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System Identification Through Lipschitz Regularized Deep
Neural Networks

Elisa Negrini 1 Giovanna Citti 2 Luca Capogna 1

Abstract
In this paper we use neural networks to learn governing equations from data. Specifically
we reconstruct the right-hand side of a system of ODEs ẋ(t) = f(t, x(t)) directly from
observed uniformly time-sampled data using a neural network. In contrast with other
neural network based approaches to this problem, we add a Lipschitz regularization term
to our loss function. In the synthetic examples we observed empirically that this regular-
ization results in a smoother approximating function and better generalization properties
when compared with non-regularized models, both on trajectory and non-trajectory data,
especially in presence of noise. In contrast with sparse regression approaches, since neu-
ral networks are universal approximators, we don’t need any prior knowledge on the
ODE system. Since the model is applied component wise, it can handle systems of any
dimension, making it usable for real-world data.

Keywords — Machine Learning, Deep Learning, System Identification, Ordinary Differ-
ential Equations, Generalization Gap, Regularized Network.

1 Introduction

Dynamical system models are widely used to study, explain and predict behaviour in multi-
ple application areas such as Newton’s laws of mechanics, economic and financial systems,
biology, medicine, social systems and so on (see for instance [5] for more examples of ap-
plications). Governing laws and equations have traditionally been derived from expert
knowledge and first principles, however in recent years the large amount of data available
resulted in a growing interest in data-driven models and approaches for automated model
discovery.
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System identification deals specifically with the problem of building mathematical models
and approximating governing equations using only observed data from the system. Since
the theory of time-invariant linear system has been widely studied over the past decades,
many methods for linear system identification have been developed (see for instance [17],
[15]). In this work we extend this study to time dependent nonlinear systems.
Some frequently used approaches for data-driven discovery of nonlinear differential equa-
tions are sparse regression, Gaussian processes and neural networks. Sparse regression
approaches are based on a user-determined library of candidate terms from which the most
important ones are selected using sparse regression (see for instance [29], [26], [28]). Identi-
fication using Gaussian Processes places a Gaussian prior on the unknown coefficients of the
differential equation and infers them via maximum likelihood estimation (see for instance
[24], [23], [25]). Being universal approximators, neural networks have been widely used
in nonlinear system identification: depending on the architecture and on the properties
of the loss function, they can be used as sparse regression models, they can act as priors
on unknown coefficients or completely determine an unknown differential operator. Many
kind of architectures have been used for system identification, among which multi-layer
feed forward networks (see for instance [16], [13], [3], [22], [4]) and recurrent networks and
its variants which have been used in dynamic identification of nonlinear systems because
of their ability to retain information in time across layers (see for instance [30], [8], [19],
[21]).

In this work we investigate the problem of approximating unknown governing equations,
i.e. the right-hand side f of the system of ODEs:

ẋ(t) = f(t, x(t)) (1)

directly from observed trajectories using a deep neural network N . The main contribution
of this paper is that we improve generalization and recovery of the governing equation by
adding a Lipschitz regularization term in our loss function. This term forces the Lipschitz
constant of the network N to be small, improving the smoothness of the approximating
function even in presence of noise in the data. The choice of this specific kind of regular-
ization is inspired by Oberman and Calder’s work in [18] where they prove that Lipschitz
regularized networks converge and generalize. We empirically show that the test error on
trajectory data as well as the recovery error on non-trajectory data improves when using
this kind of regularization. Other works, such as [31], [10] and [20] also make use of a
Lipschitz constraint to improve generalization and robustness; however, they differ from
our work since they do not apply such regularization to system identification and they use
a different approaches to estimate and bound the Lipschitz constant of the network.
The use of neural networks for system identification has multiple advantages: since neural
networks are universal approximators, we do not need to commit to a particular dictionary
of basis functions, nor need any prior information about the order or about the analytical
form of the differential equation as in [29], [26], [28], [27], [11]; this allows to recover very
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general differential equations. Another advantage of our approach is that, thanks to the
Lipschitz regularization term, our network is able to generalize better than non-regularized
networks for unseen data (both for trajectory and non-trajectory data) and it is robust to
noise. This is especially an advantage over works that use finite differences and polyno-
mial approximation to extract governing equations from data (for instance [6], [26]) which
perform poorly in presence of noise. Finally, our model is defined componentwise so it can
be applied to system of equations of any dimension, thus making it a valuable approach
when dealing with high dimensional real-world data.
Specifically, we consider the system of ODEs (1), where x(t) ∈ Rd is the state vector of
a d-dimensional dynamical system at time t ∈ I ⊂ R, ẋ(t) ∈ Rd is the first order time
derivative of x(t) and f : R1+d → Rd is a vector-valued function right-hand side of the
differential equation. We approximate the unknown function f with a neural network N .
Our observables are the trajectories corresponding to the state vectors x(t) sampled at
discrete uniformly-spaced time steps for different initial conditions. We note that, since
our neural network produces a Lipschitz regular approximant, our approach is most useful
when the function f is Lipschitz continuous (corresponding to a deterministic governing
law), however we are not assuming anything about its analytical form.
The loss function we minimize to learn f is:

L(θ) = 1
k

k∑
i=1

l(N(Xi, θ), Yi) + αLip(N(·, θ)), (2)

where θ are the network parameters, α > 0, (Xi, Yi) are the training data and Lip(N(·, θ))
is the Lipschitz constant of the network as a function of the inputs. The targets Yi are ap-
proximations of ẋ(t), the left-hand side of (1) obtained by difference quotients for non-noisy
data or polynomial interpolation in presence of noise. We stress that accurate interpola-
tion of measurement data is necessary to obtain reliable derivative approximation which
are used as target data. The network resulting from this minimization will reach a trade off
between fitting the data (by minimizing the first term in (2)) and having a small Lipschitz
constant (by minimizing the second term in (2)). This second characteristic is the one that
makes our model robust to noise and able to generalize well for unseen data. We evaluate
the generalization capabilities of our model by means of the well known generalization gap
(see [1]).

The paper is organized as follows: in Section 2 we describe the data structure, pre-
proccesing and selection of training and testing data; in Section 3 we describe the neural
network we used, the loss function and we define the generalization gap; in Section 4 we
propose numerical examples and discuss the results; in Section 5 we show an example of
recovery of the right-hand side function on non-trajectory data; in the conclusion Section
we summarize our results and describe possible future directions of research.
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2 Data

In this section we describe the data structure, preprocessing and selection of training and
testing data.

