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BACKGROUND: Rapid-acting antidepressants (RAADs), including dissociative anesthetics, psychedelics, and empathogens, elicit
rapid and sustained therapeutic improvements in psychiatric disorders by purportedly modulating neuroplasticity,
neurotransmission, and immunity. These outcomes may be mediated by, or result in, an acute and/or sustained entrainment of
epigenetic processes, which remodel chromatin structure and alter DNA accessibility to regulate gene expression.
METHODS: In this perspective, we present an overview of the known mechanisms, knowledge gaps, and future directions
surrounding the epigenetic effects of RAADs, with a focus on the regulation of stress-responsive DNA and brain regions, and on the
comparison with conventional antidepressants.
MAIN BODY: Preliminary correlative evidence indicates that administration of RAADs is accompanied by epigenetic effects which
are similar to those elicited by conventional antidepressants. These include changes in DNA methylation, post-translational
modifications of histones, and differential regulation of non-coding RNAs in stress-responsive chromatin areas involved in
neurotrophism, neurotransmission, and immunomodulation, in stress-responsive brain regions. Whether these epigenetic changes
causally contribute to the therapeutic effects of RAADs, are a consequence thereof, or are unrelated, remains unknown. Moreover,
the potential cell type-specificity and mechanisms involved are yet to be fully elucidated. Candidate mechanisms include neuronal
activity- and serotonin and Tropomyosine Receptor Kinase B (TRKB) signaling-mediated epigenetic changes, and direct interaction
with DNA, histones, or chromatin remodeling complexes.
CONCLUSION: Correlative evidence suggests that epigenetic changes induced by RAADs accompany therapeutic and side effects,
although causation, mechanisms, and cell type-specificity remain largely unknown. Addressing these research gaps may lead to the
development of novel neuroepigenetics-based precision therapeutics.
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INTRODUCTION
Chromatin is a plastic entity, which adapts to external stimuli
such as a changing environment and stress [1, 2]. This feature
shapes the endogenous response to a changing environment
via long-term modulation of gene expression [3, 4]. Psychosocial
stress causes an epigenetic remodeling of stress-responsive DNA
and chromatin regions, and associated histone proteins in
susceptible brain areas such as the ventral hippocampus [1, 5],
amygdala [6], nucleus accumbens (NAc) [7], and the prefrontal
cortex (PFC) [8] – dorsal raphe nucleus loop [9–11]. Similarly, and
in an opposite fashion, a remodeling of chromatin regions
involved with synaptic plasticity, neurotransmission, neurogen-
esis, and neuroinflammation is required in infralimbic and
prelimbic neurons to elicit antidepressant effects [1, 9–13].
Hence, drugs which directly or indirectly affect the epigenetic
control of chromatin regions linked to neurotransmission,
neurogenesis, and neuroinflammation, represent promising
epigenetics-based therapeutics.
Rapid-acting antidepressants (referred herein as RAADs) are being

investigated as novel therapeutics in psychiatry [14–16]. These
compounds are generally classified as serotonin (5-HT)2A receptor
agonists such as psilocybin, lysergic acid diethylamide (LSD), N,

N-Dimethyltryptamine (DMT) and 2,5-Dimethoxy-4-iodoampheta-
mine (DOI) [14]; N-Methyl-D-Aspartate (NMDA) antagonists such as
ketamine [17]; and empathogens such as 3,4-methylenedioxy-
methamphetamine (MDMA), which act mainly through neurotrans-
mitter transporters [18]. The long-term improvements in psychiatric
symptoms and neuropsychological function elicited by RAADs
[19–24] are accompanied by enduring serotonergic (such as a
peripheral increase of serotonin -5-HT- platelets uptake sites in long-
term Ayahuasca users) [25], and neuromorphological changes (such
as thinner precuneus and posterior cingulate cortex and thicker
anterior cingulate cortex in long-term Ayahuasca users) [26], which
suggest the entrainment of epigenetic mechanisms.
Preliminary evidence indicates that the therapeutic effects of

RAADs, akin to conventional antidepressants, are accompanied
by a remodeling of DNA methylation, histone post-translational
modifications (PTMs), and non-coding RNAs (ncRNAs) dynamics
in stress-responsive brain areas. Interestingly, repeated, binge,
or high-dose administration of RAADs elicit side effects
mediated by overlapping yet opposite epigenetic mechanisms,
such as hippocampal apoptosis, reduced neurotrophic signal-
ing, increased neuroinflammation, and cognitive impairments
(see Involvement of Epigenetic Mechanisms in Potential Side
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Effects Elicited by RAADs). These effects, contrasting with those
of clinically relevant doses and resembling stress-induced
epigenetic responses, underscore the importance of identify-
ing the optimal dosages and regimens for clinical RAADs
applications to maximize desirable epigenetic outcomes and
minimize undesirable ones.

EPIGENETIC CONTROL IN STRESS-RELATED DISORDERS, AND
THE EFFECTS OF CONVENTIONAL AND RAPID-ACTING
ANTIDEPRESSANTS
DNA methylation, stress, and rapid-acting antidepressants
DNA methylation consists in the reversible addition of methyl
groups to cytosines in CpG dinucleotides by DNA methyltrans-
ferases (DNMTs). This modification generally modulates transcrip-
tion by inhibiting the binding of transcription factors or recruiting
proteins involved in gene repression [27]. Stress and psychosocial
trauma modulate the methylation status of CpG dinucleotides in
DNA sequences involved with the stress response, and synaptic
and neuronal plasticity [28–43]. For example, the methylation
status of genes encoding the glucocorticoid receptor, arginin-
vasopressin, and the brain-derived neurotrophic factor (BDNF) can
be modulated by early-life adversities as early as 1 day after birth
[28–43] and specific cell types such as astrocytes carryover the
epigenetic marks of stress [35, 44]. Epigenetically-active com-
pounds with DNA demethylase activity [45] have antidepressant
effects [46, 47], confirming that the methylation state and the
associated psychiatric symptoms can be reversed pharmacologi-
cally [48]. Stressors also affect the regulation of DNA-methylating
enzymes such as DNMT3a and 3b [49] in stress-susceptible brain
areas such as the PFC and hippocampus [35, 44, 50]. Therefore,
stress exposure is physically “remembered” in specific cell types
and brain areas, causing altered gene expression and ultimately
lasting effects on behavior. The most studied example of
epigenetic programming by stress, and its normalization by
antidepressants, is the BDNF gene. Prenatal and life adversities
decrease the promoter IV-mediated BDNF expression via increas-
ing its methylation [36, 43, 49, 51–58], and psychiatric disorders
largely share increased BDNF promoter methylation, which can be
reversed by conventional antidepressants [36, 54–61].
Like conventional antidepressants, but only requiring one or

few administrations, ketamine restores some of the stress-induced
aberrant DNA methylation, including on the BDNF gene (Fig. 1 and
Table 1). Delving into the molecular mechanisms, ketamine
induces a Extracellular Signal-Regulated Kinase 1 (ERK1) / nuclear
receptor binding protein 1 (NRBP1)-mediated microglial decrease
of methyl-CpG binding protein 2 (MeCP2), which upregulates the
cAMP response-binding protein (CREB)-mediated BDNF exon IV
transcription [62]. The enhancement of fear extinction elicited by
ketamine is also accompanied by demethylation of PFC and
hippocampal BDNF exon IV, and increased BDNF transcription
[49]. Similarly, fluoxetine dissociates the MeCP2–CREB complex
from BDNF promoter IV through the protein kinase A (PKA)-
mediated phosphorylation of MeCP2, thus increasing BDNF
transcription [55]. Resembling chronic imipramine’s effects in the
PFC [50], acute ketamine reversed the nerve injury-induced
increase in the hippocampal DNMT1, 3a, and 3b. It also restored
the decrease in hippocampal total BDNF and BDNF exon I
transcription and protein levels [52]. In rodents, chronic fluoxetine,
imipramine, and desipramine blunted the stress-induced increase
in hippocampal DNA methylation, and restored the decrease
elicited in the PFC [50, 63, 64]. Antidepressant use increased
the peripheral methylation level of the 5-HT transporter [65], and
the interleukin (IL)-6 gene [66], as well as telomerase activity in
individuals with PTSD [67]. While it has been speculated that
RAADs such as psilocybin might increase telomerase activity and
telomere length, this hypothesis remains to be tested [68].

