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Abstract: BRCA1 and BRCA2 are the most frequently mutated genes in ovarian cancer (OC) crucial
both for the identification of cancer predisposition and therapeutic choices. However, germline
variants in other genes could be involved in OC susceptibility. We characterized OC patients to detect
mutations in genes other than BRCA1/2 that could be associated with a high risk of developing OC and
permit patients to enter the most appropriate treatment and surveillance program. Next-generation
sequencing analysis with a 94-gene panel was performed on germline DNA of 219 OC patients. We
identified 34 pathogenic/likely pathogenic variants in BRCA1/2 and 38 in other 21 genes. The patients
with pathogenic/likely pathogenic variants in the non-BRCA1/2 genes mainly developed OC alone
compared to the other groups that also developed breast cancer or other tumors (p = 0.001). Clinical
correlation analysis showed that the low-risk patients were significantly associated with platinum
sensitivity (p < 0.001). Regarding PARP inhibitors (PARPi) response, the patients with pathogenic
mutations in the non-BRCA1/2 genes had worse PFS and OS. Moreover, a statistically significantly
worse PFS was found for every increase of one thousand platelets before PARPi treatment. To
conclude, knowledge about molecular alterations in genes beyond BRCA1/2 in OC could allow for
more personalized diagnostic, predictive, prognostic, and therapeutic strategies for OC patients.

Keywords: ovarian cancer; BRCA1/2; cancer predisposition; platinum sensitivity; PARP inhibitors; platelets

1. Introduction

In 2020, ovarian cancer (OC) placed 8th for both incidence and mortality among
women [1]. OC is defined as a “silent killer” as it is often diagnosed at advanced stages,
resulting in a high mortality rate. About 10–30% of breast and ovarian cancers show
familial aggregation and 5–10% of them are considered hereditary, i.e., linked to a germline
genetic variant in a cancer predisposition gene [2]. BRCA1 and BRCA2 are two of the most
frequently mutated genes in high-grade serous OC, which is responsible for the majority of
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OC deaths [3]. Surgery represents the standard treatment, followed by platinum–taxane
chemotherapy. Platinum-resistant OCs recur in nearly 25% of patients within six months
and the probability of survival after five years is about 30% [4]. Investigating the BRCA1/2
mutational status in patients with OC is crucial not only for the identification of familial
cancer predisposition, but also to address therapeutic choices. Indeed, patients with
germline or somatic variants of BRCA1 or BRCA2 have been correlated to a better prognosis
and a better response to platinum-based chemotherapy [5–8]. Moreover, inhibitors of the
poly (ADP-ribose) polymerase (PARPi) have been demonstrated to be effective in germline
and somatic BRCA1- or BRCA2-mutated OCs [9–11], except for Niraparib that has been
shown to be effective regardless of the presence of BRCA1/2 variants or the homologous
recombination deficiency (HRD) status [12].

About 13% of high-grade serous OCs show germline variants in BRCA1 or BRCA2 [13,14]
and a smaller percentage can be attributed to other germline variants. The BRCA1 and
BRCA2 genes are the main actors involved in the homologous recombination (HR) DNA
repair pathway, together with ATM, BARD1, NBN, and others [15]. Indeed, about 30% of
patients with OC present germline and somatic variants in HR genes, of which up to 75% are
in the BRCA1 and BRCA2 genes [5,15]. Therefore, the detection of new genes determining
susceptibility to cancer is an urgent need. To date, other genes have been associated with
inherited OC predisposition, particularly BRIP1, RAD51C, RAD51D, PALB2, STK11, and
mismatch repair (MMR) genes, such as MLH1, MSH2, MSH6, and PMS2, and others [16–18].
Next-generation sequencing (NGS) advent has enabled the analysis of a high number of
genes simultaneously with lower costs and a wider access to molecular tests for patients with
suspected hereditary cancer or for eligibility for PARPi treatment [19–22].

In this study, we performed a molecular characterization of patients with OC to
identify predisposing genes other than BRCA1 and BRCA2 that could permit a better
selection of patients with a high risk of developing OC and allowing them to enter the most
appropriate treatment and surveillance program.