As explained above, our goal is to recover the right-hand side f of the system of ordinary
differential equations (1) from discrete observations of the state vector x(t) ∈ Rd.
Given equally spaced time points t1, . . . , tM and initial conditions x1(0), . . . , xK(0) ∈ Rd,
define xi(tj) ∈ Rd, i = 1, . . . ,K, j = 1, . . . ,M, to be an observation of the state
vector x(t) at time tj for initial condition xi(0). The recovery of f is obtained through an
approximation with a Lipschitz regularized deep neural network N ; the targets ẋi(tj) ∈ Rd
are the first derivative approximation of x(t) at time tj for initial condition xi(0) and are
generated using the state vector x(t).

Specifically, the network data used in our model are couples (Xh, Yh), h = j + (i− 1)M =
1, . . . ,KM , where Xh is the input and Yh is the target and Xh, Yh are defined as follows:

Xh = (tj , x1
i (tj), x2

i (tj), . . . xdi (tj)) ∈ R1+d,

Yh = Ẋh = (ẋ1
i (tj), ẋ2

i (tj), . . . ẋdi (tj)) ∈ Rd.

The data is separated into training and testing sets made respectively of 80% and 20% of
the data.

(a) Observations of x(t)
for initial conditions
x1(0), x2(0), x3(0) and
time points t1, . . . , t4

(b) Approximations of
ẋ(t) for initial conditions
x1(0), x2(0), x3(0) and time
points t1, . . . , t4, the color
represents the value of ẋ(t)

Figure 1: Example of Training Data
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(a) Example of Distribution of Train-
ing and Testing Data, No Noise. Gray
points are training data, black points
are testing data.

(b) Example of Distribution of Train-
ing and Testing Data, 2% Noise. Gray
points are training data, black points
are testing data.

Figure 2: Distribution of Training and Testing Data for Different Amounts of Noise. Gray points
are training data, black points are testing data.

In the numerical examples we use synthetic data generated in Python: using the func-
tion odeint from the scipy package in Python, we solve ẋ(t) = f(t, x(t)); this provides
us with approximations of the state vector x(t) for initial conditions x1(0), . . . , xK(0) ∈ Rd
at time steps t1, . . . , tM . We perform the experiments in the case of noiseless data, and
data with 1% and 2% of noise. To generate noisy data, we proceed as follows: for each
component xk(t) of the solution x(t) we compute its mean range Mk across trajectories as

Mk = 1
K

(
K∑
i=1
| max
j=1,...,M

xki (tj)− min
j=1,...,M

xki (tj)|
)
.

Then, the 1% noisy version of xki (tj) is given by

x̂ki (tj) = xki (tj) + nijMk,

where nij is a sample from a normal distribution N (0, 0.01) with mean 0 and variance
0.01. In a similar way we add 2% of noise to the data.

The next step is to generate approximations of the first order time derivative of x(t) by
approximating each component ẋk(t) of ẋ(t) using difference quotients. The difference
quotient approximation of the derivatives can be highly inaccurate at the boundaries of
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the time interval as well as not reliable for a large time step ∆t or in presence of noise.
To deal with these issues, we first preprocess our data by extending it on the left and on
the right of the time interval using odd extension to improve accuracy of the derivative
approximation at the boundaries. Then, for noisy data we interpolate componentwise the
noisy state vector x̂i(tj) using cubic splines and we compute derivative approximations
using the smoothed data points. Note that the input data for our network in the noisy
case is still the original noisy state vector x̂i(tj): the smoothed spline version of the state
vector is only used to generate reliable target data.
This preprocessing has multiple advantages: the spline interpolation of the state vector
gives a smooth approximation of the solution vector which greatly improves the quality
of the derivative approximation obtained with difference quotients, especially in presence
of noise in the data; the odd extension at the boundaries preserves the time derivative at
the first and last time step and allows us to use difference quotients to approximate the
derivatives of the state vector at boundary times. Many other options for data preprocess-
ing are present in literature (see for example [9], [12] for a review), among which neural
networks, which were used in this way in [4]. However, spline interpolation is faster than
neural network approximation and, since the sampling of the state vector is assumed to be
uniform in time, it gives a reliable smooth approximation of the solution. We also want to
mention that, while spline interpolation works very well on uniformly sampled data, it does
not work well if the data is not well sampled. This is the reason why we successfully used
splines on the state vector data, but could not solve the original reconstruction problem
with splines since the sampling in space is not uniform. We leave the interesting problem
of finding a better preprocessing method using neural networks for future work. We also
leave for a future work the application of our method to real data for which we expect the
preprocessing and denoising of the data to be a significant part of the work as explained
in [4].

To evaluate the performance of our network, we use the Mean Squared Error (MSE) on test
data. We note that in a real-world problem the test error is the only information accessible
to evaluate the performance on the model and this is why we are mostly interested in this
value even if presenting only synthetic examples. However, since we used synthetic data,
we have access to the real right-hand side function f ; in Section 5 we compare the output
of the network with the true function f(t, x) on arbitrary couples (t, x) in the domain of
f . We will see that that the recovery error is, not surprisingly, larger than the test error.
This is due to the fact that, because of its nature as position vectors along a trajectory,
the data is uniformly sampled in the time variable t, but in general, it is not uniformly
sampled in the space variable x, so that the domain of f may not be well covered by the
data. We will see that despite being larger than the test error, the best recovery error is
always attained by a regularized network, showing once again that Lipschitz regularization
improves generalization.
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3 The Model

In this section we describe the neural network used in the experiments and the loss function.

In the numerical experiments we use a feed forward neural network with L hidden layers
and Leaky ReLU activation function to approximate the right-hand side of an ordinary
differential equation. We apply the network to each training input Xh and we aim to find
the best network parameters to match the corresponding Yh.
For i = 1, . . . , L define the weight matrices Wi ∈ R ni×ni−1 and bias vectors bi ∈ Rni where
ni ∈ N, n0 = 1 + d, nL = d. Let θ = {W, b} be the model parameters.
As activation function, we use a Leaky Rectified Linear Unit (LReLU) with parameter
ε = 0.01, defined as:

σ(x) = LReLU(x) =
{
εx if x < 0;
x if x ≥ 0.

For an input Xh ∈ R1+d and parameters θ we have:

N(Xh, θ) = (. . . (σ(σ(XhW
T
1 + b1)W T

2 + b2) . . . )W T
L + bL ∈ Rd.