Amongst psychedelics, preliminary evidence indicates that LSD
and Ayahuasca affect DNA methylation (Fig. 1 and Table 1).
Repeated LSD largely increased the methylation level of 635 CpG
sites in the PFC of adult male mice receiving a prosocial, anxiolytic,
and synaptoplastic repeated regimen of LSD [69–72]. The genes
interested were involved with neurotropic-, neurotrophic-, and
neuroplasticity-related signaling. Proteomics profiling and qRT-
PCR validation suggested specificity and functional significance of
the changes observed in DNA methylation [69]. Given that
cytosine methylation can affect the likelihood of mutations
[73, 74] future studies are warranted to investigate the potential
effects of the increased DNA methylation elicited by LSD on
genomic stability and mutation rates. Despite the fact that the use
of RAADs has been associated with decreased likelihood of suicide
[75, 76], DNA hypermethylation is also observed in the blood of
individuals who attempted suicide [77] and in the PFC of suicide
completers [78]. Hence, future studies are required to better
characterize the relationships between the epigenetic effects
elicited by psychedelics and suicidality. Participation in a
ceremonial Ayahuasca retreat in the Amazon consisting of
multiple administrations increased the saliva methylation level
of 5 CpG sites within the Sigma-1 receptor gene promoter (in a
greater fashion in individuals with greater childhood trauma), but
did not affect the methylation level of one CpG site within the
FKBP5 gene, which is involved with trauma and the stress
response [79]. These changes were accompanied by improved
depression and anxiety scores for up to 6 months [79]. While they
are preliminary findings, previous biochemical and neurostructural
evidence supports the existence of epigenetic mechanisms
accompanying the regular consumption of Ayahuasca: increased
platelets 5-HT uptake sites [25], thinner precuneus and posterior
cingulate cortex, and thicker anterior cingulate cortex [26] were
identified in long term Ayahuasca users. Speculations exist that
Ayahuasca might extinguish the fear response via an epigenetic
mechanism mediated by the DMT-activated Sigma-1 receptor [80],
although this hypothesis remains to be tested. The β-carbolines
contained in the Ayahuasca brew might also inhibit histone
deacetylase activity, given that engineered derivatives containing
β-carbolines motifs are potent HDACs inhibitors [81, 82]. However,
no studies have insofar investigated the epigenetic effects elicited
by β-carboline, or those elicited by the combination of β-carboline
with DMT-containing plants (as in the case of Ayahuasca).
MDMA-assisted psychotherapy led to peripheral epigenetic

changes correlated to therapeutic improvement [83]. The increase
in saliva methylation level of one CpG site (cg08276280) in the
corticotropin-releasing factor receptor 1 gene and one
(cg01391283) within the glucocorticoid receptor gene was
correlated with symptom reduction in individuals with severe
PTSD receiving MDMA-assisted psychotherapy [83]. Further
studies should characterize the epigenetic effects of psychother-
apy coupled to RAADs, and if those treatments synergistically or
additively interact to produce determinate epigenetic outcomes.
Putative prophylactic or acute effects of RAADs on attenuating
stress-induced DNA methylation changes remain to be elucidated.

Histone post-translational modifications, stress, and RAADs
Histones form protein cores around which DNA wraps. Stress and
antidepressants affect histone post-translational modifications
(PTMs) such as acetylation, methylation, and phosphorylation in
stress-responsive chromatin areas, altering chromatin accessibility
and transcription. For example, stress elicits hypoacetylation of
hippocampal histone 3 (H3) at BDNF III and IV promoters, and
increases the levels of histone deacetylases (HDACs) including
HDAC5 and Sirtuin 2, ultimately decreasing BDNF expression
[1, 84]. Indeed, specific HDACs such as HDAC2 and HDAC5, which
are critical regulators of adult neurogenesis [85] and cognition
[86], are altered in depression [87].
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Some of the aberrant PTMs dynamics elicited by stress are
restored by chronic administration of conventional antidepres-
sants such as fluoxetine, paroxetine, reboxetine, citalopram,
imipramine and mirtazapine. These drugs rescue the H3-H4 (i.e.,

H3 lysine (K)9 and H3K27) hypoacetylation of the BDNF promoters,
reverse the stress-induced decrease in BDNF transcription and
protein level, promote HDAC5 phosphorylation and nuclear
export, and attenuate the stress-induced increase in HDACs in
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stress-susceptible brain areas [1, 55, 84, 88–92]. Delving into the
mechanisms, fluoxetine was shown to disassociate the MeCP2-
CREB-BDNF promoter IV complex via Protein Kinase A (PKA)-
mediated phosphorylation of MeCP2, leading to CREB-mediated
BDNF transcription [55]. Fluoxetine also inhibited the binding of
delta-FosB to the Calcium/calmodulin-dependent protein kinase
IIa (CaMKIIa) promoter by reducing its acetylation and increasing
its H3K9 dimethylation, ultimately decreasing CaMKIIa expression
in the NAc [93]. Eight-week escitalopram treatment in individuals
with depression decreased H3K27 histone trimethylation, and
these changes were negatively correlated with increased BDNF
levels [58]. Importantly, the stress-induced hippocampal BDNF
promoter-associated H3K9 hypoacetylation and HDAC2 over-
expression can also be restored by non-pharmacological strate-
gies such as acupuncture [94].
The epigenetic outcomes elicited by a single administration of

ketamine largely overlap those elicited by chronic conventional
antidepressants. Indeed, one or few ketamine administrations are
sufficient to reverse the stress-induced histone hypoacetylation
and downregulated neurotrophic-related transcription (Fig. 1 and
Table 1). In a mouse model of Gulf War Illness, ketamine decreased
the hippocampal HDAC1 and HDAC5 levels and increased the
H3K9 acetylation of BDNF promoter IV, restoring BDNF levels and
neuroplasticity [95]. Similarly, in rats exposed to early life
adversities, ketamine decreased the depressive-like behaviors
and restored NAc HDAC activity [7]. Moreover, high-dose ketamine
had a prophylactic effect on attenuating the stress-induced
increase in hippocampal H3K9 methylation [96]. Similarly to
conventional antidepressants, ketamine increases HDAC5 phos-
phorylation and nuclear export, resulting in enhanced H3-H4
acetylation. This triggers the myocyte enhancer factor 2-mediated
transcription of the plasticity-related genes Eukaryotic Translation
Initiation Factor 4E Binding Protein 1 (eIF4EBP1) and CREB, and
their target genes, and ultimately the onset of antidepressant-like
effects [97].
Psychedelics such as LSD and DOI also have histone-acetylating

properties, which might be involved in their therapeutic effects
(Fig. 1 and Table 1). Early studies reported that LSD acutely
increases histone acetylation in the midbrain and cortex, but not
the cerebellum of rabbits [98]. The increased histone acetylation
activity elicited by LSD suggests gene activation, and indeed, LSD
activates the transcription [99] of immediate early genes and
genes involved with synaptic potentiation and neurotropism in
the hippocampus, cortex, midbrain [100], and brainstem [99].
Given that enhancing hippocampal and PFC histone acetylation
ameliorates fear extinction [101] and the consolidation of cued
fear extinction [102] via a permissive effect over transcription
[101], the increased histone acetylation elicited by LSD could be
involved in its therapeutic action for alcohol addiction, and
distress associated with a life-threatening condition [103–106].
A single administration of the LSD analog DOI also elicited a

sustained modulation of the acetylation level of the transcriptional
enhancer histone H3K27 in neurons of the mouse PFC [107]. This
sustained effect had highly specific spatio-temporal dynamics, was

accompanied by neurotrophic-related transcriptional shifts, and
was associated to enhanced synaptic plasticity and antidepressant-
like activity [107]. Lastly, the recently identified histone PTMs
serotonylation and dopaminylation [108–110] might potentially be
involved in the therapeutic effects of psychedelics, although
further investigations are required. Together, the therapeutic
effects of RAADs, similarly to conventional antidepressants, are
accompanied by PTMs opposite to those elicited by stress, leading
to increased accessibility of genes involved with neurotrophic
signaling and antidepressant response.

Non-coding RNAs, stress, and RAADs
Non-coding RNAs (ncRNAs) are portions of the genome which are
transcribed but not translated, with roles in tissue-specific
selective or cooperative regulation of splicing, transcription, and
translation [111–114]. ncRNAs, including stress-responsive ones,
are intricately linked to neuroplasticity, psychiatric disorders, and
suicide, offering potential as biomarkers and therapeutics for
psychiatric disorders [115–122]. Early-life and chronic stressors
affect the PFC, amygdalar and hippocampal regulatory RNA
network, influencing neurotransmission, neuroplasticity, neuro-
genesis, and behavior [118, 123–127]. Among these networks,
microRNAs (miRNAs), approximately 22 nucleotides in length,
stand out for their tissue-specific regulation of a significant
proportion of protein-coding genes expression by binding mRNA
untranslated regions. Dysregulated miRNA dynamics are
observed in depression and suicide, with studies pinpointing
alterations in the PFC and hippocampus during depressive states
[121, 122, 128, 129]. Conventional antidepressants influence
miRNA expression patterns. For instance, miRNAs such as miR-16,
miR-124, miR-132, and miR-135 are implicated in antidepressant
response, with drugs like fluoxetine and venlafaxine, imipramine,
sertraline, and citalopram modulating their expression, as well as
the expression of miR-18a, miR-34a, miR-326, miR-1202 and miR-
1971 [117, 130–141].
RAADs such as ketamine also alter miRNA pathways, with PFC

miR-29b-3p, miR-98-5p, and miR-132-5p playing important roles in
mediating the upregulation of BDNF leading to ketamine’s
antidepressant-like effects (Fig. 1 and Table 1) [142–144]. In
preclinical studies, ketamine modulated some of the stress-
dysregulated hippocampal miRNAs (i.e., miR-598), which are also
regulated by other antidepressant strategies such as fluoxetine and
electroconvulsive therapy (ECT) [124]. Ketamine also decreased
miR-451 levels and increased those of the RNA-binding protein
hur-6, a de-repressor miRNA “sponge” for deleterious miRNAs
involved in inflammatory responses [124, 145, 146]. ECT and
ketamine in rodents exposed to early-life adversities affected 43
common miRNA targets, 7 of which were reversals of stress-
induced changes. Interestingly, ketamine rescued some of the
stress-induced miRNAs alterations which were not reversed by
fluoxetine [124], suggesting that some of the epigenetic mechan-
isms engaged by conventional and RAADs diverge. A three-day
ketamine regimen upregulated 23 miRNAs and downregulated 15
including miR-206 [147] (a negative modulator of BDNF) in vivo