2. Results
2.1. Clinicopathological Features

Between January 2014 and December 2018, 219 patients were recruited in this study.
All the patients had a diagnosis of OC: 182 patients developed OC alone, 16 developed OC
and breast cancer, and 21 patients developed OC and another non-breast-cancer tumor. The
median age at diagnosis was 60 years. One hundred sixty-two patients of the 219 patients
had high-grade serous OC, 16 had endometrioid OC, and 41 patients presented other his-
tologies. Twelve patients developed G1 OC, 4 patients developed G2 OC, and 188 patients
developed G3 OC (data not available for 15 patients). Forty-three patients had stage I/II
OC and 164 had stage III/IV OC (data not available for 12 patients).

2.2. NGS Analysis

The molecular analysis of the 219 patients showed a mean target coverage of 404 X
and a 95.3% mean percentage of the target covered > 50 X.

We observed 42,583 variants in the exonic and splicing regions of 94 genes.

2.3. BRCA1/2 Variants

We observed 2501 variants in the BRCA1/2 genes classified according to the IARC
guidelines and online databases as 34 pathogenic/likely pathogenic variants (14 in BRCA1
and 20 in BRCA2), 17 variants of uncertain significance (VUS) (4 in BRCA1 and 13 in
BRCA2), and 2450 benign variants. The 34 BRCA1/2 pathogenic/likely pathogenic vari-
ants were present in 34/219 patients (15.5%); in particular, 14/219 (6.4%) had a BRCA1
mutation (mean age, 55.93 ± 6.4 years) and 20/219 (9.1%) had a BRCA2 mutation (mean
age, 64 ± 7.47 years). The mutation details are shown in Supplementary Table S1. We also
found that 17/219 patients (7.8%) harbored a VUS in the BRCA1/2 genes, of whom two also
had a pathogenic variant in BRCA1.
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2.4. Pathogenic Variants in Other Genes

We also analyzed the other 92 genes of the panel, and we observed a total of 40,082
variants that were classified according to the ACMG guidelines in 38 pathogenic/likely
pathogenic variants, 4710 VUS, and 35,334 benign variants. The 38 pathogenic/likely
pathogenic variants were present in 21 genes in 36/219 patients (16.4%): PPM1D (8 variants),
MUTYH (4), MITF (3), RAD51C (3), BRIP1 (2), ALK (2), CHEK2 (2), PRF1 (1), PALB2 (1),
FANCD2 (1), ERCC5 (1), MLH1 (1), SBDS (1), TP53 (1), EGFR (1), RECQL4 (1), ERCC2 (1),
MSH2 (1), ERCC3 (1), FANCL (1), HOXB13 (1).

The mutation details are shown in Supplementary Table S2. Out of the 36 patients,
two had pathogenic/likely pathogenic variants in two different genes (patient B184 in
CHEK2 and EGFR, and patient B421 in FANCD2 and ALK), while four also had a pathogenic
mutation in the BRCA1/2 genes (one in BRCA1 and three in BRCA2), so these four patients
were considered in the BRCA1/2-mutated group.

2.5. Molecular Subgroups: Clinical and Pathological Comparison

The clinical and pathological information on the 219 patients included in this study is
summarized in Table 1.

Table 1. Patient characteristics according to the mutational status.

Patients with the
BRCA1 Pathogenic

Variants
(n = 14)

Patients with the
BRCA2 Pathogenic

Variants
(n = 20)

Patients with the
Other Pathogenic

Variants
(n = 32)

Patients without
Pathogenic Variants

(n = 153)

Total
(n = 219) p-Value

Age at diagnosis 0.083

Mean ± SD 55.93 ± 6.40 64.00 ± 7.47 62.52 ± 14.26 59.55 ± 11.34 60.10 ± 11.30

Missing – 1 5 6 12

Histology 0.497

High-grade serous 11 (78.57) 19 (95.00) 23 (71.88) 109 (71.24) 162 (73.97)

Endometrioid 1 (7.14) 0 2 (6.25) 13 (8.50) 16 (7.31)

Other histology 2 (14.29) 1 (5.00) 7 (21.88) 31 (20.26) 41 (18.72)

Grade 0.721

G1 1 (7.14) 0 3 (11.11) 8 (5.56) 12 (5.88)

G2 0 0 0 4 (2.78) 4 (1.96)

