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Abstract—The design and implementation of agro-ecology IoT
applications is a non-trivial task since the data processed in such
applications are typically complex and heterogeneous. Moreover,
these applications are implemented using different systems and
technologies, over complex IoT communication network layers
(edge, fog, cloud). The existing system design methods fail to
effectively represent data in such a scenario. In this position
paper we report and discuss the open issues for a new, dedicated
design method, based on our initial experience in implementing
an agro-ecology IoT system.

Index Terms—Internet of Things, Big data, smart farming,
Agriculture robots

I. INTRODUCTION

In the recent years, the Internet of Things (IoT) has been

successfully applied in several different application domains,

as for example healthcare, environment, mobility, and even

agriculture [1]. IoT is the set of physically connected devices

that support computation and communication by means of dif-

ferent communication networks (e.g., ZigBee, Wi-Fi, ADSL).

As described in [2], IoT produces Big Data, which are data

mainly characterized by (at least) the 3Vs, namely Volume,

Variety, and Velocity. The usage of IoT in the agricultural

business is needed and promising. Indeed, one recent report1

estimates that in 2027 this sector will reach 34 billion USD.

Agro-ecology aims to develop new cultural practices that

respect the environment and at the same time save production

and biodiversity [3]. Agro-ecology has been recognized by all

governmental, economic, social and environmental institutions

as one the main challenges of humanity for the next 30 years.

Data used by agro-ecology models are very diverse, including

environmental, agricultural, and socio-economic data, at dif-

ferent (micro and macro) spatial and temporal scales and also

data coming from mobile autonomous robots and drones.

In the context of agriculture, IoT has been successfully

employed for different applications, e.g. agronomic surveil-

lance and livestock production. IoT leads to a revolutionary

approach for agro-ecology since it provides the stakeholders

with more precise, complete, and innovative data and their

associated analysis. In particular, at the crossroads between

1https://www.marketsandmarkets.com/Market-Reports/
iot-in-agriculture-market-199564903.html



breeding and agro-ecology, two main research topics emerge:

image recognition via neural networks to detect and recognize

the parasites on the legs of a grazing animal, and then the

geo-localization of parasites on a plot or a territory. The

monitoring of crops development and agricultural practices

using autonomous robots is another hot research topic. Agro-

ecological animal and plant breeding in the era of IoT and

Artificial Intelligence implies the usage of wireless sensors,

drones, satellite images, multimedia data, and classical data in

an integrated, coherent, and effective way.

An example of a classical IoT architecture in the agricultural

context is illustrated in Figure 1, which shows the data and

the network connections involved.

Data is collected, and sometimes computed, by IoT devices

(such as autonomous robots, tractors, meteorological sensors,

drones, etc.) deployed in the field. These IoT devices produce

real-time stream data which, when combined with other data

(such as farm data, geospatial data, images, etc.), can be used

for online analyses at the farm level. Moreover, historical

IoT data and other external data can be used to provide

more complex analyses (such as prediction models, OLAP,

etc.). Therefore, an IoT agriculture application is usually fed

with data coming from the field and historical external data

in a real-time way. All these data are deployed in different

data management systems (sensors devices, tractors’ laptops,

classical PCs, distributed servers, etc.). These data manage-

ment systems are deployed at different levels of the network

architecture (directly on the field, in the farm, in the cloud,

etc), and they communicate by means of various network

communication protocols (for example, ADSL, Wi-Fi, etc.).

Overall, agricultural IoT applications require:

• the use of complex spatio-temporal data (e.g., robot

trajectories, meteorological data);

• the use of stream data (e.g., from sensors deployed in

fields) and historical data (e.g., warehoused data on all

the aspects of an IoT system).

Moreover, agro-ecology IoT applications seem to be more

challenging than in Industry 4.0 in the following aspects:

• the use of autonomous robots and vehicles that operate

in an uncontrolled environment;

• the limited computation and communication resources

(ADSL networks, low-quality Wi-fi connections, small

laptops) deployed in rural areas;

• the involvement of stakeholders (such as farmers, re-

searchers, managers, etc.) who have heterogeneous pro-

files with different knowledge and experience in smart

farming (from farmers not skilled in IT to researchers in

robotics).

When dealing with IT applications that process complex

and heterogeneous data, the adoption of a conceptual design

step using formalisms such as UML or E/R has been widely

proved to be necessary to grant the success of projects [4].

Indeed, these formalisms make the implementation and tech-

nical issues transparent, allowing database designers and IoT

experts to focus exclusively on the functional requirements

provided by end-users. However, to the best of our knowledge,

data modeling methods for IoT agricultural applications have

not been deeply investigated so far (see [5] for a complete

survey). In this position paper, we motivate the need for a

new methodology for agro-ecology applications’ design and

implementation (Sec. II), then we present the modelling and

implementation requirements and some envisaged solutions.