Remark 3.1. For ease of notation, in the rest of the paper we will drop the explicit depen-
dence of the network N from the parameters θ and we will only write N(Xh) instead of
N(Xh, θ).
Remark 3.2. The choice of LReLU as activation function is due to the fact that Multilayer
Feed Forward Networks with LReLU activation functions are dense in the set of continuous
functions on Rn0 . This is an application of Theorem 1 in [14] which states that if the
activation function is L∞loc(R), it is not an algebraic polynomial almost everywhere and the
closure of the set of its discontinuity points has measure zero, then the class of functions
implemented by a multilayer feed forward network is dense in C(Rn0).
Since our neural network produces a Lipschitz regular approximant, our approach is most
useful when the function f is Lipschitz continuous. In this case, in fact, since neural
networks with LReLU activation function are dense in the set of continuous functions
on Rn0 , it is possible in theory, given a large enough number of layers and nodes, to
approximate the function f within any prescribed error.

3.1 The Loss Function

In our experiments the loss function is the Mean Squared Error (MSE) with a Lipschitz
regularization on the network. In contrast with the most common choices of regularization
terms found in Machine Learning literature, we don’t impose an explicit regularization
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on the network parameters, but we impose a Lipschitz regularization on the statistical
geometric mapping properties of the network. Of course, since the minimization of the
loss function is done with respect to the parameters, the Lipschitz regularization term will
result in an implicit constraint on the network parameters.
The loss function we use is defined as follows:

L(θ) = 1
KM

KM∑
h=1
‖Yh −N(Xh)‖22 + αLip(N),

where ‖·‖2 is the L2 norm, α > 0 is a regularization parameter and Lip(N) is the Lipschitz
constant of the network N . The predicted approximation of the function f(t, x) is given
by the network N corresponding to argmin

θ
L(θ).

The network N implements a function N : R1+d → Rd and its Lipschitz constant Lip(N)
can be computed as:

Lip(N) = sup
x∈Rd+1

sup
y∈Rd+1

‖N(x)−N(y)‖2
‖x− y‖2

.

In practice, we approximate the Lipschitz constant of the network using a similar approach
to the one presented in [7]: we randomly select a finite set S of points on the training
trajectories; then, we estimate the Lipschitz constant of the network as

Lip(N) = sup
x∈S

sup
y∈S

‖N(x)−N(y)‖2
‖x− y‖2

.

Note that, as empirically shown in [7], the larger the cardinality of the set S, the better
the approximation of the Lipschitz constant.
We explicitly note that controlling the Lipschitz constant of the network N yields control
on the smoothness and rate of change of the approximating function.

3.2 Generalization Gap

As explained before, the goal of this paper is to compare the performance of Lipschitz reg-
ularized networks and non-regularized networks when approximating unknown governing
equations from observed data. To do this, we perform multiple numerical experiments and
for a fixed training error we compare the test error and generalization gap for multiple
choices of the Lipschitz regularization parameter. To be more precise we define ρ to be
the true data distribution, Dk the training data distribution, discrete approximation of ρ
which converges to ρ as the number of data points k tends to infinity, and Dtest to be the
discrete distribution of test data. We write X ∼ ρ to indicate that the random variable X
has distribution ρ.
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Generalization gap in machine learning refers to the difference:

EX∼ρ[‖Nk(X)− Y (X)‖22]− EX∼Dk
[‖Nk(X)− Y (X)‖22],

where Nk denotes the function learned when using k data points after minimizing the loss
function

L(θ) = 1
k

k∑
i=1
‖Nk(X)− Y (X)‖22 + αLip(N)

on the training data Dk. The quantity EX∼Dk
[‖Nk(X)−Y (X)‖22] is known since it can be

evaluated on the training data Dk once the optimal Nk has been found.
On the other hand, the quantity EX∼ρ[‖Nk(X)−Y (X)‖22] is unknown since we do not have
access to the true data distribution ρ. This quantity, however, can be estimated by using
a test set of data, Dtest, which is a data set that was not used in the training process.
The network Nk which minimizes the training error is evaluated on the test set an the value
of EX∼Dtest [‖Nk(X)− Y (X)‖22], is taken as an estimate of EX∼ρ[‖Nk(X)− Y (X)‖22]. This
estimate is only accurate if the distribution Dtest is a faithful discrete representation of the
true data density ρ, that is, if the discrete distribution Dtest converges, as the number of
test data goes to infinity, to the true distribution ρ.
The Hoeffding inequality (see [1], section 1.3) gives a bound which depends on the number of
test data on the approximation of EX∼ρ[‖Nk(X)−Y (X)‖22] obtained using EX∼Dtest [‖Nk(X)−
Y (X)‖22]: if m is the number of test data, given any ε > 0 the Hoeffding inequality states
that:

P(|EX∼ρ[‖Nk(X)− Y (X)‖22]− EX∼Dtest [‖Nk(X)− Y (X)‖22]| > ε) ≤ 2e−2ε2m.

So that if we have m = 1000 data points in the test set, then EX∼ρ[‖Nk(X)−Y (X)‖22] will
be within 5% of EX∼ρ[‖Nk(X)−Y (X)‖22] with 98% of probability. This inequality justifies
the use of test error in our numerical examples as an estimate of EX∼ρ[‖Nk(X)−Y (X)‖22].

4 Numerical Examples

In this section we present numerical examples. We propose four examples of recovery of
ordinary differential equations: a one dimensional autonomous ODE, a one dimensional
time dependent ODE, the Lotka Volterra system and the pendulum equation. The results
shown are representative of a larger testing activity, in which several different types of
right-hand sides f(x, t) have been used, leading to comparable experimental results.
For each example we summarize the Training and Testing MSE and the Genralization
Gap across all choices of the regularization parameter both in case of noiseless and noisy
data. In each case we select the best regularization parameter as the one that attains
the best test accuracy. To compare the best regularized model with the non-regularized
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one we plot graphs of the true and recovered function as well as graphs of absolute test
error when using non-regularized and the best regularized models. In each example we
will describe the specific choices of time interval, time step and initial conditions as well as
the hyperparameters, selected by cross validation, of our network. We also notice that the
one-dimensional examples are the basis for the multi-dimensional ones since the recovery
in higher dimension is performed componentwise.