Fig. 1 Converging epigenetic mechanisms of rapid-acting and conventional antidepressants. Abbreviations: 5-HTRs, Serotonin Receptors;
SIGMAR1, Sigma-1 Receptor; SERT, Serotonin Transporter; NET, Norepinephrine Transporter; TRKB, Tropomyosin Receptor Kinase B; BDNF,
Brain-Derived Neurotrophic Factor; NMDA, N-Methyl-D-Aspartate; PLC, Phospholipase C; IP3, Inositol trisphosphate; DAG, Diacylglycerol;
MAPK, Mitogen-Activated Protein Kinase; ERK, Extracellular Signal-Regulated Kinase; PI3K, Phosphoinositide 3-Kinase; Akt, AKT Serine/
Threonine Kinase 1; PKC, Protein Kinase C; GSK-3, Glycogen Synthase Kinase 3; NF-kB, Nuclear Factor Kappa-B; CaMKs, Calcium Calmodulin
Dependent Protein Kinases; Wnt, Proto-Oncogene Wnt-1; JAK, Janus Kinase; STAT, Signal Transducer and Activator of Transcription; PLCγ,
Phospholipase C Gamma 1; SSRI, Selective Serotonin Reuptake Inhibitors; SNRI, Serotonin-Norepinephrine Reuptake Inhibitors; MAOI,
Monoamine Oxidase Inhibitors; H3, Histone 3; H4, Histone 4; H3K4, Histone 3 Lysine 4; H3K9, Histone 3 Lysine 9; H3K12, Histone 3 Lysine 12;
H3K27, Histone 3 Lysine 27; PKA, Protein Kinase A; Mecp2, Methyl-Cpg Binding Protein 2; CREB, cAMP Response Element-Binding Protein; G9a,
Histone Methyltransferase G9a; HDAC, Histone Deacetylase; DNMT, DNA Methyltransferase; lncRNA, Long non-Coding RNA; circRNA, Circular
RNA; miRNA, micro RNA; NR3C1, Glucocorticoid Receptor; CRH31, Corticotropin Releasing Hormone; PTSD, Post-Traumatic Stress Disorder;
LSD, lysergic acid diethylamide.
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Table 1. Effects of rapid-acting antidepressant on DNA methylation, histone post-translational modifications, and ncRNAs.

STUDIES ON THE EPIGENETIC EFFECTS OF KETAMINE IN HUMANS

Main findings Significance Ref.

The extent of decreases of the lncRNA FEDORA predicts the decrease
in depression symptoms severity following a single ketamine
administration in female (but not male) individuals with major
depressive disorder (MDD)

The lncRNA FEDORA could be used as a marker of therapeutic
response to ketamine in individuals who identify as female

[167]

An infusion of ketamine in individuals with treatment-resistant
depression 24 hours after the first administration does not affect
whole blood miRNA levels

Ketamine does not affect blood miRNA 24 hours after
administration in individuals with treatment-resistant
depression. The discrepancy from clinical findings might be
due to the relatively small sample size, the fact that the
samples were collected 24 hours after the first infusion, or the
fact that whole blood was analyzed. Rapid-acting
antidepressants might elicit cell type-specific miRNome
fingerprints not detectable in whole blood

[162]

Deceased individuals that tested positive for ketamine have an
acceleration in the mitochondrial epigenetic age of the nucleus
accumbens and PFC

Ketamine abuse might accelerate the mitochondrial DNA
epigenetic age

[216]

In clinical studies in individuals with neuropathic pain, ketamine
differentially modulated miRNAs expression in responders and non-
responders. The responder status could be predicted based on the
lower pretreatment level of miR-548d-5p, which targets the UGT1A1
(UDP Glucuronosyltransferase Family 1 Member A1) gene

Ketamine elicits miRNA changes in individuals with
neuropathic pain. Specific miRNAs could predict the
therapeutic response to rapid-acting antidepressants

[160]

Poor responders to ketamine have considerable downregulation of
circulating miR-605. Downregulating miR-605 leads to increased
CXCL5 (C-X-C Motif Chemokine Ligand 5), and increased inflammation

miR-605-mediated regulation of CXCL5 predicted the
treatment response to ketamine in complex pain regional
syndrome

[161]

STUDIES ON THE EPIGENETIC EFFECTS OF KETAMINE IN ANIMALS

Studies on the Effects of Ketamine on DNA Methylation in Animals

Main findings Significance Ref.

Ketamine enhances fear extinction via decreasing the stress-induced
hypermethylation of Bdnf (Brain-Derived Neurotrophic Factor) exon IV
(involved with traumatic memory extinction). This effect is
accompanied by increased exon IV and IX transcription in the medial
prefrontal cortex (PFC) and hippocampus

The therapeutic effects of ketamine in post-traumatic stress
disorder (PTSD), depression, and suicidality might be
mediated at least partially by decreased BDNF promoter
methylation leading to increased expression in the PFC and
hippocampus

[49]

Ketamine elicits antidepressant-like effects via activating cAMP
Responsive Element Binding Protein 5 (CREB)-mediated BDNF exon VI
transcription, putatively in the PFC microglia. Ketamine decreases the
levels of methyl-CpG binding protein 2 (MeCP2), a transcriptional
repressor of BDNF

The synaptogenic and antidepressant effects of ketamine
might be mediated at least partially via the epigenetic
regulation of CREB-BDNF exon IV transcription in the PFC
microglia

[62]

Ketamine reverses the increase in chronic pain-induced hippocampal
mRNA and protein levels of the DNA methyltransferase (DNMT) 1, 3a,
and 3b. Ketamine restores the chronic pain-induced decrease in total
BDNF and BDNF exon I transcription and protein level. Ketamine
normalizes the pain-induced increase in pro-BDNF mRNA and protein
levels

The therapeutic effects of ketamine in chronic pain-induced
depressive states might be mediated by a DNMT-mediated
restoration of BDNF expression

[52]

Studies on the Effects of Ketamine on Histone Post-Translational Modifications in Animals

Main findings Significance Ref.

Ketamine normalizes the stress-induced enhancement of adult
nucleus accumbens histone deacetylase (HDAC) activity in a model of
early-life stress, similarly to imipramine. Ketamine has no effect on PFC,
hippocampal, and amygdalar HDAC activity

The therapeutic effects of ketamine on the pathophysiological
sequelae of early-life stress might be partially mediated by a
reduction of the stress-induced enhanced accumbal HDAC
activity

[7]

Ketamine enhances HDAC5 phosphorylation at the sites S259 and
S498 in a Ca²⁺ /Calmodulin-Dependent Protein Kinase II (CaMKII)- and
Polycystic Kidney Disease (PKD)-dependent fashion in hippocampal
neurons, leading to the cytoplasmic export of HDAC5, histones H3 and
H4 acetylation, Myocyte Enhancer Factor 2 (MEF2)-mediated
transcription, and Eukaryotic Translation Initiation Factor 4E Binding
Protein (eIF4EBP) and CREB activation. Ketamine elicits a sustained
( > 24 h) increase of HDAC5 phosphorylation in the hippocampus, and
a sustained transcriptional modulation of MEF2-target genes (Activity
Regulated Cytoskeleton Associated Protein -Arc-, Nuclear Receptor
Subfamily 4 Group A Member 1 -Nurr77-, KLF Transcription Factor 6
-Klf6-, and Early Growth response 1 (Egr1). Blocking HDAC5
phosphorylation nullifies the antidepressant-like effects of ketamine

Ketamine-induced, AMPA-mediated enhanced hippocampal
HDAC5 phosphorylation upregulates the cytoplasmic export
of HDAC5 and this step is required to elicit antidepressant-like
effects in rodents

[97]
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Table 1. continued

Studies on the Effects of Ketamine on Histone Post-Translational Modifications in Animals

Main findings Significance Ref.

Ketamine downregulates the increased HDAC1 and HDAC5 protein
expressions in the hippocampus of rats elicited by Diisopropyl
Fluorophosphate, and increases BDNF levels and dendritic spine
density. Ketamine restores the decreased H3K9 acetylation of the
BDNF promoter IV elicited by Diisopropyl Fluorophosphate

Ketamine elicits pro-histone acetylating effects and restores
neuroplasticity in a mouse model of Gulf War Illness

[95]

Ketamine increases hippocampal BDNF promoter IV activity via
HDAC5 phosphorylation at S259 and S498

High-dose ketamine has a prophylactic effect on the stress-induced
increase in hippocampal histone H3 lysine 9 (H3K9) methylation

Ketamine and potentially other rapid-acting antidepressants
might have prophylactic effects against stress-induced
epigenetic changes

[96]

Studies on the Effects of Ketamine on Non-Coding RNAs in Animals

Main findings Significance Ref.