G3 13 (92.86) 19 (100.00) 24 (88.89) 132 (91.67) 188 (92.16)

Missing – 1 5 9 15

Stage 0.760

I/II 3 (21.43) 2 (10.53) 6 (22.22) 32 (21.77) 43 (20.77)

III/IV 11 (78.57) 17 (89.47) 21 (77.78) 115 (78.23) 164 (79.23)

Missing – 1 5 6 12

Ascites 0.766

No 8 (61.54) 12 (63.16) 19 (70.37) 87 (59.59) 126 (61.46)

Yes 5 (38.46) 7 (36.84) 8 (29.63) 59 (40.41) 79 (38.54)

Missing 1 1 5 7 14

Visceral metastases 0.491

No 5 (83.33) 11 (84.62) 12 (93.31) 61 (92.42) 89 (90.82)

Yes 1 (16.67) 2 (15.38) 1 (7.69) 5 (7.58) 9 (7.18)

Missing 8 7 19 87 121

Risk 0.925

Low 7 (50.00) 10 (52.63) 14 (51.85) 84 (56.76) 115 (55.29)

High 7 (50.00) 9 (47.37) 13 (48.15) 64 (43.24) 93 (44.71)

Missing – 1 5 5 11

Our patient cohort was grouped based on gene mutations and the presence of OC
alone or OC and additional tumors (Table 2). We observed an association between the
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type of tumor and the mutational status (p < 0.001). In particular, the patients with
pathogenic variants in the genes other than BRCA1/2 mainly developed OC alone compared
to the other groups. The patients with OC and breast cancer had predominantly BRCA1/2
pathogenic mutations, whereas only three out of 21 patients with OC and other tumors had
a pathogenic variant. All the three patients who developed OC and breast cancer with a
germline BRCA1 mutation had a breast cancer diagnosis (median age, 42 years) before the
onset of OC (median age, 62 years). Again, in the seven patients with a germline BRCA2
mutation, the onset of breast cancer always preceded OC diagnosis, with a median age of
52 years and 66 years, respectively.

Table 2. Spectrum of tumors according to the mutational status.

Patients with the
BRCA1 Pathogenic

Variants
(n = 14)

Patients with the
BRCA2 Pathogenic

Variants
(n = 20)

Patients with the
Other Pathogenic

Variants
(n = 32)

Patients without
Pathogenic Variants

(n = 153)

Total
(n = 219) p-Value

Ovarian cancer 11 (78.57) 12 (60.00) 30 (93.75) 129 (84.31) 182

<0.001Ovarian and breast cancer 3 (21.43) 7 (35.00) 0 6 (3.92) 16

Ovarian cancer and
other tumors 0 1 (5.00) 2 (6.25) 18 (11.76) 21

The relationship between the neutrophils, lymphocytes, platelets, neutrophil-to-lymphocyte
ratio (NLR), platelet-to-lymphocyte ratio (PLR), and systemic immune inflammation index (SII)
before treatment initiation and the mutational status was investigated. We did not observe any
significant association (Supplementary Table S3).

2.6. Platinum Sensitivity

Firstly, the association between platinum sensitivity and the mutational status was
investigated. No statistically significant association between platinum sensitivity and the
mutational status was observed (Table 3).

Table 3. Platinum sensitivity and mutational status.

Patients with the
BRCA1 Pathogenic

Variants
(n = 14)

Patients with the
BRCA2 Pathogenic

Variants
(n = 20)

Patients with the
Other Pathogenic

Variants
(n = 32)

Patients without
Pathogenic Variants

(n = 153)

Total
(n = 219) p-Value

Platinum sensitivity,
months § 0.167

Median
(IQ range)

15.76
(7.84–37.5)

42.51
(15.37–52.1)

21.77
(8.8–33.76)

23.95
(9.66–43.00)

23.71
(10.05–43.25)

Minimum–maximum 5.35–108.31 4.27–124.74 0–118.86 0.16–329.4 0–329.4

Missing 2 3 8 13 26

§ Time from the date of the end of platinum-based chemotherapy until the date of relapse or death from any cause.