4.1 Autonomous 1D ODE

The first numerical example we propose is the recovery on test data of a simple 1-dimensional
autonomous ODE: ẋ(t) = x cos(x).
The function we are trying to reconstruct on test data is f(x) = x cos(x).
As explained in the data section (Section 2), we generate the data by computing an approx-
imated solution x(t) for the equation using the odeint function in Python. We generate
the solution for time steps t linearly spaced in the interval [0, 3] with ∆t = 5×10−1 and for
K = 200 initial conditions uniformly sampled in the interval [−2.5, 2.5]. If needed, at this
point we add noise to the data. We then extend the solution by 2 time steps on both sides
of the time interval, interpolate the extended solutions using cubic splines and generate
target data using difference quotients. For more details on this procedure see Section 2.
The hyperparameters of our model are selected in each example by cross validation; in this
example, the network N has L = 8 layers, each layer has 30 neurons; we use minibatches of
dimension 50, the learning rate is 10−2 and it is decreased by a factor of 10 every 7 epochs.
We generate results for the regularization parameters: 0 (no regularization), 0.01, 0.005,
0.0025, 0.001.
Since our goal is to compare the performance on test data of the networks with an without
regularization, we fix a common train MSE across all the regularization parameters choices
in order to get a meaningful comparison of the test errors. To do so, we start by training
the Lipschitz regularized network with parameter 0.01 for 10 epochs. After the training we
obtain what we will be calling a baseline training MSE; for all the other parameter choices,
we train the network until the baseline training MSE is reached within an accuracy to the
third significant digit.
For each choice of the regularization parameter we report the relative baseline train MSE,
the relative test MSE and the absolute Generalization Gap. We select the best non-zero
regularization parameter as the one that attains the smallest Test error. We compare the
regularized and non-regularized network by comparing the corresponding test errors. We
also generate plots of the true and recovered right-hand side as well as plots of the absolute
errors obtained with the best Lipschitz regularized network and with the non-regularized
one. All these results are generated for noiseless data, 1%-noisy data and 2%-noisy data
(for details on how we add noise to the data see Section 2).
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Noiseless Data
We present results in the case of noiseless data.

Regularization
Parameter

Baseline
Train MSE

Generalization
Gap Test MSE

0 0.0513% 2.07e-04 0.0566%
0.01 0.0513% 2.01e-04 0.0564%
0.005 0.0513% 4.30e-05 0.0524%
0.0025 0.0513% 5.16e-05 0.0526%
0.001 0.0513% 3.00e-05 0.0521%

Table 1: Test Error and Generalization Gap comparison for different choices
of regularization parameters, no noise in the data.

In Table 1 we report the regularization parameter, the baseline train MSE and test MSE
and the generalization gap. We found that, even if all models reach a very good accuracy
on test data, the regularized models always generalize better than the non-regularized one
and the best accuracy is obtained when adding Lipschitz regularization with parameter
0.001. This result shows that when no noise is present in the data, there is no need of
strong regularization to improve performance.

We then plot the true and recovered right-hand side and the absolute errors on test data
obtained by the best Lipschitz regularized network and by the non-regularized one. In
Figure 3 we represent the test data as a scatter plot in the plane t, x colored according to:
the true value of the function f(t) = x(t) cos(x(t)) in figure 3a, the predicted value of f(t)
when using the non-regularized network in figure 3b and the predicted value of f(t) when
using the best Lipschitz regularized network in figure 3c. We see again that both networks
are able to generalize well on test data; in fact the true and recovered functions on test
data are nearly indistinguishable. The only small difference can be seen in the upper and
lower left corners, where the true function seem to have a larger value (lighter gray level)
than in the corresponding predictions.
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(a) True test data. (b) Test prediction, non-
regularized network.

(c) Test prediction, Lip-
schitz regularized network
with parameter 0.001.

Figure 3: Prediction comparison on test data, noiseless data.

In Figure 4 we plot the absolute error on test data obtained by the non-regularized and by
the best Lipschitz network. The gray level represents the magnitude of the absolute error
on a scale from 0 to 0.15, darker gray level means smaller error. From these plots we can
clearly see that for both networks the maximum error is attained in the upper and lower
left corners. This is expected since by design less training data is available in that part of
the domain. We notice also that, as seen in Table 1 the best test MSE is attained by the
Lipschitz regularized network. This means that, while for small parts of the domain (for
example x ∈ [−2.5,−2]) the error may be larger for the Lipschitz regularized network, the
mean error on test data on the whole domain is smaller in the Lipschitz regularized case.
Consider now the data-dense subdomain obtained when restricting x to the interval [−2, 2].
We notice that the Lipschitz regularized network attains a better accuracy overall in this
part of the domain. We also notice that the regularized network attains better accuracy
than the non-regularized one in the top left corner of the full domain. This shows that
the regularized network is able to generalize better than the non-regularized one since it is
able to get better accuracy in a part of the domain where less training data was available.
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(a) Test error non-regularized network,
noiseless data.

(b) Test error Lipschitz regularized net-
work with parameter 0.001, noiseless
data.

Figure 4: Test error comparison, noiseless data.

Noisy Data
We present results when adding 1% and 2% of noise to the data.

Regularization
Parameter

Baseline
Train MSE

Generalization
Gap Test MSE

0 0.0591% 3.94e-04 0.0693%
0.01 0.0591% 3.05e-04 0.0670%
0.005 0.0591% 1.68e-04 0.0635%
0.0025 0.0591% 2.70e-04 0.0661%
0.001 0.0591% 2.54e-04 0.0657%

Table 2: Test Error and Generalization Gap comparison for different choices
of regularization parameters, 1% noise in the data.
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Regularization
Parameter

Baseline
Train MSE

Generalization
Gap Test MSE

0 0.0839% 3.57e-04 0.0933%
0.01 0.0839% 9.73e-06 0.0841%
0.005 0.0839% 3.08e-05 0.0847%
0.0025 0.0839% 5.27e-05 0.0853%
0.001 0.0839% 2.03e-05 0.0844%

Table 3: Test Error and Generalization Gap comparison for different choices
of regularization parameters, 2% noise in the data.

In Tables 2 and 3 we report the training and testing MSE and the generalization gap across
all choices of regularization parameters respectively for 1% and 2% of noise in the data.
As in the noiseless case, the regularized networks always attain better test accuracy than
the non-regularized network, with best test accuracy obtained when the regularization
parameter is 0.005 in the 1% noise case and 0.01 in the 2% noise case. These results show
that the higher the amount of noise in the data, the larger the regularization parameter
which attains best accuracy. This is reasonable since a larger regularization parameter
forces the output network to be smoother and thus it prevents overfitting in case of noise in
the data. Again the recovery on test data is very good for all choices of the regularization
parameters since they all attain a very small relative test error; similar plot as in the
noiseless case can be obtained in these cases for the true and predicted function f on test
data. We omit these plots.