Ketamine increases miR-98-5p, but not miR-23a-5p and miR-3968 in
the PFC and hippocampus of chronically stressed mice. miR-98-5p
inhibition nullifies the antidepressant-like effects of ketamine

miR-98-5p upregulation is required for the antidepressant-like
effects of ketamine

[143]

Ketamine modulates several hippocampal miRNAs, eliciting a decrease
in miR-206 and miR-181a-5p (involved in apoptosis), and an increase in
miR-132-3p and miR-29a-3p (involved in N-Methyl-D-Aspartate
-NMDA- mediated neuronal survival and neurite remodeling).
These effects are accompanied by a dose-dependent increase of BDNF
levels in vivo and in vitro, and decreased apoptosis and electrical
currents in hippocampal neuronal cultures

Ketamine-induced miRNA modulation decreases neuronal
apoptosis and modulates the electrophysiological properties
of hippocampal pyramidal neurons. The modulation of miR-
206 by ketamine might be involved in its antidepressant
effects

[147]

Ketamine and stress modulate hippocampal miRNAs (such as miR-598-
5p, miR-451, miR-217, miR-203, miR-211, miR-152, miR-1, and miR-204)
linked to pathways such as cAMP responsive element binding protein
5 (CREB5), GABAA, and muscarinic cholinergic receptor 5.
Antidepressant effects of ketamine and electroconvulsive therapy
converge on common molecular pathways (such as hippocampal miR-
598-5p upregulation and miR-451 downregulation)

Ketamine and other antidepressant strategies modulate
hippocampal miRNA pathways such as miR-451 which could
be exploited in antidepressants drug-discovery

[124]

Ketamine administered to mice 6 hours prior to lypopolysaccharide
(LPS) elicits prophylactic effects, putatively through normalizing the
LPS-perturbed PFC expression of miR-149 (increased by LPS), and miR-
7688-5p (decreased by LPS), and their target gene nuclear factor
Nfatc4 (activated T cells 4, decreased by LPS). The expression level of
miR-149 in the PFC negatively correlated to the relative abundance of
the gut microbial genus Alloprevotella, while miR-7668-5p was
positively correlated to the relative abundance of the latter, and
negatively correlated to the relative abundance of Lactobacilllus

Ketamine elicits prophylactic effects in the PFC in response to
a systemic inflammatory challenge.
The PFC levels of selected miRNA affected by ketamine
correlate to the abundance of specific gut microbiome taxa

[152]

Ketamine increases the hippocampal (but not PFC) transcription of a
cluster of miRNAs (764-5p, 1912-3p, 1264-3p, 1298-5p, and 448-3p)
hosted in the 5-HT2C gene locus through Glycogen Synthase Kinase 3
(GSK-3). These effects on miRNA expression are not detected following
acute or repeated treatment with the selective serotonin (5-HT)
reuptake inhibitor (SSRI) fluoxetine. Blocking miR-448-3- decreases the
antidepressant-like effect of ketamine

Hippocampal GSK-3-miR-448-3p signaling is required for the
antidepressant-like effects of ketamine. Ketamine elicits a
rapid and sustained modulation of hippocampal miRNA which
is not shared with acute or repeated fluoxetine treatment and
may contribute to its capacity to elicit antidepressant effects
in individuals that do not respond to classical treatment

[150]

Ketamine increases miR-29b-3p expression and restores its expression
in stressed mice selectively in the PFC, but not the hippocampus or
the hypothalamus. While the miR-29b-3p target gene Glutamate
Metabotropic Receptor 4 (GRM4) gradually declines following
ketamine administration, the levels of miR-29b-3p increase. miR-29b-
3p overexpression increases the high-voltage-activated current type in
primary neuron cells, and promotes cell survival and cytodendritic
growth

The brain area-specific effects of ketamine on miRNAs and
their target genes (such as miR-29b-3p and GRM4) might be
involved in its antidepressant effects.The synaptic-
potentiating and neurotrophic properties of ketamine might
be mediated by specific miRNAs in specific brain areas

[142]

Ketamine prophylactic treatment in chronically stressed mice affects
the level of 32 miRNAs in the PFC; the miRNA with the most significant
change (decrease) following ketamine is miR-132-5p, which targets the
BDNF and Transforming Growth Factor Beta 1 (TGF-β1) genes, which
are involved in the antidepressant effects of ketamine. Ketamine
rescues the stress-induced decrease of BDNF and TGF-β1. Ketamine
decreases the expression of Methyl-CpG Binding Protein 2 (MeCP2) in
the PFC

Ketamine-induced miR-132-5p in the PFC and its resulting
effects on gene expression plays an important role in the
prophylactic antidepressant effects of ketamine, potentially
through its regulatory effects on the expression of BDNF, TGF-
β1, and MeCP2 in the PFC

[144]

Acute ketamine administration increases the PFC levels of miR-219a-
5p, miR-7a-5p, miR-181b-5p and miR-148a-3p and decreases the levels
of miR-128-3p. These miRNAs target genes involved with transcription,
protein ubiquitination, and protein phosphorylation

Ketamine affects PFC miRNAs involved with transcription, and
protein ubiquitination and phosphorylation in the PFC

[151]
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Table 1. continued

Studies on the Effects of Ketamine on Non-Coding RNAs in Animals

Main findings Significance Ref.

Repeated ketamine increases the hippocampal expression of the
circRNAs 003460, 014900, 006565, 013109, and decreases circRNA-
005442. The predicted downstream effects converge on calcium
signaling, G protein signaling, protein phosphorylation, Mammalian
Target of Rapamycin (mTOR) signaling, transcription, alternative
splicing, and neuroplasticity

Ketamine modulates hippocampal circRNAs, and these effects
might be involved in its antidepressant and neurotrophic
effects

[164]

Ketamine decreases miR-214-3p and Glutathione Peroxidase 4 (GPX4)
levels. miR-214-3p inhibition relieves the decreased GPX4 expression.
Ectopic expression of long non-coding Pvt1 Oncogene (lncPVT1)
reverses the suppressed GPX4 levels caused by ketamine. Ketamine
elicits ferropoptosis

Ketamine might have hepatic antineoplastic effects at least
partially through lncRNA PVT1/miR-214-3p/GPX4 signaling
and ferropoptosis

[263]

STUDIES ON THE DELETERIOUS EPIGENETIC EFFECTS OF KETAMINE IN ANIMALS

Main findings Significance Ref.

Repeated ketamine during early gestation decreases the cardiac
histone H3K9 acetylation level at the Modulator Of VRAC Current 1
(Mlc2) promoter by increasing histone deacetylase activity, cardiac
HDAC3 level, and the binding of HDAC3 at the Mlc2 promoter. This
leads to cardiac enlargement, ventricular chamber enlargement,
ventricular wall thinning, vacuolar degeneration of cardiomyocytes,
reduced systolic function, and decreased expression level of several
cardiomyogenesis-related genes

Repeated ketamine during early pregnancy elicits deleterious
effects in the cardiac physiology of the offspring through its
modulation of histone acetylation activity

[218]

Ketamine abuse induces Ten-Eleven-Translocation (TET)
methylcytosine dioxygenase-mediated hypomethylation of NF-κB CpG
promoter sites in cyclooxygenase 2 (COX2) promoters, upregulating
COX-2. Ketamine upregulates (permissive) H3K4m3, and downregulates
(repressive) H3K27me3 and H3K36me3 at NF-κB responsive COX-2
promoter sites, leading to ulcerative colitis

Epigenetic-mediated inflammatory dysfunction is involved in
ketamine abuse-induced ulcerative cystitis. Low-dose
ketamine might have a modulatory role over the epigenetic-
mediated inflammatory control

[208]

Repeated high-dose ketamine leads to an upregulation of the circRNA
circ-SFMBT2 which sponges and downregulates miR-224-5p, leading
to increased Metadherin (MTDH) expression

circ-SFMBT2/miR-224-5p/MTDH signaling might be involved
in the inflammatory dysfunction underlying ketamine-
induced cystitis

[212]

In rats with ketamine-induced conditioned place preference (CPP),
thirty-four hippocampal miRNAs were differentially expressed,
including a strong downregulation of miR-331-5p, which targets the
NR4A2 (Nuclear Receptor Subfamily 4 Group A Member 2) gene, and
an increased expression of NR4A2, p-CREB, and BDNF

Hippocampal miRNAs might be involved in the rewarding and
drug-seeking effects elicited by repeated ketamine exposure

[225]

Successful ketamine-induced CPP downregulates 122 miRNAs in the
rat serum exosomes involved in processes such as nervous system
development, neuron generation and differentiation, apoptotic
processes, and pathways such as SNARE interaction, Protein Kinase
CGMP-Dependent (PKG) signaling, and dopaminergic and GABAergic
synapse. The downregulated miRNAs include miR-128-3p, 133a-3p,
152-3p, 181a-5p, 192-3p, 194-5p, 218b, 22-5p, 362-3p, 674-3p