We then analyzed the response to platinum-based chemotherapy of 208 patients
(11 patients were undetermined). The OC patients were classified as low-risk if the residual
disease did not occur during the primary debulking surgery. The patients with residual
disease and/or patients who underwent interval surgery were classified as high-risk. The
median time from the last administration of platinum-based chemotherapy and the relapse
or death was 24.2 months (IQ range, 10.61–43.50) in 208 patients, 35.8 months (IQ range,
14.98–58.11) in the low-risk group (115 patients) and 15.2 months (IQ range, 6.50–26.41) in
the high-risk group (93 patients), p < 0.001.

Supplementary Table S4 shows the association between platinum sensitivity and histology.
Data on the pre-treatment inflammatory index (NLR, PLR, SII) levels were available for

the 118 patients enrolled. The median NLR value was 246 (IQ range, 171–339), the median
PLR value was 200 (IQ range, 140–280), and the median SII was 739 (IQ range, 432–1349).
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We did not observe any significant correlation between the inflammatory indexes and the
mutational status.

2.7. PARP Sensitivity

In our case series, 43 patients were treated with maintenance treatment in subsequent
lines rather than the first one. Twelve of them presented a pathogenic mutation in BRCA1/2
(five in BRCA1 and seven in BRCA2), four patients had pathogenic/likely pathogenic
variants in four genes other than BRCA1/2 (PALB2, ERCC2, ALK, and MITF), and 27 patients
had no pathogenic mutations in any of the 94 genes.

The mutational status was analyzed in relation to PARP sensitivity in 43 patients. We
observed that the patients without pathogenic variants had a similar outcome compared
to the patients with BRCA1/2 pathogenic variants (HR = 1.15, 95% CI, 0.53–2.48, p = 0.715;
HR = 0.72, 95% CI, 0.27–1.91, p = 0.511, for PFS and OS, respectively). Differently, the
patients with pathogenic variants in the genes other than BRCA1/2 had a significantly worse
PFS (HR = 3.56, 95% CI, 1.05–12.04, p = 0.042) and a worse OS (HR = 1.38, 95% CI, 0.15–12.13,
p = 0.772), as shown in Table 4.

Table 4. Progression-free survival (PFS) and overall survival (OS) according to the mutational status.

PFS OS

HR (95% CI) p-Value HR (95% CI) p-Value

Mutational status

Patients with the BRCA1/2
pathogenic variants 1 1

Patients with the other
pathogenic variants

3.56
(1.05–12.04) 0.042 1.38

(0.15–12.13) 0.772

Patients without
pathogenic variants 1.15 (0.53–2.48) 0.715 0.72 (0.27–1.91) 0.511

The response to PARPi was also evaluated in association with the inflammatory
indexes before PARPi treatment initiation for 29 patients. Considering NLR, PLR, and SII as
continuous variables, no statistically significant association was found for both PFS and OS.
However, for every one standard deviation increase in platelets, a statistically significantly
worse PFS was found (HR = 1.52, 95% CI, 1.03–2.26, p = 0.037), as shown in Table 5. No
association was found in relation to OS (HR = 1.18, 95% CI, 0.62–2.27, p = 0.614).

Table 5. Results from univariate Cox analysis between the inflammatory indexes and PFS.

HR (95% CI) p-Value

Neutrophils 0.99 (0.66–1.50) 0.981

Lymphocytes 1.02 (0.69–1.50) 0.922

Platelets 1.52 (1.03–2.26) 0.037

NLR 0.93 (0.64–1.36) 0.702

PLR 1.51 (0.97–2.34) 0.067

SII 1.31 (0.88–1.96) 0.184

3. Discussion

In this study, the molecular characterization of the germline DNA of 219 OC patients
was provided through a panel of 94 genes, including the genes involved in the main
hereditary cancer syndromes, and the correlation with clinical characteristics was studied.
The existing clinical genetic tests for OC are based only on BRCA1 and BRCA2 analysis
despite new evidence of a higher number of genes eligible for testing [16]. In our cohort
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selected by the IRST Genetic Counseling service and the Oncology Units of the Area Vasta
Romagna (AVR) catchment area, we observed a total of 72 pathogenic/likely pathogenic
variants in 70/219 (32%) patients. In particular, 14 variants were found in the BRCA1 gene,
20 variants in BRCA2, and 38 pathogenetic/likely pathogenic variants were found in other
21 genes. The 38 pathogenic/likely pathogenic variants in the genes other than BRCA1/2
were observed in 36 patients, 32 of whom did not present any pathogenic/likely pathogenic
variants in the BRCA1/2 genes. The most frequently mutated genes in our case series were
PPM1D, MUTYH, MITF, RAD51C, BRIP1, ALK, and CHEK2. Out of the 36 patients with
pathogenic/likely pathogenic variants in the other genes, four also harbored a BRCA1/2
mutation (one in BRCA1 and three in BRCA2). These four patients did not show particular
features in the tumor characteristics or in the therapeutic response. Consequently, they
were included in the BRCA1/2-positive group, presuming a stronger effect of BRCA1/2
mutations on the phenotype.