We then compare in Figures 5 and 6 the absolute test error obtained by the non-regularized
network and by the best Lipschitz regularized networks. By comparison of Figures 5a and
5b and of Figures 6a and 6b we can see that in the data-dense subdomain obtained by
restricting x to [−2, 2] the Lipschitz regularized network attains a better test accuracy than
the non-regularized one, showing again that the regularized network is able to generalized
better than the non-regularized one. As in the noiseless case, the worst accuracy is attained
in the upper and lower left corners of the full domain where less training data was available.
We also note that by comparing the noiseless and noisy results, the test error increases as
the noise in the data increases, but it is always smaller than 0.1% which shows that all
the networks are able to recover this right-hand side function very well even in presence of
noise in the data.
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(a) Test error non-regularized network,
1% noisy data.

(b) Test error Lipschitz regularized net-
work with parameter 0.005, 1% noisy
data.

Figure 5: Test error comparison, 1% noisy data.

(a) Test error non-regularized network,
2% noisy data.

(b) Test error Lipschitz regularized net-
work with parameter 0.01, 2% noisy
data.

Figure 6: Test error comparison, 2% noisy data.
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4.2 Non-Autonomous 1D ODE

To highlight the great applicability of our algorithm, we consider an example in which the
right-hand side depends both on space ans time. We propose here the recovery on test
data of the ODE:

ẋ(t) = e−x log(t)− t2.

The function we are trying to reconstruct is f(t, x) = e−x log(t)− t2.
We generate the solution for time steps t linearly spaced in the interval [0.1, 2] with ∆t =
5× 10−1 and for K = 200 initial conditions uniformly sampled in the interval [0.5, 5]. We
add noise to the data and generate target data as explained in Section 2.
In this example, the network N has L = 8 layers, each layer has 30 neurons; we use
minibatches of dimension 100, the learning rate is 10−2 and it is decreased by a factor of 10
every 5 epochs. We generate results for the regularization parameters: 0 (no regularization),
0.01, 0.005, 0.0025, 0.001.
As in the previous example, we fix a baseline train MSE across all the regularization
parameters choices in order to get a meaningful comparison of the test errors.
For each choice of the regularization parameter we report the relative baseline train MSE,
the relative test MSE and the absolute Generalization Gap. We select the best non-zero
regularization parameter as the one that attains the smallest Test error. We compare the
regularized and non-regularized network by comparing the corresponding test errors. Since
also in this example all the networks attain a very good test accuracy, we omit the plots of
the true and predicted function on test data and only show the plots of the absolute errors,
since they better show the differences between regularized and non-regularized networks.
The results are generated for noiseless data, 1%-noisy data and 2%-noisy data.

Regularization
Parameter

Baseline
Train MSE

Generalization
Gap Test MSE

0 0.0521% 2.85e-04 0.0596%
0.01 0.0521% 2.70e-04 0.0593%
0.005 0.0521% 1.75e-04 0.0564%
0.0025 0.0521% 1.51e-04 0.0550%
0.001 0.0521% 1.81e-04 0.0569%

Table 4: Test Error and Generalization Gap comparison for different choices
of regularization parameters, No noise in the data.
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Regularization
Parameter

Baseline
Train MSE

Generalization
Gap Test MSE

0 0.0802% 3.02e-04 0.0871%
0.01 0.0802% 1.05e-04 0.0826%
0.005 0.0802% 2.64e-04 0.0863%
0.0025 0.0802% 1.86e-04 0.0845%
0.001 0.0802% 2.05e-04 0.0849%

Table 5: Test Error and Generalization Gap comparison for different choices
of regularization parameters, 1% noise in the data.

Regularization
Parameter

Baseline
Train MSE

Generalization
Gap Test MSE

0 0.183% 5.78e-04 0.195%
0.01 0.1832% 4.89e-04 0.193%
0.005 0.1832% 5.35e-04 0.194%
0.0025 0.1832% 6.08e-04 0.196%
0.001 0.1832% 5.22e-04 0.194%

Table 6: Test Error and Generalization Gap comparison for different choices
of regularization parameters, 2% noise in the data.

In Tables 4, 5 and 6 we report the regularization parameter, the baseline train MSE and
test MSE and the generalization gap respectively in the case of noiseless data 1% and
2%-noisy data. We found that, even if all models reach a very good accuracy on test data,
the regularized models in general generalize better than the non-regularized one and the
best accuracy is obtained when adding Lipschitz regularization with parameter 0.0025 in
the noiseless case, 0.01 in both the noisy cases presented. As in the previous example we
see that when no noise is present in the data, a small regularization parameter attains
the best test error, while when the data is noisy, a larger regularization parameter helps
generalization since it prevents overfitting by forcing the network to be smoother. We
note though that even in the case of noiseless data, adding a Lipschitz regularization term
improves generalization. Finally we note that in all cases the test error is smaller than
0.2% which shows that all the networks are able to recover this right-hand side function
very well even in presence of noise in the data.

In Figures 7, 8 and 9 we compare the absolute test error obtained by the non-regularized
network and by the best Lipschitz regularized networks. The gray level represents the
magnitude of the absolute error on a scale from 0 to 0.10, darker gray level means smaller

17



error. Comparing these three figures we can see how the test error increases as we increase
the amount of noise in the data. By comparison of Figures 7a and 7b, of Figures 8a and
8b and of Figures 9a and 9b, we can see that largest errors for all networks are attained
at the boundaries of the temporal domain, this is reasonable since for a central point
the network can use neighboring points to better estimate the function value, while for
boundary points this is not possible since there is no data for t < 0 and t > 2. The best
accuracy is is attained in the central part of the domain where the Lipschitz regularized
networks perform best, showing again that regularized networks are able to generalized
better than the non-regularized one.

(a) Test error non-regularized network,
No noise in the data.

(b) Test error Lipschitz regularized net-
work with parameter 0.0025, no noise in
the data.

Figure 7: Test error comparison,1% noisy data.
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(a) Test error non-regularized network,
1% noisy data.

(b) Test error Lipschitz regularized net-
work with parameter 0.01, 1% noisy
data.

Figure 8: Test error comparison, 1% noisy data.

(a) Test error non-regularized network,
2% noisy data.

(b) Test error Lipschitz regularized net-
work with parameter 0.01, 2% noisy
data.

Figure 9: Test error comparison, 2% noisy data.
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4.3 Autonomous ODE System

We present here a higher dimensional dimensional example in which we recover a system
of equations. We propose the recovery on test data the following Lotka-Volterra system of
differential equations: {

ẋ1 = 1.5x1 − x1x2;
ẋ2 = −3x2 + x1x2.