Repeated ketamine exposure and CPP is accompanied by
changes in serum exosomes miRNAs in rats

[231]

Repeated high-dose ketamine decreases miR-15a-3p, miR-15b-3p, and
miR-16-1-3p expression in the PFC. Repeated high-dose ketamine
decreases miR-16-1 in the hippocampus and Dopamine Receptor D1
(DRD1) levels in the PFC and hippocampus. These neurobiological
changes are associated with schizophrenia-like behavior

Ketamine abuse may elicit maladaptive miRNAs expression in
the PFC leading to schizophrenia-like behavior

[242]

Repeated high dose ketamine decreases miR-199a-5p expression and
increases that of its target gene Hypoxia Inducible Factor 1 Subunit
Alpha (HIF-1α). The regimen induces learning and memory
impairment in neonatal rats through the regulation of the miR-199a-
5p - HIF-1α pathways. Exposure to ketamine in neonatal rats induces
learning and memory impairments. Exposure to ketamine impairs
spatial learning memory ability by up-regulating HIF-1α expression

Repeated ketamine administration to neonates elicits
cognitive and memory impairments through the miR-199a5p -
HIF-1α pathway

[239]

miR-34c is upregulated in the hippocampus following repeated high-dose
ketamine in neonatal rats. miR-34c knockdown increases the levels of
BCL2 Apoptosis Regulator (Bcl-2), phospho-Protein Kinase C (PKC), and
phospho-Mitogen-Activated Protein Kinase 1 (ERK). miR-34c knockdown
ameliorates the ketamine-induced hippocampal toxicity Repeated high-
dose ketamine elicits neurotoxicity in the CA1 region of the hippocampus

Repeated ketamine administration in the neonatal period
elicits hippocampal neurotoxicity at least partially through
miR-34c upregulation

[236]

miR-34a overexpression reverses the neurological and cognitive
deficits, histopathological brain changes, and exacerbation of
circulating proinflammatory cytokines elicited by repeated high-dose
ketamine in rats

Repeated high-dose ketamine elicits neurotoxic and
proinflammatory changes which can be counteracted by miR-
34a overexpression

[213]
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Table 1. continued

STUDIES ON THE DELETERIOUS EPIGENETIC EFFECTS OF KETAMINE IN ANIMALS

Main findings Significance Ref.

Repeated high-dose ketamine decreases miR-214 and increases
Phosphatase And Tensin Homolog (PTEN) expression in the
hippocampus. Repeated high-dose ketamine elicits cognitive deficits
in rats

Repeated high-dose ketamine elicits cognitive deficits in rats
which might be due to decreased miR-214 and increased
PTEN hippocampal expression

[240]

Repeated high-dose ketamine in the neonatal period downregulates
hippocampal miR-137, leading to apoptosis in hippocampal CA1
neurons and significant long-term memory dysfunction. miR-137
overexpression protects against hippocampal neurodegeneration and
memory loss

miR-137 is involved in the neonatal, repeated high dose
ketamine-induced hippocampal neurodegeneration and
memory loss

[238]

Chronic ketamine administration induces bladder fibrosis and bladder
upregulation of 14 and downregulation of 9 miRNAs. Moreover,
chronic ketamine administration leads to the upregulation of 37 and
downregulation of 34 lncRNAs in the bladder. Additionally, the
treatment leads to 14 downregulated and 54 upregulated circRNAs

The ketamine abuse-induced bladder fibrosis is accompanied
by changes in ncRNAs in the bladder

[211]

Repeated ketamine administration increases histone deacetylase and DNA
methyltransferase activity in the PFC and striatum, but not the
hippocampus, eliciting hyperlocomotion and altered exploratory activity.
Repeated ketamine administration decreases Nerve Growth Factor (NGF)
and Glial Cell Derived Neurotrophic Factor (GDNF) in the striatum

Repeated ketamine administration elicits histone
deacetylation and DNA methylation, effects opposite to those
elicited by clinically relevant doses

[235]

STUDIES ON THE DELETERIOUS EPIGENETIC EFFECTS OF KETAMINE IN VITRO

Main findings Significance Ref.

Ketamine dose-dependently inhibits the expression of HDAC6 and its
nuclear import. Ketamine decreases dendritic growth, dendrite
branches, and dendritic spine density in medium spiny neurons in a
time- and concentration-dependent manner

Ketamine elicits neurotoxic effects in in vitro GABAergic
neurons through HDAC6 inhibition

[248]

In PC12 neuronal cells, ketamine dose-dependently decreases the
expression of the neuroprotective miR-429. This effect is accompanied
by an increase in caspase 3 and reactive oxygen species (ROS) activity,
and a dose-dependent increase in the miR-429 target BAG
Cochaperone 5 (BAG5), expression. miR-429 overexpression is
sufficient to attenuate the neurotoxic action

Ketamine elicits a dose-dependent neurotoxic effect in the
PC12 neuronal cell line, mediated by its inhibitory effects on
miR-429. Specific miRNAs are responsible for the in vitro
neurotoxic effects of ketamine

[210]

Ketamine downregulates miR-22 in PC12 cells and upregulates BAG
Cochaperone 5 (BAG5) in a dose-dependent manner. Lipoxin A4
methyl ester decreases these effects, attenuating neurotoxicity

Ketamine elicits a dose-dependent neurotoxic effect in PC12
cells, mediated by its effects on the miR-22/BAG5

[249]

Ketamine at higher doses increases miR-375 expression and decreases
cell viability, neurite outgrowth, and BDNF levels, while increasing ROS
production in human embryonic stem cell-derived neurons. miR-375
inhibition ameliorates these effects

Ketamine elicits dose-dependent neurotoxic effects in human
embryonic stem cell-derived neurons, mediated partly by its
inhibitory effects on miR-375. Specific miRNAs are involved in
the in vitro neurotoxic effects of ketamine at higher doses

[215]

Ketamine exposure in CA1 hippocampal cell cultures increases miR-
124 expression. miR-124 inhibition partially decreases the ketamine-
induced neurotoxicity and upregulates the expression of AMPA,
phospho-Glutamate Ionotropic Receptor AMPA Type Subunit 1
(GluR1), p-PKC, and p-ERK. Repeated high-dose ketamine in young
mice leads to memory impairments during adulthood, and these
effects are partially normalized by miR-124 antagonism

The neurotoxic effects elicited by higher dose ketamine in
hippocampal cell culture and young mice might be mediated
by miR-124 upregulation, which results in decreased AMPA, p-
GluR1, p-PKC, and p-ERK hippocampal levels

[237]

Ketamine elicits a dose-dependent miR-107 (an upstream regulator of
BDNF). Ketamine induces apoptosis and neurite degeneration in
embryonic stem cells-derived neurons. miR-107 downregulation
attenuates these effects

Ketamine elicits neurotoxic effects in embryonic stem cells-
derived neurons at least partially through miR-107 signaling

[247]

Ketamine decreases the expression of the lncRNA Long Intergenic Non-
Protein Coding RNA 641 (LINC00641), leading to increased neuronal
apoptosis. Downregulation of LINC00641 results in an increase in its target
miR-497-5p and a decrease in BDNF expression, which is repressed by
miR-497-5p inhibition. LINC00641 improves ketamine-induced neuronal
injury by activating the TRKB/Phosphoinositide 3-kinases (PI3K)/Protein
Kinase B (Akt) signaling pathway

The neurotoxic effects of high-dose ketamine in vitro might
be mediated by LINC00641/miR-497-5p/BDNF signaling

[214]

Ketamine elicits lncRNA SPRY4 Intronic Transcript 1 (SPRY4-IT1)
upregulation, dose-dependent apoptosis, and neurite degeneration in
human embryonic stem cells-induced neurons. Lentivirus-mediated
SPRY4-IT1 downregulation protects against ketamine neurotoxicity.
Enhancer Of Zeste 2 Polycomb Repressive Complex 2 Subunit (EZH2)
expression is positively correlated with SPRY4-IT1 in hESC-induced
neurons. EZH2 overexpression markedly reverses the protective effects
of SPRY4-IT1 knockdown on ketamine neurotoxicity

The lncRNA SPRY4-IT1 is involved in the neurotoxicity elicited
by ketamine in human embryonic stem cell-derived neurons,
possibly through the regulation on EZH2 gene

[250]

A. Inserra et al.

8

Translational Psychiatry          (2024) 14:359 



Table 1. continued

STUDIES ON THE DELETERIOUS EPIGENETIC EFFECTS OF KETAMINE IN VITRO

Main findings Significance Ref.

