𝜎𝜈 of interest,
(b) simulate a value for t = 𝜈𝜎

2
𝜈

𝜎
2
𝜈

∼ 𝜒2
𝜈

and set 𝜎𝜈,b =
√

t𝜎2
𝜈
∕𝜈.

2. Finite sample adjustments: for a given Monte Carlo iteration b = 1, … ,B:
(a) 𝛼-TOST:
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BOULAGUIEM et al. 839

(i) compute 𝛼∗b using (the algorithm associated to) (7) with 𝜎𝜈,b,
(ii) compute t

𝛼
∗
b ,𝜈

.

(b) 𝛿-TOST: compute 𝛿∗b using (10) with 𝜎𝜈,b.
3. Empirical probability of declaring equivalence:

(a) TOST:

empirical probability = 1
B

B∑

b=1
𝜂

(
c ⩾ |𝜃b| + t𝛼,𝜈𝜎𝜈,b

)
,

where 𝜂(⋅) denote the indicator function with 𝜂(A) = 1 if A is true and zero otherwise,
(b) 𝛼-TOST: same as the TOST in Step 3(a) but replacing t𝛼,𝜈 by t

𝛼
∗
b ,𝜈

,
(c) 𝛿-TOST: same as the TOST in Step 3(a) but replacing c by 𝛿∗b.

Simulation 1 investigates the probability of declaring equivalence for varying values of 𝜃 allowing to study both the
power and the size of each methods for combinations of selected values of 𝜈 and 𝜎𝜈 . Simulation results are presented in
Figure 1, which shows, for each method of interest, the empirical probability of declaring equivalence as a function of 𝜃
for different combinations of values of 𝜈 (rows) and 𝜎𝜈 (columns). For small values of 𝜎𝜈 , the empirical performance of
all methods are similar. For moderate to large values of 𝜎𝜈 , we can note that the TOST is conservative, with an empirical
size far smaller than the nominal level 𝛼 = 5% when 𝜃 = c, and that it quickly reaches an empirical power of 0 for large
values of 𝜎𝜈 . On the other hand, the 𝛼-TOST and 𝛿-TOST have a higher power throughout, are generally size-𝛼 but are
a bit conservative for large values of 𝜎𝜈 and relatively small values of 𝜈. This deviation from the nominal level 𝛼 for the
𝛼-TOST and 𝛿-TOST is due to the estimation error induced by using 𝜎𝜈 instead of 𝜎𝜈 to construct an adjustment to the
TOST. However, our simulation results confirm that such adjustment, either on the level or the equivalence bounds, con-
siderably improves both the size and power in finite samples, especially with larger 𝜎𝜈 where it prevents it from becoming
0. Moreover, this simulation suggests that the 𝛼-TOST outperforms the 𝛿-TOST, indicating that an adjustment on the level
provides both a more accurate and a more powerful test than an adjustment on the equivalence bounds.

Simulations 2 and 3, respectively performed with 𝜃 = log(c) and 𝜃 = 0, investigate the empirical size and power for 104

settings defined as combinations of 100 values of 𝜈 and 100 values of 𝜎𝜈 chosen to cover most cases of practical interest.
Figures D1,D2 and D3 in Appendix D respectively show the results of Simulation 2 for the standard TOST, 𝛼-TOST and
𝛿-TOST. Each figure consists in a heatmap displaying the empirical size, computed by replacing 𝜎𝜈 and 𝜃 by realizations
of their random variables in (1) to reproduce the parameter estimation process, for all combinations of values of 𝜈 and 𝜎𝜈
of interest. Figure D1 shows that the TOST is size-𝛼 only for relatively small values of 𝜎𝜈 (below 0.09), and that its size
decreases abruptly as 𝜎𝜈 increases to reach 0. We can note that the value of 𝜈 does not seem to have an important effect
on the size of the TOST. In comparison, Figures D2 and D3 show that both the 𝛿-TOST and 𝛼-TOST are size-𝛼 for a larger
number of combinations of values for 𝜎𝜈 and 𝜈 and that the probability of being size-𝛼 increases with 𝜈 for a given value
of 𝜎𝜈 . A comparison of Figures D2 and D3 shows that the 𝛼-TOST is both more powerful and more accurate than the
𝛿-TOST overall, a conclusion in agreement with results of Simulation 1. A look at the proportion of configurations with
an empirical size significantly greater than 𝛼—as assessed by a two-sided binomial exact test at the 1% level performed on
the results obtained on the 105 Monte Carlo samples per setting—shows that the 𝛼-TOST procedure is slightly liberal in
0.9% of the configurations considered in Simulation 2, with a maximal empirical size of 0.05311, compared to 0.0528 for
the TOST and 𝛿-TOST. This behavior can largely be attributed to the randomness inherent to our large-scale simulation.

Figure 2 summarizes the results of Simulation 2 by displaying, for each method of interest, a histogram of the
empirical sizes obtained over the 104 configurations considered in the simulation. A comparison of these histograms
clearly shows that the 𝛼-TOST has an empirical size closer to the nominal level 𝛼 for a larger number of settings com-
pared to the 𝛿-TOST and standard TOST, which shows a large clump-at-zero (31.5%) corresponding to configurations
with a power of 0.