BRCA1 and BRCA2 are part of the BRCA–Fanconi anemia pathway, and other Fanconi
genes, such as BRIP1 and RAD51C, have also been associated with an inherited risk of
OC [23–25]. PPM1D variants have been associated with predisposition to breast and ovarian
cancers [26,27] along with MUTYH [28,29] and CHEK2 [29]. Moreover, mutations in the
mismatch repair genes that cause Lynch syndrome (MLH1, MSH2, MSH6, and PMS2) also
confer a risk for OC [30,31]. In our case series, we detected a likely pathogenic variant in the
MLH1 gene in a patient negative for BRCA1/2 mutations and a likely pathogenic variant in
the MSH2 gene in a patient with a pathogenic mutation in the BRCA2 gene. Other authors
also underlined that germline sequencing of BRCA1 and BRCA2 should be performed in
the context of a multigene panel that also includes RAD51C, RAD51D, BRIP1, MLH1, MSH2,
MSH6, PMS2, and PALB2 [32]. These data highlighted that these mutations are associated
with a higher risk of OC development, so it is noteworthy to introduce a multigene panel
in standard genetic analysis protocols for patients with suspected hereditary OC.

The patients enrolled in this study were selected on the basis of OC diagnosis in order
to identify the patients eligible for PARP inhibitors treatment. Consequently, we do not
have information on the family history of cancer for the majority of them. However, all the
BRCA1/2-positive patients and the ones with pathogenic/likely pathogenic variants in the
genes for which clinical guidelines are available (e.g., TP53, MSH2, MLH1) were referred to
appropriate genetic counseling with the reconstruction of the family history of cancer and
the extension of the genetic test to the consenting relatives.

Our molecular findings were then analyzed in relation to clinical characteristics. Our
cohort of patients was divided into molecular subgroups, and we showed that patients with
pathogenic/likely pathogenic variants in the genes other than BRCA1/2 developed mainly
OC alone, suggesting that these genes could be specifically related to OC predisposition.
Interestingly, all the patients with a germline BRCA1 or BRCA2 mutation and a second ma-
lignancy first developed a breast cancer and thereafter an OC. This observation highlights
the need for a strict follow-up in order to identify OC early and/or to discuss with the
patient risk-reducing salpingo-oophorectomy. This procedure was also demonstrated to
reduce the risk of breast cancer in the immediate 5 years after surgery and in the longer
term, especially in younger women [33,34].

Although most patients with OC initially respond to platinum-based chemotherapy,
about 20% of women experience disease progression ≤ 6 months after the last cycle of a
platinum-based regimen (platinum-resistant or platinum-refractory) [35]. Many efforts have
been made over the years to develop predictive biomarkers of platinum sensitivity [36].

We found that patients without residual disease after the primary debulking surgery
(low-risk patients) had a significantly longer median time from the last administration
of platinum-based chemotherapy and the relapse or death (35.8 months) than high-risk
patients (15.2 months) (p < 0.001). We also hypothesized a better clinical outcome in patients
with the DNA damage response genes altered because of a worse platinum-induced DNA
interstrand crosslinks repair capability [37].
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A subset of 43 patients was treated with PARPi as maintenance treatment after plat-
inum chemotherapy. We observed that the patients with pathogenic mutations in the genes
other than BRCA1/2 had significantly worse PFS and OS compared to the patients with a
pathogenic mutation in the BRCA1/2 genes, suggesting that this may be associated with
specific biological mechanisms. However, due to the small number of cases, we could not
speculate about it.