Repeated ketamine upregulates miR-206 expression. Repeated
ketamine downregulates KCNQ1 Opposite Strand/Antisense Transcript
1 (KCNQ1OT1) and BDNF expression. Repeated ketamine induces
hippocampal apoptosis in rats, and the apoptosis of PC-12 cells

The KCNQ1OT1/miR-206/BDNF axis may represent a
regulatory mechanism mediating ketamine-induced neural
injury

[243]

Ketamine increases the expression of the BDNF antisense RNA (BDNF-
AS) and decreases that of BDNF in mouse embryonic neural stem cells-
derived neurons, leading to apoptosis. BDNF-AS downregulation
activates Neurotrophic Receptor Tyrosine Kinase 2 (TRKB) signaling,
protects against the ketamine-induced apoptosis and promotes
neurite outgrowth

The neurotoxic effects of ketamine in vitro might be mediated
by a modulation of BDNF-AS

[251]

Repeated high-dose ketamine upregulates hippocampal miR-34a,
which targets the Fibroblast Growth Factor Receptor 1 (FGR1) gene,
and elicits apoptosis in hippocampal CA1 neurons. Inhibition of miR-
34 decreases these effects

Repeated high-dose ketamine elicits hippocampal damage at
least partially through miR-34a-FGR1 signaling

[241]

Ketamine downregulates the lncRNA Small Nucleolar RNA Host Gene
16 (SNHG16), and it induces apoptosis and oxidative stress in human
embryonic stem cell-derived neurons. SNHG16 overexpression
attenuates the ketamine-induced neurotoxicity. Neuronal
Differentiation 1 (NeuroD1) gene inhibition reverses the protective
effect of SNHG16 on ketamine-induced neurotoxicity

Ketamine elicits neuronal damage at least partially through
downregulation of the lncRNA SNHG16

[246]

STUDIES ON THE EPIGENETIC EFFECTS OF LSD IN ANIMALS

Main findings Significance Ref.

Repeated LSD modulated DNA methylation in 635 CpG sites of the
mouse PFC, and the expression level of 181 proteins. Gene signaling
pathways affected are involved in nervous system development, axon
guidance, synaptic plasticity, quantity and cell viability of neurons, and
protein translation

LSD affects the DNA methylation, and gene and protein
expression related to neurotropic-, neurotrophic- and
neuroplasticity signaling

[69]

Acute LSD increases histone acetylation in the midbrain and cortex,
but not cerebellum of rabbits. RNA production is also increased

Acute LSD induces histone acetylation in the cortex and
midbrain, which increases gene expression

[98]

LSD decreases the interaction between nucleic acids and proteins LSD might directly bind DNA or histone proteins, affecting
chromatin structure

[268]

d-LSD binds to helical DNA (less so to denaturated DNA or RNA) with
max 1 molecule per base moiety

LSD might directly bind chromatin, altering its structure, and
affecting its functioning

[199]

LSD causes structural changes to the DNA double-helix conformation,
possibly through intercalating DNA

LSD might cause the dissociation of DNA from histones
through neutralizing the phosphate anions on the DNA
double-helix backbone

[197]

LSD and tryptamines bind to DNA LSD and tryptamines might directly interact with chromatin,
affecting gene expression

[198]

A racemic mixture of l-LSD and d-LSD leads to LSD-DNA Binding. l-LSD
but not d-LSD may bind to DNA directly

LSD might directly bind DNA [197]

STUDIES ON THE EPIGENETIC EFFECTS OF MDMA IN HUMANS

Main findings Significance Ref.

The increase in methylation level of one CpG site (cg08276280) in the
corticotropin-releasing factor receptor 1 gene and one (cg01391283)
within the glucocorticoid receptor gene in saliva samples correlates
with symptom reduction in individuals with severe PTSD receiving
MDMA-assisted psychotherapy

A modulation of DNA methylation in stress-responsive
genomic regions might be involved in the therapeutic effects
of MDMA-assisted psychotherapy in individuals with severe
PTSD

[83]

STUDIES ON THE DELETERIOUS EPIGENETIC EFFECTS OF MDMA IN ANIMALS

Main findings Significance Ref.

Acute MDMA increases me3H3K4 (permissive) at the promoters of
nociceptin/orphaninFQ (pN/OFQ)-NOP and dynorphin (DYN)-KOP
DNA regions. Acute MDMA increases acH3K9 (permissive) and
decreases me2H3K9 (repressive) at the pDYN (coupled to
transcriptional upregulation). Acute and repeated MDMA decrease
acH3K9 (permissive) at the pN/OFQ promoter (coupled to
transcriptional downregulation)

Acute and repeated MDMA administration upregulates the
DYN system and downregulates the N/OFQ system via
modulating histone PTMs in promoter DNA regions in the
nucleus accumbens

[232]

Chronic MDMA leads to cardiac gene promoters hypermethylation
and circadian-related gene expression changes, coupled to cardiac
hypertrophy and progressive damage

MDMA abuse affects cardiac DNA methylation, and this might
be involved in cardiotoxicity

[217]
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and in vitro, while increasing BDNF and decreasing apoptosis
[147–149]. Ketamine time-dependently modulated the transcrip-
tion of a cluster of hippocampal (but not PFC) miRNAs (764-5p,
1912-3p, 1264-3p, 1298-5p, and 448-3p) which are hosted in the
5-HT2C gene locus, mediated by the inhibition of glycogen
synthase kinase 3 [150]. Acutely, ketamine increased the prefrontal
level of miR-148a-3p and decreased miR-128-3p, miRNAs involved
with the ubiquitin proteasome system [151]. Ketamine also elicited
immunomodulatory prophylactic effects in lipopolysaccharide
(LPS)-treated mice through miR-149 [152], indicating that some
of the immunomodulatory effects of ketamine involved in its
antidepressant effects [153] might be mediated by ncRNAs.
Similarly to what observed with conventional antidepressants

[140, 154–159] the miRNome might predict the therapeutic
response elicited by RAADs. For example, the non-responder
status to ketamine was predicted by lower pretreatment level of
miR-548d-5p and miR-605 in individuals with neuropathic pain
[160, 161]. However, in a study in individuals with treatment-
resistant depression receiving a ketamine infusion, no significant
effects on whole blood miRNA levels were detected 24 hours after
[162]. Further studies are required to identify miRNAs that can
predict favorable treatment outcome in response to RAADs to
increase therapeutic precision.
Circular RNAs (circRNAs), ncRNAs generated by back-splicing,

have extensive complementarity to target mRNAs and can encode
proteins or increase the expression of the target gene(s) [163]. A
regimen of repeated ketamine in rats increased the hippocampal

expression of 4, and decreased the expression of 1 circRNA, with
predicted downstream effects on genes involved in calcium
signaling, G protein signaling, protein phosphorylation, Mamma-
lian Target of Rapamycin (mTOR) signaling, transcription, alter-
native splicing, and neuroplasticity [164]. Long non-coding RNAs
(lncRNAs) are a class of ncRNAs longer than 200 nucleotides with
brain area-specific expression patterns involved with neural
differentiation and plasticity [165]. lncRNA dynamics are stress-
and antidepressant-responsive, are altered in several neuropsy-
chiatric disorders including Major Depressive Disorder (MDD), and
might predict the antidepressant response [118, 127, 166]. For
example, greater decreases of the lncRNA FEDORA predicted the
decrease in depression severity following ketamine in individuals
identifying as female who experience MDD [167].

POTENTIAL MECHANISMS OF RAPID-ACTING
ANTIDEPRESSANTS-INDUCED EPIGENETIC CHANGES
Neuronal activity-mediated epigenetic effects
One mechanism through which psychedelics might affect the
epigenetic regulation of neurotrophic-related gene expression is
via neuronal activity-induced modification of chromatin structure
and accessibility. The membrane depolarization of cortical
neurons results in chromatin remodeling and enhanced BDNF
gene accessibility via a) decreased methylation of BDNF promoter
III and IV [168, 169], b) H3K4 dimethylation of BDNF promoter IV,
and c) HDAC1 and mammalian Switch-independent 3 A promoter

Table 1. continued

STUDIES ON THE EPIGENETIC EFFECTS OF AYAHUASCA IN HUMANS

Main findings Significance Ref.

STUDIES ON THE EPIGENETIC EFFECTS OF AYAHUASCA IN HUMANS

Main findings Significance Ref.

Repeated Ayahuasca in ceremonial settings affects the methylation
level of 5 CpG sites located in the BDNF promoter (more so in
individuals with greater childhood trauma) but does not affect the
methylation level of one CpG site within the FKBP Prolyl Isomerase 5
(FKBP5) gene. These effects are accompanied by decreases in anxiety
and depression detectable for up to 6 months

Repeated Ayahuasca administration in ceremonial settings
elicits sustained antidepressant and anxiolytic effects which
are accompanied by DNA methylation changes in the
regulatory region of the BDNF gene

[79]

Hypothesis- Ayahuasca might contribute to fear extinction learning
and memory reconsolidation via a Sigma-1 receptor-mediated
epigenetic mechanism

Ayahuasca might modulate epigenetics processes, and these
effects might be involved in the therapeutic effects of
Ayahuasca over traumatic memories, fear extinction, and
memory reconsolidation

[80]

STUDIES ON THE EPIGENETIC EFFECTS OF 2,5-DIMETHOXY-4-IODOAMPHETAMINE (DOI) IN ANIMALS

Main findings Significance Ref.