Some relevant works are presented in Sec. IV. This contri-

bution is based on our findings while realizing some agro-

ecology research projects.

II. MOTIVATION

IoT in the agro-ecological context comes with new issues

that we discuss in this section.

A. What

Agro-ecology IoT data have a spatio-temporal nature since

all agronomic and bravery phenomena are geolocalized (e.g.,

plots, positions of animals and robots). These data are com-

plex, ranging from images and videos to time series pro-

duced by sensors and autonomous robots. Therefore, they

need ad-hoc conceptual representations and implementations.

Indeed, IoT systems typically rely on relational or NoSQL

database managment systems (DBMSs), data stream manage-

ment systems (DSMSs), and other components implemented in

different technologies and supporting different programming

languages, which run on heterogeneous hardware (IoT devices,

personal computers, cloud servers). Here, such complex, het-

erogeneous, and changing data will be called polyglot data.

Quality of Service (QoS) features (such as latency, data loss,

etc.) play a major role in IoT data architectures. Data provided

by a system and their QoS features are strictly related. For

example, it is likely to send images from animal drinkers

with different resolutions; robots can send one aggregated

odometry data per minute instead of one data per second,

according to the available network bandwidth. This means

that, for each piece of data, different reliable representations

must be considered by end-users. Thus, IoT data can be

represented in different ways and at different abstraction

levels (multi-representation data) according to the physical

constraints imposed by the network architecture. Clearly, each

representation can be implemented in different ways in its

corresponding system (e.g. DBMS, DSMS, sensors).

These polyglot and multi-representation data must be cor-

related to provide a global data-centric representation of IoT

data. These correlations raise several design and implementa-

tion issues since they can involve different data management

systems (collection, storage, and computation). Noticeably,

according to [6], no conceptual model allows representation

of polyglot and multi-representation data.

At the conceptual design level, the main research questions

to be faced are:

• “How to define an integrated, polyglot meta-model that

conceptually represents agro-ecological data together

with data obtained from different kinds of computations

independently of all implementation details?”,



Fig. 1: An example of an agricultural IoT architecture.

• “How to conceptually represent each agro-ecological

data entity at multiple abstraction levels, and what poli-

cies should be defined to seamlessly switch from one level

to another?”

• “Which QoS features can be specified by end-users during

design, and how to integrate them with the meta-model

and with the multi-representation policies?”

At the implementation level, the main research questions are:

• “How to generate (semi)automatic implementations of

these polyglot and multi-representation IoT data over

different data management (collection, storage, and com-

putation) systems and programming languages?”

• “How to choose the most suitable technology for agro-

ecological data management (collection, storage, and

computation) and its deployment locations over the net-

work?”

B. How

Several different data management (collection, storage, and

computation) systems have been proposed to take into account

the particularities of the data stored and queries processed

(data workload). For example, to handle very high volumes of

robots data, NoSQL DBMSs seem better suited than classical

relational ones. Therefore, in order to select the system that

best fits the type of data, we can consider the workload as a

“metadata” that must be also represented in IoT systems. To

the best of our knowledge, only [7] introduces the workload at

the conceptual level, but it addresses only NoSQL document

DBMSs.

Thus, the research questions associated to the workload are:

• “Which workload features are relevant at design time?”

• “How to integrate them in the conceptual meta-model?”

C. Where

IoT applications are characterized by a geographically-

distributed deployment of (potentially moving) devices, and a

communication network continuum over different layers (from

edge to cloud). The network layer where the data management

system is deployed must take into account the QoS features.

Therefore, QoS features on every layer play a major role in IoT

data architectures. Indeed, they can respect some functional

and non-functional requirements, such as bandwidth, which

lead to a particular placement of data and computation over

the different layers. For example, in the context of hard real-

time applications, data and computation can be deployed at the

edge level (for example on a robot) to improve performances.

Therefore, the research questions associated to QoS are:

• “Which are the relevant QoS performance indicators

to guide the deployment and the functioning of data

management systems over the different network layers

(edge, fog, or cloud): access delay, data rate, packet loss

ratio?”

• “How to obtain these indicators in a reliable way for all

layers of the network?”

• “How to exploit these QoS indicators with regard to user

experience?”.

Moreover, agro-ecology IoT data can be implemented in

different ways and locations in the IoT architecture, and only

at run time the best data management system configuration of

each data can be chosen to make the overall system resilient to

network problems. Therefore, the research question associated

to the run-time execution of the application is:

• “How to define and implement an algorithm for dynam-

ically choosing the most suitable configuration for the

overall system at run-time, making it resilient according

to the QoS indicators?”