The heatmaps in Figures D4–D6 in Appendix D show the results of Simulation 3 by displaying the power of each
method for the same configurations as considered in Simulation 2. The results show that, over our 104 configurations
of interest, the 𝛼-TOST method is the most powerful, followed by the 𝛿-TOST method and then the standard TOST. As
expected, the power of all methods goes to one asymptotically as 𝜎𝜈 → 0 (see Appendix B for details). Figure 3 summarizes
the results of Simulation 3 by displaying, for each pair of methods, the histogram of their differences in power for all
configurations. The results show that the 𝛼-TOST is overall the most powerful, followed by the 𝛿-TOST then by the TOST.
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840 BOULAGUIEM et al.

F I G U R E 1 Empirical probability of declaring equivalence (y-axis) as a function of 𝜃 (x-axis), 𝜈 (columns), and 𝜎
𝜈

(rows), for the TOST
(pink circles), the 𝛼-TOST (green triangles), and the 𝛿-TOST (blue squares). Refer to the settings of Simulation 1 in Table 1 for details. In all
configurations considered here, 𝛼-TOST shows a similar or greater power than the TOST and 𝛿-TOST while remaining more accurate in
terms of empirical size.

In summary, the simulation studies considered here suggests that a correction of the TOST provides more power
and better accuracy in finite samples, with considerably large improvements when 𝜎𝜈 is large. Moreover, the 𝛼-TOST
appears to provide a better performance than the 𝛿-TOST, indicating that an adjustment on the level rather than on the
equivalence bounds is preferable to enhance sample properties of equivalence tests. Results of Simulation 4, considering a
paired study and additional correction methods, also suggest that adjusting the level of the TOST leads to better operating
characteristics over competing methods, including the corrected SABE. More adequate and extensive simulations are
needed though to compare these methods in the design-specific context required by regulatory agencies when assessing
bioequivalence. Such simulations should consider the different adjustments proposed by regulatory agencies and are left
for further research.

Finally, note that the idea of improving the size of the TOST is not new as Cao and Mathew41 have proposed a correction
based on the adjustment of the critical values defined as a non-increasing continuous function of the sample standard
deviation to reduce the conservatism of the TOST. More particularly, they defined adjustment constants for specific values
of 𝜎𝜈 and used linear interpolation for the adjacent values. The lower panel of Figure F1 in Appendix F, compares the
critical values obtained with the method of Cao and Mathew to the ones obtained by the 𝛼-TOST for different values
of 𝜎𝜈 and 𝜈. We can note that, for all values of 𝜈 considered here and for values of 𝜎𝜈 above 0.1, the corrected critical
values41 correspond to a piecewise version of the critical values obtained with the 𝛼-TOST when 𝜈 is large. Therefore,
their correction appears to be an approximation of the 𝛼-TOST, evaluated asymptotically, that is, at 𝜈 →∞.
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BOULAGUIEM et al. 841

F I G U R E 2 Histograms of the empirical size (%) of the TOST (first line), the 𝛿-TOST (second line), and 𝛼-TOST (third line), computed
from the results displayed in Figures D1–D3 in Appendix D, respectively. Overall, the 𝛼-TOST maintains a size of 𝛼 for a larger proportion of
parameters’ in comparison to the other methods.

F I G U R E 3 Histograms of empirical power differences (%) for each pair combinations of the TOST, the 𝛿-TOST, and 𝛼-TOST, computed
from the results displayed in Figures D1–D3 in Appendix D. Overall, the 𝛼-TOST is the most powerful, followed by the 𝛿-TOST then by the
TOST.
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842 BOULAGUIEM et al.

4 EVALUATION OF BIOEQUIVALENCE FOR ECONAZOLE NITRATE
DEPOSITION IN PORCINE SKIN

Quartier et al42 studied the cutaneous bioequivalence of two topical cream products: a Reference Medicinal Product
(RMP) and an approved generic containing econazole nitrate (ECZ), an antifungal medication used to treat skin infec-
tions. The evaluation of the putative bioequivalence is based on the determination of the cutaneous biodistribution profile
of ECZ observed after application of the RMP and the generic product. The dataset we analyse in this section consists
in 17 pairs of comparable porcine skin samples on which measurements of ECZ deposition were collected using both
creams. Figure 4 presents the data, collected via a simple paired design, in which each pig delivered two skin samples
respectively treated with one of the two drugs of interest. Such designs, possibly attractive for studies not involving regu-
lators, are stricto sensu incompatible with the use of design-specific SABE-like corrections26 and therefore interesting to
showcase the advantages of our design-agnostic method. In order to assess bioequivalence of both topical treatments, the
TOST and 𝛼-TOST procedures, based on a paired t-test statistic considering ECZ levels on the logarithmic scale, are con-
ducted using c = 𝛿U = −𝛿L = log(1.25) ≈ 0.223. Although the way to define bioequivalence limits for topical products is
still being discussed,43 we believe the chosen limits to be reasonable.42