DOI affects the acetylation level of the transcriptional enhancer
histone H3K27 in neuronal cells of the mouse PFC with highly specific
spatio-temporal dynamics and for up to 7 days post-administration.
These changes result in transcriptomics shifts, and a structural (5-HT2A-
mediated) and functional modulation of synaptic plasticity, and
decreased depressive-like behavior

A single DOI administration elicits long-lasting acetylation and
transcriptional changes which are accompanied by long-
lasting structural and functional modulation of synaptic
plasticity

[107]

STUDIES ON THE EPIGENETIC EFFECTS OF Β-CARBOLINES

Main findings Significance Ref.

β-carbolines directly interact with DNA in vitro with affinity
harmine>harmalol>harmaline>tryptoline

β-carbolines might affect chromatin compaction via direct
interaction or via interacting with chromatin-remodeling
complexes

[196]

STUDIES ON THE EPIGENETIC EFFECTS OF PSILOCYBIN

Main findings Significance Ref.

Psilocybin at the dose of 10mg/kg increases oxidative DNA damage in
the PFC and hippocampus

Higher-than clinically-relevant doses of psilocybin elicit DNA
damage in the PFC

[260]

Hypothesis- Psilocybin might affect genetic aging via epigenetic
regulation of telomere length

Psilocybin might affect epigenetics processes involved with
aging, preventing telomere degradation

[68]
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dissociation [169]. Additionally, upon neuronal depolarization,
CaMKII-mediated phosphorylation and release of the methyl-
binding protein MeCP2 from the BDNF promoter III permits BDNF
promoter III-dependent transcription, causing dendritic plasticity
in neurons [168, 170]. Additionally, the ketamine-induced loss of
somatostatin-expressing interneurons dendritic inhibition leads to
heightened synaptic calcium transients in the dendritic spines of
pyramidal neurons in the PFC. This process might play a role in the
epigenetic effects observed following ketamine administration
through altered calcium signaling, leading to increased activity-
dependent synaptic plasticity [171–173]. DOI activates specific
subsets of 5-HT2A- and metabotropic glutamate receptor 2
(mGlu2)-expressing glutamatergic neurons and interneurons, as
well as astrocytes of deep-layer prefrontal and somatosensory
cortices, the claustrum, and the insula [174], and this activation
might be involved in the sustained epigenetic and antidepressant-
like effects elicited [107]. A single administration of DOI induced
prolonged alterations in the acetylation level of neuronal
transcriptional enhancers, causing sustained effects over axono-
genesis, synapse organization, assembly, and function, and
receptor internalization and activity [107]. Despite this preliminary
correlative evidence, given that physiological neuronal activation
itself can profoundly modulate the epigenetic landscape de novo
[175], this calls into questions whether the epigenetic effects
elicited by RAADs are causally involved in the therapeutic effects,
or neuronal activity-driven changes. Future studies are encour-
aged to address this research question.

5-HT receptors signaling-mediated epigenetic effects
Psychedelics might activate similar epigenetic mechanisms to
those activated by endogenous 5-HT signaling through various
5-HT receptors. 5-HT triggers a transient remodeling of chromatin
structure mediated by 5-HT1A and BDNF-TRKB signaling which
decreases HDAC5 expression, and increases cortical H3K9
acetylation of the BDNF promoter and BDNF levels, reinstating
plasticity in the adult nervous system [176]. 5-HT signaling also
induces changes in the methylation status of the promoter of
CREB2, a plasticity-related transcription factor involved in long-
term facilitation [177, 178]. The properties of psychedelics
resemble those of 5-HT: they interact with 5-HT receptors such
as the 5-HT1A and 5-HT2A receptors, triggering biased signaling
and the transcription of genes involved in neurotransmission,
neuroplasticity, and neuroimmunomodulation [14–16]. Given that
these 5-HT receptors are fundamentally involved in governing
cortical circuits mediating cognitive and executive functions
[179, 180], the activation of these receptors by RAADs might
result in specific epigenomic fingerprints and chromatin archi-
tecture changes, ultimately leading to structural and functional
synaptic changes. The epigenetic effects elicited in discrete cell
types through activation of 5-HT receptors, might alter circuit and
network activities, putatively mediating therapeutic improvement
at the circuit-, network-, and system-levels.

TRKB signaling-mediated epigenetic effects
Like classical antidepressants [181], a mechanism that might
mediate the epigenetic effects of RAADs is the activation of
endogenous BDNF signaling through direct binding to and
activation of the TRKB receptor [182–185]. Activation of TRKB
signaling results in the activation of other cascades such as the
CaMKII, RAS/MAPK and phosphoinositide 3 kinase pathways
[14, 17, 186–188]. Moreover, TRKB signaling leads to altered
chromatin structure of the BDNF gene, and transcriptional
upregulation of the BDNF gene and its downstream effector
target AKT Serine/Threonine Kinase 1 (Akt)-mTOR. These events
ultimately cause an increase in neuroplasticity, synaptic potentia-
tion, and antidepressant effects. The outcome is the reopening of
a period of structural and functional plasticity within the CNS that
can be harnessed therapeutically [182–184, 189, 190]. Supporting

a fundamental role of the reopening of critical periods of plasticity,
RAADs lead to the degradation of the extracellular matrix in the
NAc, creating the prerequisites to enable metaplasticity [190].
Whether epigenetic mechanisms are involved in this process
remains unknown.
Interestingly, the epigenetic changes elicited by LSD resemble

those observed during critical periods of neurodevelopment and
synaptic plasticity, thus seemingly re-creating in the adult
nervous system the epigenetic correlates observed during
neurodevelopment and learning [69]. Indeed, CCAAT enhancer
binding protein beta (CEBP2), a co-activator and target gene of
CREB, was a “top-hit” in the PFC in terms of differential DNA
methylation following repeated LSD [69]. In accordance, CEBP2
together with several other neuroplasticity-related genes is
dose-dependently transcriptionally modulated in the PFC
following psilocybin administration [191]. Accordingly, a single
administration of psilocybin following chronic stress during
adolescence in rats was sufficient to normalize depressive-like
and cognitive-like behaviors [192]. Lastly, given that (i) psyche-
delics interact with TRKB, 5-HT2A, and mGlu2 receptors, that (ii)
TRKB interacts with the 5-HT2A [193] and the mGlu2 [194]
receptors, and that (iii) the latter two receptors interact with
each other [195], these interactions may be functionally relevant
from an epigenetic standpoint.

Direct interaction with DNA, histones, or chromatin
remodeling complexes
Another intriguing mechanism supported by several lines of
evidence is that RAADs may directly interact with DNA, histones,
or chromatin remodeling complexes, thus acting as direct
epigenetic modulators. Indeed, the β-carbolines contained in the
brew Ayahuasca directly interact with DNA in vitro [196], and early
studies observed that LSD directly binds DNA or histone proteins
[197–199]. For psychedelics to interact with DNA or histones
in vivo, they would first need to reach the intracellular space and
the nucleus. Indeed, membrane permeability is essential for the
neuroplastic effects of psychedelics, and ligand-bound 5-HT2A
receptors are internalized in vivo and in vitro [200–203].
Additionally, neurotrophic factors are uptaken and transported
to the cell body through retrograde axonal transport. Given that
RAADs bind the TRKB receptor [186], they might similarly be
internalized by nerve terminals. In support of this hypothesis, DMT
is internalized via a three-step process requiring active transport:
1) it is actively transported across the blood-brain barrier, 2) acts as
a 5-HT transporter substrate on the neuronal plasma membrane,
and 3) it is internalized by neuronal cells, and stored into synaptic
vesicles by the neuronal vesicle monoamine transporter 2 for up
to 1 week [204–206]. Whether the sequestered DMT in synaptic
vesicles or the DMT-activated Sigma-1 receptor interact with DNA
or chromatin remodeling complexes remains to be assessed
[206, 207]. Recently, it was reported that 5-HT can covalently bind
to glutamine 5 on the trimethylated H3K4 histone, eliciting a
permissive transcriptional influence that modulates the interaction
of histone PTMs with chromatin readers during neuronal
differentiation [109]. Due to the structural similarity of 5-HTergic
psychedelics to 5-HT, it remains to be assessed whether they
modulate the relationship between histone PTMs and chromatin
readers.
The mechanisms discussed here are not necessarily mutually

exclusive and may be part of a series of events responsible for
reopening a period of neurodevelopmental-like neuroplasticity,
providing a neurobiological substrate that can be harnessed
therapeutically. Achieving this seems to require appropriate
support and integration before, during, and following
psychedelic-assisted psychotherapy. Given that the different
mechanisms modulating chromatin structure and DNA accessi-
bility may interact with one another, deciphering the “psychedelic
epigenome” represents a new frontier in psychiatry.
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INVOLVEMENT OF EPIGENETIC MECHANISMS IN THE
POTENTIAL SIDE EFFECTS ELICITED BY RAADS
While preliminary evidence suggests that the epigenetic effects
induced by RAADs may contribute to therapeutic improvement,
uncertainties persist regarding side effects. Studies have docu-
mented epigenetic alterations following the abuse of RAADs,
which appear antithetical to those elicited by clinically relevant
doses, yet similar to those elicited by stress. These changes are
reminiscent of neuronal, immune and cardiac dysfunction. Most of
the potential epigenetic-mediated side effects associated with
RAADs were observed following repeated administration of higher
doses of ketamine during gestation, lactation, and the neonatal
period (Table 1).