• “Which configuration mode is most suited to enhance the

user experience depending on the application use cases?”

III. ISSUES FOR AGRO-ECOLOGY IOT APPLICATIONS’

DESIGN AND IMPLEMENTATION

In this section we present two representative scenarios, as

well as the requirements and some envisaged solutions for a

method to design and implement agro-ecology IoT applica-

tions. Some relevant works are cited that could be extended

to meet these requirements. Figure 2 shows an overview of



our proposal, and can be used as a reference for the whole

section.

A. Scenarios

Here we briefly discuss the interest of IoT for agro-

ecological practices in crops and breeding.

Crops: the use of autonomous robots and drones is more

and more frequent in agro-ecology applications, for example

for repetitive and long tasks such as plowing, picking, and

harvesting needed by agro-ecology crops practices [8].

To support this transition, autonomous robots have an essen-

tial role to play, as they have low impact on the environment

(they are light and can operate in fleets) and are able to

perform repetitive and accurate farming operations over a

long time. With special equipment and combined with data

acquisition and data processing technologies, robots are able to

autonomously perform efficient and targeted tasks in the fields,

e.g., within inter-cropping systems, while optimizing the use

of resources and main training at a high level of productivity.

When robots cannot communicate over the network due to

some of their own electronic or mechanical problems, drones

could be used in place of the robots to send data to an

information system.

Breeding: New environmental and agronomic resilient

breeding practices apply to breeding animals outdoors. Rabbits

and pigs can thus be bred outdoors, but their epidemiological

monitoring must also be done on the field. This implies that

animal health must be checked by instruments that are placed

in the field using some classical measurements tools (like

weight or movement behaviour), but also cameras. Moreover,

disease vectors can also be present on the vegetation, which

must also be monitored. Thus, outdoor breeding implies an

advanced monitoring of animals and their environment to

prevent contamination and make their natural environment

safe.

B. Design

In the context of complex polyglot data, it is important to

decouple functional requirements from the architectures and

technologies used to implement them. In this direction, we

propose to adopt the Model-Driven Architecture (MDA), an

OMG-supported approach to software design, development,

and implementation which encourages this decoupling. In our

context, MDA would allow to design polyglot and multi-

representation data-centric IoT applications, also considering

QoS network features, which are relevant at the conceptual

level for end-users. For example, the conceptual representation

of the red data entity of Figure 2 should be augmented with

multi-representation, workload, and QoS features. Moreover,

its multi-representation-aware implementation can be done in

two different data management systems, namely, a classical

PC and a sensor (polyglot data) as shown by the two red

rectangles of the Design and (semi)automatic implementation

step in Figure 2.

MDA also aims at producing rapid and error-free imple-

mentations that comply with functional requirements; this is

a mandatory feature for the development of complex systems.

Noticeably, MDA promises to streamline the design iterations,

which is very relevant in the agro-ecological context since

functional requirements are usually not clearly defined from

the beginning of the project.

Combining MDA with UML profiles, which provide a for-

mal language to design data and computation, seems a natural

choice. In particular, we propose to define a UML profile based

on a data representation with UML Class element, which has

already been successfully used to model IoT nodes associated

to other complex data (stream, spatial data, etc.) in [5]. To this

end, we plan to extend the Platform Indipendent Model (PIM)

of [5] with data types other than the ones collected by sensors

(polyglot data). A first attempt in this direction has been done

in [9]. For multi-representation data, an approach similar to the

one proposed for spatial databases could be adopted [10], since

they are based on UML Class element too. Representations

could be changed by means of ad-hoc Class methods or OCL

constraints. QoS and workloads could be added as tagged

values of these Class elements. A promising direction to obtain

a (semi)automatic implementation of these data is to extend

the Platform Specific Model (PSM) of [5], which provides

a UML model of sensor devices used to define the PSM

from the PIM representing IoT data. The PSM and the device

model proposed in [5] could be extended by considering data

management systems and networks. Finally, the workload and

QoS features defined at the PIM level will also be included in

the PSM and device model, in order to obtain coherent PSM

models and implementations with PIM models.

C. Implementation

IoT data are distributed and exchanged over a communi-

cation network. Therefore, a set of advanced network per-

formance indicators to help the deployment process of data

management systems, and to choose the right configuration at

run-time, must be proposed. For example, as shown in the Run-

time step of Figure 2, the PC data management implementation

for the red data entity, and the cloud for the blue data entity

are chosen at run-time among all the implementation solutions

defined at design time.