The functions we are trying to reconstruct are:

f1(x1, x2) = 1.5x1 − x1x2, f2(x1, x2) = −3x2 + x1x2.

The recovery is done separately for the two components f1 and f2 each of which is approxi-
mated by a neural network. We note that, given the similar form of f1 and f2, it is possible
to use only one network to approximate both components, however in this paper we assume
no knowledge on the form of the right-hand side, so we recover the two components using
two different networks. We generate the solution for time steps t linearly spaced in the
interval [0, 4] with ∆t = 5× 10−1 and for K = 400 initial conditions uniformly sampled in
the interval [1, 5]. We add noise to the data and generate reliable target data as explained
in Section 2. We note that in this case we are working in a 2-dimensional space; because
of the curse of dimensionality, in order to obtain good accuracy we need more data than
in the 1-dimensionl examples.
In this example, the networks N1 and N2 that approximate the two components of the
right-hand side have L = 10 layers and each layer has 50 neurons; we use minibatches
of dimension 200, the learning rate is 10−2 and it is decreased by a factor of 10 every 3
epochs. We generate results for the regularization parameters: 0 (no regularization), 0.01,
0.005, 0.0025, 0.001.

First Component Second Component
Regularization
Parameter

Baseline
Train MSE

Generalization
Gap Test MSE Regularization

Parameter
Baseline

Train MSE
Generalization

Gap Test MSE

0 0.0120% 2.10e-04 0.0128% 0 0.0160% 3.07e-04 0.0174%
0.01 0.0120% 8.34e-05 0.0123% 0.01 0.0160% 8.67e-05 0.0164%
0.005 0.0120% 1.35e-04 0.0125% 0.005 0.0160% 4.76e-05 0.0162%
0.0025 0.0120% 1.56e-04 0.0126% 0.0025 0.0160% 1.13e-04 0.0165%
0.001 0.0120% 3.11e-05 0.0121% 0.001 0.0160% 2.95e-05 0.0161%

Table 7: Test Error and Generalization Gap comparison for different choices
of regularization parameters, No noise in the data.
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First Component Second Component
Regularization
Parameter

Baseline
Train MSE

Generalization
Gap Test MSE Regularization

Parameter
Baseline

Train MSE
Generalization

Gap Test MSE

0 0.238% 1.34e-03 0.244% 0 0.266% 3.23e-03 0.280%
0.01 0.238% 3.86e-04 0.239% 0.01 0.266% 1.50e-03 0.272%
0.005 0.238% 3.36e-04 0.239% 0.005 0.266% 4.83e-04 0.268%
0.0025 0.238% 1.06e-03 0.243% 0.0025 0.266% 1.70e-03 0.273%
0.001 0.238% 1.16e-03 0.243% 0.001 0.266% 1.52e-03 0.273%

Table 8: Test Error and Generalization Gap comparison for different choices
of regularization parameters, 1% noise in the data.

First Component Second Component
Regularization
Parameter

Baseline
Train MSE

Generalization
Gap Test MSE Regularization

Parameter
Baseline

Train MSE
Generalization

Gap Test MSE

0 0.544% 1.21e-02 0.587% 0 0.509% 5.51e-03 0.533%
0.01 0.544% 6.26e-03 0.567% 0.01 0.509% 9.45e-04 0.513%
0.005 0.544% 7.48e-03 0.571% 0.005 0.509% 1.08e-03 0.513%
0.0025 0.544% 6.50e-03 0.568% 0.0025 0.509% 1.36e-03 0.515%
0.001 0.544% 6.86e-03 0.569% 0.001 0.509% 1.14e-03 0.514%

Table 9: Test Error and Generalization Gap comparison for different choices
of regularization parameters, 2% noise in the data.

In Tables 7, 8 and 9 we report the regularization parameter, the baseline train MSE and test
MSE and the generalization gap for both components, respectively in the case of noiseless
data 1% and 2%-noisy data. The recovery is very good for all networks, with regularized
network performing better in all cases. For clarity, when the same relative Test MSE is
attained by two models, the best model is the one which has the smaller generalization
gap. We note again that when more noise is present in the data, a larger regularization
parameter is preferable since it gives better test accuracy. Specifically, when no noise is
added to the data, the best regularization parameter is the 0.001, while when we add 1%
and 2% of noise in the data the best parameters are respectively 0.005 and 0.01. As we
noted above, since the functional form of f1 and f2 is very similar, we obtain very similar
accuracy for both components. In all cases, the test error is smaller than 0.6%.

As in the previous two examples, we generated plots of the absolute errors on test data
obtained by the non-regularized and best Lipschitz regularized networks. Similar results
as in previous cases are observed: an overall better accuracy obtained by the Lipschitz
regularized network for all amounts of noise in the data and largest errors attained at the
boundaries of the domain and where the training data was sparse. For brevity we omit
these plots here, but they can be found in the additional material section of the paper.
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4.4 Second Order Non-Autonomous ODE

FInally, in the last example we consider a non autonomous differential equation of second
order. This can be reduced to a system of two ODEs of first order having both space and
time dependence in the right-hand side as well as an oscillatory term which may make the
recovery harder.
We propose the recovery on test data of the following pendulum equation:

z̈ + 2ż + 2z = cos(2t)

This can be rewritten in the usual way as a system of two first order ODEs by setting
x1 := z, x2 := ż. We obtain: {

ẋ1 = x2

ẋ2 = −2x1 − 2x2 + cos(2t)

The functions we are trying to reconstruct on test data are:

f1(t, x1, x2) = x2, f2(t, x1, x2) = −2x1 − 2x2 + cos(2t)

In this case the recovery is done separately for the two components f1 and f2 each of
which is approximated by a neural network. We generate the solution for time steps t
linearly spaced in the interval [0, 2] with ∆t = 5×10−1 and for K = 1000 initial conditions
uniformly sampled in the interval [0, 2]. We add noise to the data and generate reliable
target data as explained in Section 2. We note that in this case we are working in a 3-
dimensional space; because of the curse of dimensionality, in order to obtain good accuracy
we need more data than in the 1-dimensional examples.
In this example, the networks N1 and N2 that approximate the two components of the
right-hand side have L = 10 layers and each layer has 60 neurons; we use minibatches
of dimension 100, the learning rate is 10−2 and it is decreased by a factor of 10 every 3
epochs. We generate results for the regularization parameters: 0 (no regularization), 0.01,
0.005, 0.0025, 0.001. We fix a baseline train MSE across all the regularization parameters,
we report the relative test MSE and the absolute Generalization Gap, and select the best
regularization parameter for both components.