Immune-related side effects
High or repeated doses of ketamine may cause side effects
through the epigenetic modulation of immune function, via (i)
upregulation of permissive H3K4 trimethylation, (ii) downregula-
tion of repressive H3K27 and H3K36 trimethylation, and (iii) DNA
hypomethylation at nuclear factor-κB (NF-κB)-responsive promo-
ters [208, 209], as well as iv) modulation of proinflammatory,
neurotoxic, and oxidative signaling through RNA regulatory
pathways [152, 210–216]. Repeated MDMA administration also
causes epigenetic marks reminiscent of immune dysfunction such
as hypermethylation of the Terminal Nucleotidyltransferase 5B
gene, a chaperone involved with cyclooxygenase 2 maturation
[217]. Future studies are warranted to further investigate potential
epigenetics-mediated immune side effects arising from repeated
use and abuse of RAADs.

Cardiac hypertrophy
In a model of ketamine abuse during early gestation, ketamine
decreased the acetylation level of cardiac histone H3K9 at the
Myosin Light Chain 2 promoter by increasing HDAC3 level and
histone deacetylase activity. These effects were accompanied by
altered expression of several genes related to cardiomyogenesis,
resulting in enlarged heart and ventricular chamber, thinner
ventricular wall, degeneration of cardiomyocytes, and reduced
systolic function [218]. Repeated MDMA exposure also led to
hypermethylation of cardiac DNA promoter regions resulting in
cardiac hypertrophy and progressive damage [217]. Given the
concern surrounding the potential impact of RAADs on cardio-
vascular function through cardiac 5-HT receptors [219], future
investigations are recommended to explore potential deleterious
effects at clinically relevant doses and regimens.

Deleterious gestational and transgenerational effects
While few studies have assessed the transgenerational effects of
RAADs, maternal intake during pregnancy and lactation may
similarly to conventional antidepressants lead to epigenetic
modifications and altered anxiety and depressive-like behavior
in the offspring [56, 220–222]. For example, ketamine abuse
during gestation impacts the epigenetic make-up of the fetus, and
can result in impaired neurocognitive function in the offspring
[218, 223]. Similarly, sociability, emotional behavior, and increased
PFC dopamine levels are observed in the offspring of rats
following repeated Ayahuasca administration during pregnancy
and lactation [224].

Potential for addiction
While there is general consensus that psychedelics have low
potential for addiction, psychological dependence or reinforcing
effects, the NMDA antagonist ketamine [225, 226] and the
empathogen MDMA [227, 228] have been associated with drug-
seeking behaviors accompanied by epigenetic changes, similarly
to drugs of abuse [229, 230]. For instance, one study found that
ketamine-induced conditioned place preference resulted in
differential expression of 34 hippocampal miRNAs [225], while

another study showed that the conditioned place preference was
accompanied by altered expression of serum exosomal miRNAs
associated with processes such as nervous system development,
neuron generation and differentiation, and apoptosis [231]. Acute
and repeated MDMA exposure altered histone PTMs in the NAc
promoter regions of the opioid-related nociceptin/orphaninFQ (N/
OFQ)- Nociceptin Receptor (NOP) and dynorphin (DYN)- Kappa-
Opioid Receptor (KOP) systems [232]. Specifically, acute MDMA
increased the H3K4 methylation at N/OFQ and DYN promoters,
while increasing H3K9 acetylation and decreasing H3K9 dymethy-
lation at the DYN promoter. Acute and repeated MDMA also
decreased H3K9 acetylation at the N/OFQ promoter [232]. These
opioidergic effects could have direct implications for the
therapeutic effects of MDMA on trauma [233], and for MDMA’s
potential for addiction and neurotoxicity [234]. Considering the
known involvement of epigenetics and transcriptional changes in
addiction, it is prudent to investigate through cell-type and brain
area-specific approaches whether epigenetic mechanisms may
play a role in putative addictive, or anti-addictive, properties
of RAADs.

Neurotoxicity
Several studies have reported neurotoxic effects of RAADs arising
from repeated administration or higher doses. While such effects
are not triggered in vivo by clinically relevant doses, this
knowledge remains relevant from a harm-reduction perspective.
Repeated ketamine increased histone deacetylase and DNMT
activity, in an opposite fashion to the homolog changes elicited by
clinically-relevant doses [235]. Additionally, repeated high-dose
ketamine in young mice led to neurotoxicity, neuronal degenera-
tion and memory impairments during adulthood, at least partially
through miR-34c [236], miR-124 [237], miR-137 [238], and miR-
199a-5p [239] signaling. In adolescent rats, repeated ketamine
high-doses elicited hippocampal apoptosis and cognitive impair-
ments, putatively mediated by hippocampal miR-214 down-
regulation/ Phosphatase And Tensin Homolog upregulation
[240] and miR-34a upregulation/ Fibroblast Growth Factor
Receptor 1 downregulation [241]. Repeated high-dose ketamine
also elicited schizophrenia-like behavior accompanied by modula-
tion of the miRNome and neurotrophic-related gene expression in
the PFC and hippocampus [242, 243]. In vitro studies corroborate
the neurotoxic effects of ketamine at higher doses through
epigenetic mechanisms involving HDAC6, miR-22, miR-124, miR-
497-5p, the lncRNAs SPRY4-IT1, LINC00641, and SNHG16, and the
BDNF antisense RNA [214, 215, 237, 244–251]. Together, future
research exploring the neurotoxic effects of RAADs abuse through
epigenetic changes is encouraged.

Cancer
Several of the epigenetic effects elicited by RAADs involve
signaling cascades related to cell growth, proliferation, and
cancer, such as mTOR and BDNF [252, 253]. Therefore, epigenetic
changes in these genes might induce or affect the progression of
cancer. Considering that psychedelic-assisted psychotherapy is a
promising treatment to attenuate psychological and existential
distress in individuals facing a life-threatening conditions such as
cancer, it is important to assess the neoplastic potential of RAADs
[254–256]. If RAADs affected DNA methylation and other
epigenetic mechanisms indiscriminately, for example by increas-
ing or decreasing global DNA methylation aspecifically, this could
pose a risk factor by causing genomic instability or repressing the
transcription of tumor-suppressor genes [257–259]. A recent study
reported oxidative DNA damage following the administration of
higher-than clinically-relevant doses of psilocybin in the PFC and
hippocampus [260]. Early reports suggested that ingesting or
being exposed in utero to psychedelics such as LSD might be
mutagenic and cause chromosomal damage and potential
delayed mutations in the offspring (reviewed in [261]). However,
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subsequent experimental and epidemiological studies failed to
replicate the findings, even in long-term psychedelic users
[261, 262]. One investigation found that ketamine elicited
ferropoptosis, and may thus elicit anti-neoplastic effects through
the lncRNA Pvt1 oncogene /miR-214-3p signaling [263]. Given this
evidence, further studies are warranted to investigate the
potential of RAADs to induce, accelerate, or perhaps counteract,
cancer.

CONCLUSION
Preliminary correlative evidence indicates that the epigenetic
mechanisms engaged by RAADs converge, like conventional
antidepressants, on permissive mechanisms over chromatin areas
involved in neuroplasticity within stress-vulnerable brain regions.
Importantly, these epigenetic changes counteract those induced
by psychosocial stress, early-life adversities, and substance abuse.
Yet, the abuse of RAADs triggers epigenetic marks resembling
those elicited by stress.
Significant knowledge gaps remain, such as the mechanistic

relationship between RAADs and epigenetic effects, the timing of
onset of these epigenetic changes and their duration, the
mechanisms responsible, cell type specificity, the role of
metabolites, and the effects of “microdosing” (the ingestion of
1/10th–1/20th of a “large” dose). The polypharmacological nature
of RAADs implies that each compound, dose, and regimen may
uniquely affect the epigenetic control of gene expression, with
potential indications or contraindications for various psychiatric
disorders. Understanding how the subjective experience and
environment modulate the epigenetic effects accompanying the
administration of RAADs is an area ripe for exploration.
Determining the potential modulation by the environment on
the epigenetic effects of psychedelics could inform ongoing
clinical investigations and expand our understanding of epige-
netics. Brain area- and cell type-specific methods, facilitated by
techniques like cell-sorting approaches and single-cell omics
approaches, could address these questions [264, 265]. Identifying
predictors [266] and modulators (i.e., set and setting, placebo
effect) [267] of epigenetic responses accompanying RAADs
administration could lead to improved therapeutic precision and
efficacy.
While the epigenetic outcomes may causally contribute to

therapeutic benefits, causative investigations lack. Given that
epigenetic changes are observed in all cell types under disparate
conditions (for example following neuronal activity or neurotoxic
stimuli), the observed epigenetic changes could be secondary to
behavioral changes induced by psychedelics. The potential
epigenetic-mediated side effects, such as immune-related effects,
cardiac hypertrophy, gestational and transgenerational effects,
and cancer, also require further investigation. Future studies
addressing these knowledge gaps could lead the way for
developing novel neuroepigenetics-based precision therapeutics.
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