In particular, these performance indicators will give us an

idea about the QoS that can be expected from the network. To

meet this requirement, a promising direction is to extend the

approach presented in [11]. Because of multi-representation

of data and QoS, the corresponding data management systems

can be deployed in different network layers. This leads to

different possible implementation configurations of the same

IoT data-centric conceptual model. Therefore, an intelligent

agent methodology to choose the best implementation con-

figuration at run-time is needed. The envisioned distributed

and decentralized infrastructure requires locally implement-

ing online decisional algorithms aimed at operating optimal

allocation of resources and services to specific devices and

computation nodes. This will encourage resilience and adap-

tation in case of services or devices failure or disconnection.

In this context, the multi-agent systems paradigm is a perfect



Fig. 2: An overview of the envisaged proposal.

fit, as it provides both theoretical and practical tools to design

and develop complex systems composed of several decision

nodes. A possibility is to rely on resilient deployment and

self-organization of intelligent systems [12], where agents

with local decision rules and decision redundancy allow the

system to adapt to unexpected events. Finally, to coordinate

the autonomous mobile sensors, multi-robot and multi-agent

planning techniques could be adopted [13]. Noticeably, such a

multi-agent implementation will challenge the state-of-the-art

techniques, due the large scale of the envisioned system, the

presence of unpredictable queries and communication failures,

and the use of autonomous vehicles as mobile sensors, which

goes far beyond classical IoT-based sensing systems.

IV. RELATED WORK

The seminal paper of [14] suggests IoT and Big Data as

very promising approaches for the development of smart agro-

ecology solutions. According to the authors, the usage of sim-

ple sensors devices must be coupled with more sophisticated

devices such as smartphones, and equipment such as drones

and autonomous robots. [15] provides a complete study about

interdisciplinary of IoT and crop management, and it also

highlights the importance of the usage of mobile equipment

coupled with Big Data analysis tools. Several other works

recognize the importance of this integrated usage of different

data sources [16], [17].

Some works have been proposed for the modelling of

IoT-based applications using UML. Recently, [18] and [19]

surveyed studies on the development of IoT applications, and

classified them according to the main steps used, such as

identifying the actors, the requirements, the implementation of

a proof of concept, until the study of technical implementation

issues. [5] provides a complete survey about existing work

using UML to represent data used by IoT applications. The

authors conclude that all existing works do not provide a

sufficient abstraction level allowing to take apart technical

details of the IoT devices and networks from the data represen-

tation. According the authors, this makes difficult an agile and

effective design of the data-centric application with end-users.

The usage of multi-agent systems in IoT applications, and

recently in agriculture is more and more present, such as in

[20], where agents are used to manage the communication

network of green houses, or in [21], which uses deep reinforce-

ment learning to improve decision-making irrigation process

of crops, and [22] for pesticide use reduction. However, in the

context of autonomous agricultural robot, to the best of our

knowledge, no work applies multi-agent systems to coordinate

them with other IoT devices deployed in the field.

When dealing with real-time applications, knowing the state

of the network in terms of available throughput, delay, and

packet loss helps to adapt the required QoS. Indeed, when

the performance of the network is degraded, lowering the

QoS requirements in terms of data rate would help reduce

the packet loss. This is known as adaptive bitrate streaming

and is mainly based today on the HTTP protocol under

the name DASH (Dynamic Adaptive Streaming over HTTP)

[23]. Supervising the performance of a wireless network is a

challenging task [24]. For example, in Wi-Fi networks, many

rate adaptation methods exist that try to maximize the data

rate of transmissions depending on the quality of the link

between nodes [11]. Some of these methods are based on

implicit observations that do not require additional overhead,

but they lack in reactivity to network changes. Other methods

are explicit and react faster to network changes, but they



require sending feedback in order to inform the sender about

the quality of the link from the receiver perspective. When

the HTTP protocol is not used, new methods are needed

to adapt QoS requirements in wireless networks based on

observations of network performances. When audio and video

are transmitted, methods based on RTP (Real-Time protocol)

in conjunction with the RTCP (RTP Control Protocol) are

generally used. Other types of traffic are also critical from the

application point of view, such as control/command traffic for

remotely guiding mobile robots. Hence, the need for a general-

purpose QoS monitoring method for wireless networks.

V. CONCLUSION

Making all implementation and technological details related

to IoT transparent to agro-ecological decision-makers is a

crucial key factor to successfully create effective new agro-

ecology applications. This because decision-makers are usu-

ally not skilled in IT, hence, adopting a simple but formal

design formalism focused on the data they use will allow

them to easily interact with IT and IoT experts to define their

own agro-ecology application. In this position paper we have

listed the related requirements and research challenges from

two points of view: design and implementation. We have also

introduced two real case studies that could be used as proof

of concept for our future proposals.
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