Figure 5 shows the CIs corresponding to both approaches. The 100(1 − 2𝛼)% TOST confidence interval for the mean
of the paired differences in ECZ levels equals [−0.204, 0.250], given that 𝜃 = 0.023, 𝜎𝜈 = 0.134, 𝜈 = 16, and 𝛼 = 5%. As
its upper bound exceeds the upper bioequivalence limit, the classical TOST procedure does not allow us to conclude
that the topical products are (on average) equivalent. To reach a size of 5%, the 𝛼-TOST procedure uses in this case a
significance level of 𝛼∗ = 7.48% leading to a confidence interval of [−0.166, 0.211]. This CI being strictly embedded within
the (−c, c) bioequivalence limits, the 𝛼-TOST procedure allows to declare bioequivalence, hence illustrating the increase
in power induced by the increased significance level considered to reach a size of 5%. Note that in this case, given 𝜎2

𝜈
and

𝜈, the empirical power of the TOST is zero (regardless of 𝜃) as t0.05,16 𝜎𝜈 > c, where t𝛼,𝜈 denotes the upper quantile 𝛼 of a
t-distribution with 𝜈 degrees of freedom; see Appendix E. Since the 𝛼-TOST guarantees a size of 𝛼 (for all sample sizes),
the conclusion brought in by the 𝛼-TOST is more trustworthy.

To gain additional insight into the benefits conferred by our approach, we also compare the characteristics and con-
clusion of the 𝛼-TOST to other available methods in Table 2 as well as their rejection region as a function of 𝜃 and 𝜎𝜈 in
Figure 6. We considered here the AH-test, the TOST, 𝛼-TOST and 𝛿-TOST. The AH-test does not satisfy the IIP, but repre-
sents a good proxy for the other tests without this property and is relatively easy to implement. Among the level-𝛼 tests,
the 𝛼-TOST is the only one leading to bioequivalence declaration.

Figure 6 shows the combinations of values for 𝜃 and 𝜎𝜈 leading to bioequivalence declaration in the setting of the
porcine skin dataset, that is, with c = log(1.25) and 𝜈 = 16. The rejection regions of the different methods almost perfectly

F I G U R E 4 Econazole nitrate deposition levels (y-axis) measured using the reference and generic creams (x-axis) on 17 pairs of
comparable porcine skin samples (lines).
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BOULAGUIEM et al. 843

F I G U R E 5 100(1 − 2𝛼)% and 100(1 − 2𝛼∗)% confidence intervals of the TOST and 𝛼-TOST procedures for the mean of the paired log
differences in ECZ levels obtained with the reference and generic creams with 𝛼 = 5% and 𝛼∗ = 7.48%. The dashed vertical lines correspond
to the used lower and upper bioequivalence limits with c = log(1.25). Comparison of the CI of each approach to the bioequivalence limits
leads to the declaration of bioequivalence for the 𝛼-TOST procedure and not for the classic TOST approach due to its CI upper limit exceeding
c (hatched area).

T A B L E 2 Bioequivalence declaration (yes/no) for the econazole nitrate deposition in porcine skin data using the AH-test, TOST,
𝛼-TOST, and 𝛿-TOST.

Method IIP Level-𝜶 Size-𝜶 Bioequivalence declaration

AH-test No No No Yes

TOST Yes Yes No No

𝛼-TOST Yes Yes∗ Yes∗ Yes

𝛿-TOST Yes Yes∗ Yes∗ No

Note: The estimated parameter values are 𝜎
𝜈
= 0.134, 𝜈 = 16, 𝜃 = 0.023 and 𝛼 = 5%. The columns IIP, Level-𝛼 and Size-𝛼, respectively indicate if each method

satisfies the IIP, if its size is bounded by 𝛼 and if its size is exactly 𝛼. The symbol ∗ specifies that the property is valid when the standard error 𝜎
𝜈

is known.

F I G U R E 6 Bioequivalence test rejection regions as a function of 𝜃 (x-axis) and 𝜎
𝜈

(y-axis) per method considered in Table 2 (colored
areas) showing combinations of values for 𝜃 and 𝜎

𝜈
leading to equivalence declaration in the setting of the porcine skin dataset, that is, with

c = log(1.25) and 𝜈 = 16. The rejection regions of the different methods almost perfectly overlap for values of 𝜎
𝜈

below 0.09 and differ for
larger values. Regardless of 𝜎

𝜈
, the TOST cannot declare bioequivalence for large values of 𝜎

𝜈
(greater than approximately 0.12 here) and the

𝛿-TOST for approximately 𝜎
𝜈
> 0.17, while the 𝛼-TOST and AH-test can, with the rejection region of the 𝛼-TOST embedded in the too liberal

one of the AH-test. The symbol
⨉

represents the analysed data set in the acceptance/rejection regions where 𝜃 = 0.023 and 𝜎
𝜈
= 0.134.
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844 BOULAGUIEM et al.

overlap for values of 𝜎𝜈 below 0.09 and differ for larger values. Regardless of 𝜎𝜈 , the TOST cannot declare bioequivalence
for large values of𝜎𝜈 (greater than approximately 0.12 here) and the 𝛿-TOST for approximately𝜎𝜈 > 0.17, while the 𝛼-TOST
and AH-test can, with the rejection region of the 𝛼-TOST embedded in the too liberal one of the AH-test. In Figure 6, the
symbol

⨉
shows the values of 𝜃 and 𝜎𝜈 obtained in the porcine skin dataset. These coordinates lead to the declaration of

(average) bioequivalence of the two topical products with the AH-test and 𝛼-TOST procedures, the later one only being
size-𝛼.