On the other hand, the patients without pathogenic/likely pathogenic variants had a
similar outcome to the patients with a pathogenic variant in the BRCA1/2 genes, confirming
literature data [38].

Regarding inflammation indexes correlation, we previously demonstrated that inflam-
matory indexes (NLR and SII) are independent prognostic factors in recurrent platinum-
sensitive OC patients [36]. In this analysis, only platelets were correlated with PFS, demon-
strating their important role in OC not only as a poor prognostic factor [39], but also
as possible predictive factor of response to PARPi. However, a validation of these easy
biomarkers in a larger case series is warranted.

One of the aims of this study was to identify new genes involved in the predisposition
to OC. For this reason, we chose to analyze a panel of 94 genes involved in different forms of
hereditary cancer and include all the pathogenic/likely pathogenic variants in the analysis.
However, this approach has some limitations. Indeed, literature statistics describe only a
minor fraction of OC cases attributable to genes other than BRCA1/2 [23,40]. In particular,
the eight PPM1D variants detected could be treatment-related mosaic somatic mutations, as
suggested by other authors [41], but we considered them as real germline variants since one
of them was present in three different patients, and among the five remaining variants, three
were already reported in the literature and one of the two unreported variants was present
in a patient with a BRCA2 pathogenic variant. Moreover, the VAF (variant allele frequency)
was compatible with a germline nature of the mutations (~0.5). Regarding the ALK gene,
one of the two mutations was present in a patient with also a FANCD2 pathogenic variant.
Moreover, ALK and MITF germline alterations were associated with neuroblastoma and
melanoma risk, respectively, but this finding is intriguing for possible links with other
cancers such as OC. Two CHEK2 pathogenic variants were found in patients with high-
grade serous ovarian cancer. The CHEK2 gene is mainly linked to ovarian cystadenomas,
borderline ovarian tumors, and low-grade invasive cancers [42], but at the same time this
gene is involved in DNA damage response and is associated with a moderate risk of breast
cancer [18] and also a risk of other tumors [43], such as prostate [44–46], colorectal [47],
and gastric cancers [48]. Regarding the MUTYH gene, only biallelic mutations are well-
known for their association with cancer risk [49], but an increased risk for cancer has also
been reported for monoallelic carriers since the conjunction of a germline mutation with a
somatic mutation may also contribute to the development of OC [28]. For these reasons, we
decided to include all these patients in the group of carriers of pathogenic/likely pathogenic
variants in the non-BRCA1/2 genes.

4. Materials and Methods
4.1. Ethics Statement

The study was performed in accordance with the Good Clinical Practice and the Dec-
laration of Helsinki and approved by the AVR Ethics Committee (protocol No. 6326/2020).
All the patients enrolled in the study signed informed consent forms for genetic analyses
and for the use of the results for research purposes.

4.2. Patients and Samples

Patients with a diagnosis of OC referring to the IRST Genetic Counseling service or to
the Oncology Units of the AVR catchment area in 2014–2018 were included in this study. A
total of 219 patients were recruited and tested for a multi-gene panel, including the search
for BRCA1/2 alterations for possible treatment with PARPi.
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Peripheral blood of patients was collected and stored at −80 ◦C for subsequent molec-
ular analyses. Genomic DNA was extracted with a QIAamp DNA mini kit (Qiagen, Hilden,
Germany) and quantified using a Qubit dsDNA BR Assay kit (Thermo Fisher Scientific,
Waltham, MA, USA).

4.3. Next-Generation Sequencing (NGS) Analyses

Sequencing libraries were generated using 50 ng of genomic DNA. Libraries were enriched
for the regions of interest with the Trusight Cancer panel (Illumina, San Diego, CA, USA),
including the coding regions and flanking introns of 94 genes involved in hereditary cancer
(Supplementary Table S5). Sequencing was performed using the MiSeq platform (Illumina) with
MiSeq Reagent Kit v2 configured for 2 × 150 cycles according to the manufacturer’s instructions
as previously described [50,51].