First Component Second Component
Regularization
Parameter

Baseline
Train MSE

Generalization
Gap Test MSE Regularization

Parameter
Baseline

Train MSE
Generalization

Gap Test MSE

0 0.00829% 8.71e-06 0.00854% 0 0.0103% 7.18e-06 0.0104%
0.01 0.00829% 4.23e-06 0.00841% 0.01 0.0103% 4.23e-06 0.0103%
0.005 0.00829% 5.80e-06 0.00845% 0.005 0.0103% 7.16e-06 0.0104%
0.0025 0.00829% 3.84e-06 0.00840% 0.0025 0.0103% 4.79e-06 0.0103%
0.001 0.00829% 2.51e-06 0.00836% 0.001 0.0103% 3.38e-06 0.0103%

Table 10: Test Error and Generalization Gap comparison for different choices
of regularization parameters, No noise in the data.
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First Component Second Component
Regularization
Parameter

Baseline
Train MSE

Generalization
Gap Test MSE Regularization

Parameter
Baseline

Train MSE
Generalization

Gap Test MSE

0 0.0200% 3.44e-05 0.0210% 0 0.0256% 1.45e-04 0.0273%
0.01 0.0200% 2.08e-06 0.0200% 0.01 0.0256% 5.86e-05 0.0263%
0.005 0.0200% 8.39e-06 0.0202% 0.005 0.0256% 1.31e-05 0.0257%
0.0025 0.0200% 3.71e-06 0.0201% 0.0025 0.0256% 9.09e-05 0.0267%
0.001 0.0200% 1.61e-05 0.0204% 0.001 0.0256% 7.44e-05 0.0265%

Table 11: Test Error and Generalization Gap comparison for different choices
of regularization parameters, 1% noise in the data.

First Component Second Component
Regularization
Parameter

Baseline
Train MSE

Generalization
Gap Test MSE Regularization

Parameter
Baseline

Train MSE
Generalization

Gap Test MSE

0 0.0609% 7.47e-05 0.0629% 0 0.0819% 3.23e-04 0.0854%
0.01 0.0609% 2.82e-05 0.0617% 0.01 0.0819% 8.59e-05 0.0828%
0.005 0.0609% 5.04e-05 0.0622% 0.005 0.0819% 6.74e-05 0.0826%
0.0025 0.0609% 5.55e-05 0.0624% 0.0025 0.0819% 7.57e-05 0.0827%
0.001 0.0609% 5.24e-05 0.0623% 0.001 0.0819% 9.00e-05 0.0829%

Table 12: Test Error and Generalization Gap comparison for different choices
of regularization parameters, 2% noise in the data.

In Tables 10, 11 and 12 we report the regularization parameter, the baseline train MSE
and test MSE and the generalization gap for both components, respectively in the case of
noiseless data 1% and 2%-noisy data. Again the recovery is very good for all networks,
with regularized network performing better in all cases. We note again that when more
noise is present in the data, a larger regularization parameter is preferable since it gives
better test accuracy. We also note that, even if the hyperparameters of the two networks
N1 and N2 were the same, the recovery of the first component f1 is always more accurate
than the recovery of f2; this is due to the simpler functional form of the function f1.
In all cases, however, the test error is smaller than 0.1%.
As in the previous two examples, we generated plots of the absolute errors on test data
obtained by the non-regularized and best Lipschitz regularized networks. As in previous
cases we observed an overall better accuracy obtained by the Lipschitz regularized network
for all amounts of noise in the data and largest errors attained at the boundaries of the
domain and where the training data was sparse. For brevity we omit these plots here, but
they can be found in the additional material section of the paper.
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5 Function Recovery on Non-Trajectory Data

In this section we report the function reconstruction errors obtained using the regularized
and non-regularized networks both with and without noise in the data. As explained in
Section 2, since in the numerical examples we used synthetic data, we can compare the
reconstruction given by our networks with the true right-hand side of the ODE. In a real-
world setting, however, this comparison would not be possible: the only way to evaluate
the performance of the network would be by computing the test error as we did in Section
5. We report the function recovery errors and plots only for a 1-dimensional example;
similar results were obtained for the other examples proposed in Section 4.

5.1 Recovery of Non-Autonomous 1D ODE

We report here the recovery errors on the full domain for the ODE: ẋ(t) = e−x log(t)− t2.
The spatio-temporal domain in which we recover the function e−x log(t)− t2 is composed
of couples (t, x) ∈ [0.1, 2] × [−1.5, 5] where the original data was generated. We see that
the recovery error is worse than the test error obtained in the previous section because of
the bad sampling of the function domain.

Regularization
parameter

Recovery Error
on Full Domain

0 1.82%
0.01 1.79%
0.005 1.90%
0.0025 1.83%
0.001 1.84%

Recovery Error, No Noise in the
Data

Regularization
parameter

Recovery Error
on Full Domain

0 1.76%
0.01 1.30%
0.005 1.80%
0.0025 1.78%
0.001 1.64%

Recovery Error, 1% Noise in the
Data

Regularization
parameter

Recovery Error
on Full Domain

0 1.71%
0.01 1.72%
0.005 1.65%
0.0025 1.83%
0.001 1.70%

Recovery Error, 2% Noise in the
Data

Table 13: Recovery Error on Full Domain

In Table 13 we report the relative mean recovery error on the full domain. The error is
computed as the mean relative difference between f(t, x) and N(t, x) on couples (t, x) on
a regular 100× 100 grid in the tx−domain.
We see that, even if the regularization does not improve the recovery error for all choices
of the regularization parameter, the best accuracy is obtained in all cases by a regularized
network, showing that regularized network are able to better generalize from part of the
domain where data was available to parts of the domain where the data was not present.

Finally, below are the plots of the true function and of the recovery obtained by the trained
networks which attain lowest recovery errors in the tx−domain; the gray level represent
the value of the function for each couple (t, x) (see Figure 10). We note that where less
data was present initially, the recovery of the function is less accurate, both in the non-
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regularized and regularized cases. We also provide plots of the recovery error in the three
cases; the gray level represents the magnitude of the error (see Figure 11). From the error
plots we can clearly see that the maximum error is attained in the lower left corner of
the domain. In this part of the domain not only no training data was available, but also
the function f(t, x) changes suddenly from a value of around −2 to a value of −10. It is
expected then that the network is not able to detect this sudden change in the function
values since this was not present in the training data. We notice also that, even if in the
upper right corner no training data was available, the networks are able to extrapolate
well the function behaviour there. This is because the true function f(t, x) attains similar
values in the upper right corner as in the data-dense part of the domain (the central part
of the domain).