5 DISCUSSION

The canonical framework treated in this article is given in (1) and therefore concerns differences that can be assumed to
be normally distributed (in finite samples), with a known finite sample distribution for 𝜎𝜈 . This framework covers a quite
large spectrum of data settings, such as the standard two-period crossover experimental design,44 and could be extended
to include covariates to possibly reduce residual variance. Extensions to non-linear cases, such as for example binary
outcomes,45-49 would follow the same logic, but would require a specific treatment due to the nature of the responses and
to the use of link functions. Such extensions also deserve some attention but are left for further research.

For sample size calculations, we could, in principle, proceed with the 𝛼-TOST, for given values of c, 𝜃, and 𝜎𝜈 . However,
when considering high levels of power, the correction is negligible and we have 𝛼∗ ≈ 𝛼 as shown in Section 3, so that the
sample size can be computed using the TOST, as implemented in standard packages. The 𝛼-TOST approach would then
be used to assess equivalence and show its benefits when the observed value of 𝜎𝜈 is unexpectedly large compared to the
one considered in the sample size calculation either due to (lack of) chance or to an underestimated value obtained from
a prior experiment.
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APPENDIX A. EXISTENCE OF 𝜶
∗

In this section, we state the conditions for 𝛼∗, defined in (7), to be a singleton. Fixing 𝛼, c, 𝜎𝜈 , and 𝜈, we simplify our
notation so that 𝜔(𝛾) ∶= 𝜔(𝛾, c, 𝜎𝜈, 𝜈) and let

 ∶=
{

x ∈ [𝛼, 0.5) |||𝜔(x) > 0
}
.

The function 𝜔(𝛾), defined in (5), is continuously differentiable and strictly increasing in 𝛾 in. From (6), we have that
𝛼 ⩾ 𝜔(𝛼). Thus, it is sufficient to show that 𝛼 < 𝛼max ∶= lim𝛼→0.5− 𝜔(𝛼), where 𝛼 → 0.5− denotes the limit from below 0.5,
to ensure that 𝛼∗ is a singleton. Let T𝜈,𝛿 denote a random variable following a non-central t-distribution with 𝜈 degrees of
freedom and noncentrality parameter 𝛿 = 2c∕𝜎𝜈 . Then, we have

𝛼max = lim
𝛾→0.5−

𝜔(𝛾) = lim
𝛾→0.5−

{

Q𝜈

(

−t𝛾,𝜈 , 0,
c
√
𝜈

𝜎𝜈t𝛾,𝜈

)

− Q𝜈

(

t𝛾,𝜈 , 𝛿,
c
√
𝜈

𝜎𝜈t𝛾,𝜈

)}

= Pr
(

T𝜈,0 ⩽ 0
)
− Pr
(

T𝜈,𝛿 ⩽ 0
)
= 0.5 − Pr

(
T𝜈,𝛿 ⩽ 0

)
= 0.5 − Φ(−𝛿) = Φ(𝛿) − 0.5.

Thus, the condition 𝛼 < 𝛼max can be expressed as follows

Φ(𝛿) − 0.5 > 𝛼 ⟺ 2c
𝜎𝜈

> Φ−1(𝛼 + 0.5) ⟺ 𝜎𝜈 <

2c
Φ−1(𝛼 + 0.5)

.

Therefore, the condition 𝜎𝜈 < 2c
Φ−1(𝛼+0.5)

implies that 𝛼 < 𝛼max and consequently that 𝛼∗ is a singleton. The existence of 𝛼∗

follows the same argument but replacing 𝜎𝜈 by 𝜎𝜈 in our condition.

APPENDIX B. ASYMPTOTIC PROPERTIES

In this section, we study the convergence rates of 𝜃, 𝜎2
𝜈
, and 𝛼∗. In particular, we show that

𝜃 = 𝜃 + p
(
𝜈
−1∕2)

, (B1)
𝜎𝜈 = 𝜎𝜈 + p

(
𝜈
−1)

, (B2)
𝛼
∗ = 𝛼∗ + op

(
𝜈
−1)

. (B3)

These results are based on the following standard regularity conditions. First, there exists a positive constant 𝜎2 such that
𝜎

2 ∶= lim𝜈→∞ 𝜈𝜎
2
𝜈
. Second, the sequences

{
𝜕

𝜕𝛼

𝜔(𝛼, c, 𝜎𝜈, 𝜈)
}

𝜈∈
and

{
𝜕

𝜕𝜎𝜈

𝜔(𝛼, c, 𝜎𝜈, 𝜈)
}

𝜈∈
,
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BOULAGUIEM et al. 847

where ⊆ R, converge uniformly in 𝛼 and 𝜎𝜈 . This second condition implies by Theorem 7.17 of Rudin50 that,

lim
𝜈→∞

𝜕

𝜕𝛼

𝜔(𝛼, c, 𝜎𝜈, 𝜈) =
𝜕

𝜕𝛼

lim
𝜈→∞

𝜔(𝛼, c, 𝜎𝜈, 𝜈) =
𝜕

𝜕𝛼

𝛼 = 1.

Similarly,

lim
𝜈→∞

𝜕

𝜕𝜎𝜈

𝜔(𝛼, c, 𝜎𝜈, 𝜈) = 0.

Using these regularity conditions, we start by proving (B1). From (1), we have that 𝜃 ∼
(
𝜃, 𝜎

2
𝜈

)
and, thus, by Markov’s

inequality, for any M > 0, we obtain

Pr
(√

𝜈
|||𝜃 − 𝜃

||| ⩾ M
)
⩽ 𝜈

M2 𝜎
2
𝜈
= 𝜎

2

M2 + o(1).

Therefore, we have 𝜃 = 𝜃 + p
(
𝜈
−1∕2), which verifies (B1).

Next, we study the convergence rate of 𝜎𝜈 . Let Y denote a random variable following a 𝜒 distribution with 𝜈 degrees
of freedom, that is, Y ∼ 𝜒𝜈 . We have

E[Y ] =
√

2Γ{(𝜈 + 1)∕2}
Γ(𝜈∕2)

=
√
𝜈

{
1 − 1

4(𝜈 + 1)
+ (𝜈−2)

}
,

where Γ(⋅) is the gamma function, and where the second equality can be obtained using Stirling’s approximation for the
Gamma function. Moreover, we have

var(Y ) = 𝜈 − E
2[Y ] = 𝜈 − 𝜈

{
1 − 1

4(𝜈 + 1)
+ (𝜈−2)

}2

= 𝜈 − 𝜈
{

1 − 1
2(𝜈 + 1)

+ (𝜈−2)
}
= 𝜈

2(𝜈 + 1)
+ (𝜈−1).

From (1), we have 𝜈𝜎2
𝜈
𝜎
−2
𝜈
∼ 𝜒2

𝜈
using Markov’s inequality, for any M > 0, we obtain

Pr
(
𝜈
||𝜎𝜈 − 𝜎𝜈|| ⩾ M

)
⩽
𝜈

2 E

[(
𝜎𝜈 − 𝜎𝜈

)2]

M2 = 𝜈
2

M2

{
var
(
𝜎𝜈

)
+
(
E
[
𝜎𝜈

]
− 𝜎𝜈
)2}

= 𝜈
2

M2

⎧
⎪
⎨
⎪
⎩

𝜎
2
𝜈

𝜈

var(Y ) +
⎛
⎜
⎜
⎝

√
𝜎

2
𝜈

𝜈

E[Y ] − 𝜎𝜈
⎞
⎟
⎟
⎠

2⎫
⎪
⎬
⎪
⎭

= 𝜈
2

M2

(
𝜎

2
𝜈

𝜈

{
𝜈

2(𝜈 + 1)
+ (𝜈−1)

}
+
[
𝜎𝜈

{
1 − 1

4(𝜈 + 1)
+ (𝜈−2)

}
− 𝜎𝜈
]2
)

= 𝜈
2

M2

{
𝜎

2
𝜈

2(𝜈 + 1)
+

𝜎
2
𝜈

16(𝜈 + 1)2
+ (𝜈−3)

}
=

𝜈
2
𝜎

2
𝜈

2(𝜈 + 1)M2 + (𝜈
−1)

=
𝜈

{
𝜎

2 + o(1)
}

2(𝜈 + 1)M2 + (𝜈−1) = 𝜎
2

2M2 + o(1).

Thus, we have 𝜎𝜈 = 𝜎𝜈 + p
(
𝜈
−1), which verifies (B2).

Finally, we consider the convergence rate of 𝛼∗. Using (B2) and the continuity in 𝜎𝜈 of 𝜔(𝛼, c, 𝜎𝜈, 𝜈), we have by the
continuous mapping theorem that 𝜔

(
𝛼, c, 𝜎𝜈, 𝜈

)
= 𝜔(𝛼, c, 𝜎𝜈, 𝜈) + op(1), which by Lemma 5.10 of Van der Vaart51 implies

that

𝛼
∗ = 𝛼∗ + op(1). (B4)

Next, there exists a point (𝛼, 𝜎𝜈) on the line segment from (𝛼∗, 𝜎𝜈) to (𝛼∗, 𝜎𝜈) such that

𝜔

(
𝛼
∗
, c, 𝜎𝜈, 𝜈

)
− 𝜔(𝛼∗, c, 𝜎𝜈, 𝜈) =

𝜕

𝜕𝛼

𝜔

(
𝛼, c, 𝜎𝜈, 𝜈

)(
𝛼
∗ − 𝛼∗

)
+ 𝜕

𝜕𝜎𝜈

𝜔

(
𝛼, c, 𝜎𝜈, 𝜈

)(
𝜎𝜈 − 𝜎𝜈

)
,
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where

𝜕

𝜕𝛼

𝜔

(
𝛼, c, 𝜎𝜈, 𝜈

)
= 𝜕

𝜕x
𝜔

(
x, c, 𝜎𝜈, 𝜈

)||||x=𝛼
and 𝜕

𝜕𝜎𝜈

𝜔

(
𝛼, c, 𝜎𝜈, 𝜈

)
= 𝜕

𝜕y
𝜔

(
𝛼, c, y, 𝜈

)||||y=𝜎
𝜈

.