True Function on
full domain.

Recovery on
full domain, No
Noise in the
Data, Lipschitz
regularization
parameter 0.01

Recovery on
full domain, 1%
Noise in the
Data, Lipschitz
regularization
parameter 0.01

Recovery on
full domain, 2%
Noise in the
Data, Lipschitz
regularization
parameter 0.005

Figure 10: True function and Recovered functions
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Recovery error on full do-
main, No Noise in the
Data, Lipschitz regular-
ization parameter 0.01

Recovery error on full do-
main, 1% Noise in the
Data, Lipschitz regular-
ization parameter 0.01

Recovery error on full do-
main, 2% Noise in the
Data, Lipschitz regular-
ization parameter 0.005

Figure 11: Recovery Error on Full Domain

Remark 5.1. We explicitly want to notice that the error obtained in the recovery is strongly
influenced by the quality of the target data. Specifically, in presence of noise if the spline
approximation of the noisy solution is not accurate, the target data may not be represen-
tative of the derivative function. As a result, the testing error may be significantly smaller
than the recovery error on the full domain, not only because the full domain is not well
sampled, but also because the quality of the data was not very good. This also explains
why the best regularization parameters obtained when comparing test errors are different
than the ones obtained when comparing recovery errors. This shows the importance of a
good preprocessing of the data in case of real-world data and the importance of further
study in this direction.

6 Conclusion

In this paper we use neural network to learn governing equations from data. Differently
than other papers that use neural networks for system identification, we add a Lipschitz
regularization term to our loss function to force the Lipschitz constant of the network to
be small. This regularization results in a smoother approximating function and better gen-
eralization properties when compared with non-regularized models, especially in presence
of noise. These results are in line with the theoretical work of Calder and Oberman [18] in
which they prove that networks with Lipschitz regularization converge and generalize. The
results shown in the examples, which are representative of a larger testing activity with
several different types of right-hand sides f(x, t), show another advantage of our method:
since neural networks are universal approximators, we do not need any prior knowledge
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on the ODE system, in contrast with sparse regression approaches in which a library of
candidate functions has to be defined. Finally, since our method is applied componentwise,
it can be used to identify systems of any dimension, which makes it a valuable approach
for high-dimensional real-world problems.

We propose examples for synthetic data for autonomous and non autonomous equations
of different dimensions and in all cases we observe a better test error on trajectory data
when using the Lipschitz regularization term in the loss function. Since we use synthetic
data we also have access to the true right-hand side function f . For this reason, we also
record recovery errors on non-trajectory data by comparing the output of network N with
the true function f(t, x) on arbitrary couples (t, x) in the domain of f . Again the best
accuracy is obtained by regularized networks, showing again that the Lipschitz regular-
ized networks are able to generalize better to unseen data than non-regularized ones. Our
experiments also show that accurate interpolation of measurement data is necessary to
obtain reliable derivative approximation. Since these are used as target data, their quality
strongly influences the results obtained especially on non-trajectory data; better prepro-
cessing techniques will be object of future work.

In the future we would like to apply our method to real-world data, for which we expect
the data preprocessing and denoising to be central in order to obtain accurate results.
We would also like to generalize this method to learn partial differential equations.
Finally, in contrast with the most common choices of regularization terms found in ma-
chine learning literature, in this work we impose a regularization on the network statistical
geometric mapping properties, instead of on its parameters. Of course, since the mini-
mization of the loss function is done with respect to the network parameters, the Lipschitz
regularization term results in an implicit constraint on such parameters. In the future we
would like to study theoretically this regularization term, how it is related to the size of the
weights of the network, in line with Bartlett work about generalization [2], and explicitly
express it as a constraint on the network parameters. This latter study would result in a
much faster model since obtaining a good approximation of the Lipschitz constant of the
network can be computationally very expensive.
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A Supplementary Material

A.1 Error Plots for Lotka Volterra System

(a) Test error non-regularized network,
No noise in the data, first component.

(b) Test error Lipschitz regularized net-
work with parameter 0.001, no noise in
the data.

(c) Test error non-regularized network,
no noise in the data, second component.

(d) Test error Lipschitz regularized net-
work with parameter 0.001, no noise
data, second component.

Figure 12: Test error comparison, no noise in the data.
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(a) Test error non-regularized network,
1% noise in the data, first component.

(b) Test error Lipschitz regularized net-
work with parameter 0.005, 1% noise in
the data, first component.

(c) Test error non-regularized network,
1% noise in the data, second compo-
nent.

(d) Test error Lipschitz regularized net-
work with parameter 0.005, 1% noise
data, second component.

Figure 13: Test error comparison, 1% noise in the data.
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(a) Test error non-regularized network,
2% noise in the data, first component.

(b) Test error Lipschitz regularized net-
work with parameter 0.01, 2% noise in
the data, first component.

(c) Test error non-regularized network,
2% noise in the data, second compo-
nent.

(d) Test error Lipschitz regularized net-
work with parameter 0.01, 2% noise
data, second component.

Figure 14: Test error comparison, 2% noise in the data.
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A.2 Error Plots for Second Order Non-Autonomous ODE

(a) Test error non-regularized network,
No noise in the data, first component.

(b) Test error Lipschitz regularized net-
work with parameter 0.001, no noise in
the data.

(c) Test error non-regularized network,
no noise in the data, second component.

(d) Test error Lipschitz regularized net-
work with parameter 0.01, no noise
data, second component.

Figure 15: Test error comparison, no noise in the data, first component.
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(a) Test error non-regularized network,
1% noise in the data, first component.

(b) Test error Lipschitz regularized net-
work with parameter 0.01, 1% noise in
the data, first component.

(c) Test error non-regularized network,
1% noise in the data, second compo-
nent.

(d) Test error Lipschitz regularized net-
work with parameter 0.005, 1% noise
data, second component.

Figure 16: Test error comparison, 1% noise in the data.
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(a) Test error non-regularized network,
2% noise in the data, first component.

(b) Test error Lipschitz regularized net-
work with parameter 0.01, 2% noise in
the data, first component.

(c) Test error non-regularized network,
2% noise in the data, second compo-
nent.

(d) Test error Lipschitz regularized net-
work with parameter 0.005, 2% noise
data, second component.

Figure 17: Test error comparison, 2% noise in the data.
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