From (7) and (8), we have 𝜔(𝛼∗, c, 𝜎𝜈, 𝜈) = 𝛼 and 𝜔
(
𝛼
∗
, c, 𝜎𝜈, 𝜈

)
= 𝛼, implying that

𝜕

𝜕𝛼

𝜔

(
𝛼, c, 𝜎𝜈, 𝜈

)(
𝛼
∗ − 𝛼∗

)
+ 𝜕

𝜕𝜎𝜈

𝜔

(
𝛼, c, 𝜎𝜈, 𝜈

)(
𝜎𝜈 − 𝜎𝜈

)
= 0.

Since 𝜕

𝜕𝛼

𝜔(𝛾, c, 𝜅, 𝜈) converges uniformly, for all 𝜀 > 0, there exists N𝜈 > 0 such that for all 𝛾 ∈ [𝛼, 0.5), for all 𝜅 ∈ R+ and
for all 𝜈 ⩾ N𝜈 , we have that | 𝜕

𝜕𝛼

𝜔(𝛾, c, 𝜅, 𝜈) − 1| ⩽ 𝜀. Thus, we have

lim
𝜈→∞

𝜕

𝜕𝛼

𝜔

(
𝛼, c, 𝜎𝜈, 𝜈

)
= 1 and lim

𝜈→∞

𝜕

𝜕𝜎𝜈

𝜔

(
𝛼, c, 𝜎𝜈, 𝜈

)
= 0.

Consequently, we obtain

lim
𝜈→∞

𝜕

𝜕𝜎
𝜈

𝜔

(
𝛼, c, 𝜎𝜈, 𝜈

)

𝜕

𝜕𝛼

𝜔

(
𝛼, c, 𝜎𝜈, 𝜈

) = 0.

For sufficiently large 𝜈, we have

||𝛼
∗ − 𝛼∗|| =

|||||||

𝜕

𝜕𝜎
𝜈

𝜔

(
𝛼, c, 𝜎𝜈, 𝜈

)

𝜕

𝜕𝛼

𝜔

(
𝛼, c, 𝜎𝜈, 𝜈

)

|||||||

||𝜎𝜈 − 𝜎𝜈|| = o
(||𝜎𝜈 − 𝜎𝜈||

)
= op
(
𝜈
−1)

,

since, from (B2), we have ||𝜎𝜈 − 𝜎𝜈|| = p(𝜈−1). Therefore, we obtain 𝛼∗ = 𝛼∗ + op
(
𝜈
−1), which verifies (B3) and concludes

the proof.

APPENDIX C. CONVERGENCE RATE OF THE ITERATIVE APPROACH FOR 𝜶
∗

Using the notation of Appendix A and for 𝛾 ∈ , we have that 𝜔(𝛾) is continuously differentiable and such that
0 < 𝜔̇(𝛾) < 2, where

𝜔̇(𝛾) ∶= 𝜕

𝜕x
𝜔(x)
||||x=𝛾

.

Next, we define

T(𝛾) ∶= 𝛼 + 𝛾 − 𝜔(𝛾).

For all 𝛼1, 𝛼2 ∈ , we have the mean value theorem stating that

T(𝛼1) − T(𝛼2) = 𝛼1 − 𝛼2 − 𝜔(𝛼1) + 𝜔(𝛼2) = 𝛼1 − 𝛼2 + 𝜔̇(𝛼3)(𝛼2 − 𝛼1),

where 𝛼3 = 𝜏𝛼1 + (1 − 𝜏)𝛼2 for some 𝜏 ∈ [0, 1]. Thus, we obtain

|||T(𝛼1) − T(𝛼2)
||| =
|||{1 − 𝜔̇(𝛼3)}(𝛼1 − 𝛼2)

||| =
|||1 − 𝜔̇(𝛼3)

|||
|||𝛼1 − 𝛼2

||| <
|||𝛼1 − 𝛼2

|||.

Then, using Kirszbraun theorem,52 we can extend the function T(𝛾)with respect to 𝛾 ∈  to a contraction map from R to
R. Thus, Banach fixed point theorem ensures that T

(
𝛼
∗(k)) converges as k →∞. We then define the limit of the sequence{

𝛼
∗(k+1)}

k∈N
as 𝛼∗, which is the unique fixed point of the function T(𝛾). Indeed, we have

𝛼
∗ = T(𝛼∗) = 𝛼 + 𝛼∗ − 𝜔(𝛼∗).
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BOULAGUIEM et al. 849

By rearranging terms, we have

𝛼
∗ = argzero

𝛾∈
𝜔(𝛾) − 𝛼 = argzero

𝛾∈[𝛼,0.5)
𝜔(𝛾) − 𝛼,

concluding the convergence of the sequence
{
𝛼
∗(k+1)}

k∈N
. As a result, there exists some 0 < 𝜖 < 1 such that for k ∈ N we

have

|||𝛼
∗(k+1) − 𝛼∗||| < 𝜖

k|||𝛼
∗ − 𝛼||| <

1
2

exp(−bk),

for some positive constant b.

APPENDIX D. EMPIRICAL SIZE AND POWER COMPARISONS FOR THE TOST, 𝛂-TOST AND
𝚫-TOST

In this section, we perform an extensive simulation study, for the evaluation of the empirical size and power of the 𝛼-TOST,
compared to the TOST and 𝛿-TOST, by varying the values of 𝜈 and 𝜎𝜈 over a large grid. The power (ie, when 𝜃 = 0) and the
size (ie, when 𝜃 = c) are computed by replacing both 𝜎𝜈 and 𝜃 by realizations of their corresponding random variables in
(1), that is, reproducing the case of parameter estimation. The simulation settings we consider are given in Simulations 2
and 3 of Table 1 for the size and power respectively.

F I G U R E D1 Heatmap representing the empirical size in % (color gradient) for the TOST, computed using the setting of Simulation 2
in Table 1, as a function of 𝜎

𝜈
(x-axis) and 𝜈 (y-axis). The lighter colors highlighted in the top legend correspond to the 𝛼 = 5% nominal level,

up to a simulation error assessed by a two-sided binomial exact test at the 1% level performed on the results obtained on the 105 Monte Carlo
samples per setting.
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850 BOULAGUIEM et al.

F I G U R E D2 Heatmap representing the empirical size in % (color gradient) for the 𝛿-TOST, computed using the setting of Simulation 2
in Table 1, as a function of 𝜎

𝜈
(x-axis) and 𝜈 (y-axis). The lighter colors highlighted in the top legend correspond to the 𝛼 = 5% nominal level,

up to a simulation error assessed by a two-sided binomial exact test at the 1% level performed on the results obtained on the 105 Monte Carlo
samples per setting.

F I G U R E D3 Heatmap representing the empirical size in % (color gradient) for the 𝛼-TOST, computed using the setting of Simulation 2
in Table 1, as a function of 𝜎

𝜈
(x-axis) and 𝜈 (y-axis). The lighter colors highlighted in the top legend correspond to the 𝛼 = 5% nominal level,

up to a simulation error assessed by a two-sided binomial exact test at the 1% level performed on the results obtained on the 105 Monte Carlo
samples per setting.
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BOULAGUIEM et al. 851

F I G U R E D4 Heatmap representing the empirical power in % (color gradient) for the TOST, computed using the setting of Simulation
3 in Table 1, as a function of 𝜎

𝜈
(x-axis) and 𝜈 (y-axis).

F I G U R E D5 Heatmap representing the empirical power in % (color gradient) for the 𝛿-TOST, computed using the setting of
Simulation 3 in Table 1, as a function of 𝜎

𝜈
(x-axis) and 𝜈 (y-axis).
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852 BOULAGUIEM et al.

F I G U R E D6 Heatmap representing the empirical power in % (color gradient) for the 𝛼-TOST, computed using the setting of
Simulation 3 in Table 1, as a function of 𝜎

𝜈
(x-axis) and 𝜈 (y-axis).

APPENDIX E. EMPIRICAL COMPARISONS WITH THE CORRECTED SABE

In this section, we present a simulation study to compare the power and level of the TOST, 𝛼-TOST, 𝛿-TOST, the EMA
implementation of the SABE and its corrected version proposed by Labes and Schütz,28 which they call the iteratively
adjusted 𝛼 of the Average BioEquivalence Expanding Limits (ABEL). The aim is to compare testing procedures that either
correct for the level (𝛼-TOST), for the equivalence limits (𝛿-TOST) or both (the corrected SABE) in a paired setting closely
related to the case study presented in Section 4 and allowing to estimate the within-subject variability of the reference
treatment required by SABE-like methods. We should stress that the SABE and its corrected version are usually used with
replicated cross-over designs26 and that their use in a simple paired design can be viewed as a relaxation of the constraints
imposed by regulatory authorities that still allows to validly investigate their finite sample properties. The corrected SABE
method is implemented as defined by the EMA guidelines, by computing the size through Monte Carlo integration (105

simulations), and applying a correction on the level to match the original one, 𝛼, only when the test is liberal given the
adjusted (bio)equivalence limits. Note that, as the SABE procedure also requires the estimated 𝜃 to lie inside the original
equivalence bounds to declare bioequivalence, the size can only be computed using Monte Carlo simulations. The model
we consider is given by

Xi,j = 𝜃j + ui + 𝜖i,j, ui ∼
(
0, 𝜎2

1
)
, 𝜖i,j ∼

(
0, 𝜎2

2
)
,

with i = 1, … ,n and j = 1, 2. By taking the paired differences we obtain

Di = Xi,1 − Xi,2 = 𝜃 + 𝜖i,1 − 𝜖i,2 = 𝜃 + 𝜖i, 𝜖i ∼
(
0, 2𝜎2

2
)
.
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BOULAGUIEM et al. 853

F I G U R E E1 First row: Empirical probability of declaring bioequivalence (y-axis) computed using the setting of Simulation 4, as a
function of 𝜃 (x-axis) and 𝜎

𝜈
(columns), with 𝜈 = 45, for the TOST (pink circles), the 𝛼-TOST (green triangles), the 𝛿-TOST (blue squares), the

SABE (red crosses), and the corrected SABE (light-green diamonds). The tight gray area stands for a 99% simulation error tolerance interval
of (4.84, 5.16) corresponding to 𝛼 = 5% and B = 105 Monte Carlo samples. Second row: The difference of the empirical probabilities between
the 𝛼-TOST and the cSABE (green triangles), and between the 𝛿-TOST and the cSABE (blue triangles). Empirically, the TOST is quite
conservative while the SABE is very liberal. In terms of power, the 𝛼-TOST uniformly dominates the other two methods and the 𝛿-TOST
uniformly dominates the cSABE.

Thus, we have 𝜃̂ = D ∼
(
𝜃, 2𝜎2

2∕n
)
. By defining 𝜎2

𝜈
= 2𝜎2

2∕n and 𝜈 = n − 1, we have 𝜃̂ ∼
(
𝜃, 𝜎

2
𝜈

)
and 𝜈𝜎̂

2
𝜈

𝜎
2
𝜈

∼ 𝜒2
𝜈

. In

this setting, the coefficient of variation (CV) is CV =
√

exp
(
𝜎

2
2
)
− 1 =

√
exp
(

n𝜎2
𝜈

2

)
− 1, and we consider the following

estimator

ĈV =

√

exp
(

n𝜎̂2
𝜈

2

)
− 1.

The parameters and settings considered in this Simulation are reported in Table 1 under Simulation 4. The first row of
Figure E1 shows the empirical probabilities of declaring equivalence (y-axes) of each method (colored lines) as a function
of 𝜃 (x-axes) for two values 𝜎𝜈 (columns) when 𝜈 = 45. Comparing the empirical size (obtained when c = 𝜃) of the different
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854 BOULAGUIEM et al.

methods, we can note that the TOST is quite conservative while the SABE is very liberal for the considered values of
𝜎𝜈 . The 𝛼-TOST, 𝛿-TOST and cSABE are size-𝛼 when 𝜎𝜈 = 0.12 with their respective empirical size lying inside the 99%
simulation error tolerance interval of (4.84, 5.16), corresponding to 𝛼 = 5% and B = 105 Monte Carlo simulations. On the
other hand, for a value of 𝜎𝜈 = 0.16, none of these methods is size-𝛼 as all empirical sizes lie below the simulation error
tolerance interval (with estimated values of approximately 0.0475, 0.0424, and 0.0357 for the 𝛼-TOST, the 𝛿-TOST and the
cSABE, respectively). The second row of the Figure E1 shows the difference in the probabilities of declaring equivalence
of the 𝛼- and 𝛿− TOST methods compared to the cSABE (y-axes) as a function of 𝜃 (x-axes) for two values of 𝜎𝜈 (columns)
when 𝜈 = 45. Empirically, we can note that, in terms of power, the 𝛼-TOST uniformly dominates the other two methods
and the 𝛿-TOST uniformly dominates the cSABE. This again suggests that an adjustment on the level of the TOST is the
most effective way to improve the finite sample properties of equivalence testing.

APPENDIX F. COMPARISON OF THE 𝛂-TOST WITH CAO AND MATHEW’S METHOD

In Figure F1, the critical values for different values of 𝜈, obtained by Cao and Mathew41 (Table 1) and the ones obtained
using the 𝛼-TOST, are compared. One can see that the method of Cao and Mathew41 appears to be an approximation of
the 𝛼-TOST, evaluated asymptotically, that is, at 𝜈 →∞.

F I G U R E F1 Upper panel: Values of 𝛼∗ of the 𝛼-TOST (y-axis) as a function of 𝜎
𝜈

(x-axis) for different values of 𝜈 (colored lines). Lower
panel: Comparison of the critical values (y-axis) obtained by the method of Cao and Mathew41 (dashed lines showing t

𝛼̃,𝜈
) and of the 𝛼-TOST

(solid lines showing t
𝛼
∗
,𝜈

) as a function of 𝜎
𝜈

(x-axis) for different values of 𝜈 (colored lines). Note that for all values of 𝜈 considered here and for
values of 𝜎

𝜈
above 0.1, the critical values of Cao and Mathew41 correspond to a piecewise version of the critical values of the 𝛼-TOST obtained

when 𝜈 is large. Therefore, their correction appears to be an approximation of the 𝛼-TOST, evaluated asymptotically, that is, at 𝜈 → ∞.
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