4.4. Data Analysis and Variant Calling

Paired-end sequencing reads were aligned to the reference human genome (UCSC
hg19) with Burrows–Wheeler algorithm v0.7.15-r1140 [52]. The sequences around inser-
tions and deletions (indels) were realigned locally with GATK v3.6-0 [53]. Then, Picard
MarkDuplicates v2.6.0 (http://broadinstitute.github.io/picard/, accessed on 16 October
2022) was used to remove duplicate read-pairs artifacts arising during PCR amplifica-
tion or sequencing. The data then underwent base quality score recalibration (BQSR) to
ensure good call quality and reduce the number of false positives (again, with GATK).
Variant calling was separately performed with GATK UnifiedGenotyper and freebayes
v1.0.2-58 [54]; then, the resulting VCF files were merged with GATK CombineVariants.
ANNOVAR v2016-02-01 was used for genomic and functional annotations of the detected
variants [55], while coverage statistics were computed with the DepthOfCoverage utility of
GATK and the downstream custom bash/R scripts. The resulting annotated list of variants
was filtered for variants present in exonic regions or in the 20 bases flanking each exon.

4.5. Additional BRCA1/2 Analyses

BRCA1/2 regions covering < 50 X were amplified by standard PCR and sequenced
using a Big Dye Terminator v.3.1 cycle sequencing kit (Thermo Fisher Scientific) on an
ABI-3130 Genetic analyzer (Applied Biosystems, Waltham, MA, USA). Multiplex ligation-
dependent probe amplification (MLPA) analysis with BRCA1-P002 and BRCA2-P045 kits
(MRC Holland, Amsterdam, The Netherlands) was performed to identify gross dele-
tions/insertions not detectable by sequencing. The MLPA results were analyzed using the
Coffalyser software (MRC Holland).

4.6. Variants Classification

Genetic variants were classified into five classes according to the IARC recommenda-
tions [56]. The BRCA1/2 variants classification was performed by consulting ClinVar [57]
and the main BRCA1/2 mutation databases, such as BRCA Exchange, BRCA Share, and
LOVD [58–60]. Sequence variants in the other 92 genes were classified using ClinVar [57] and
dbSNP [61]. The variants absent in any of these databases were classified using VarSome [62]
in accordance with the guidelines of the American College of Medical Genetics [63].

4.7. Inflammatory Indexes

Information on the neutrophil, lymphocyte, and platelet counts from blood tests car-
ried out at baseline was collected. The SII was calculated as the (platelet count × neutrophil
count)/lymphocyte count, the NLR was obtained by dividing the absolute neutrophil count
by the absolute lymphocyte count, and the PLR was calculated as the ratio of the absolute
platelet count to the absolute lymphocyte count [64]. The inflammatory indexes value was
multiplied by 100. The median value of the SII, NLR, and PLR was considered.

http://broadinstitute.github.io/picard/
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4.8. Statistical Analysis

The data were summarized as the mean ± standard deviation (SD) or median, in-
terquartile (IQ) range and the minimum and maximum value, as appropriate, for the
continuous variables and through natural frequencies and percentages for the categori-
cal ones. The associations between the categorical variables were tested by Pearson’s χ2

test or Fisher’s exact test, as appropriate, whereas those between a continuous variable
and a categorical one were tested by means of Student’s t-test or the F-test or analogous
nonparametric tests, when appropriate.

Platinum sensitivity was defined as the time in months from the date of the end of platinum-
based chemotherapy until the date of relapse or death from any cause, whichever occurred first.
The alive patients without relapse were censored at the time of the last follow-up.

The prognosis of the patients treated with PARPi was investigated in terms of progression-
free survival (PFS) defined as the time in months from the date of inhibitor initiation until
disease progression or death from any cause, whichever occurred first, and overall survival
(OS) was defined as the time in months from the date of inhibitor initiation until death from
any cause. The patients were censored at the date of the last follow-up update.

The time-to-event outcomes were analyzed by means of the Cox proportional hazards
model; the effect of the biological and clinical covariates was reported in terms of hazard
ratios (HRs) and the corresponding 95% confidence intervals (CIs).

All the statistical analyses were performed using the STATA 15.0 software (College
Station, TX, USA).

5. Conclusions

To conclude, knowledge about molecular alterations in the genes beyond BRCA1/2 in
OC could allow for more personalized diagnostic, predictive, prognostic, and therapeutic
strategies for patients without forgetting the clinical implications for her family members.
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43. Cybulski, C.; Górski, B.; Huzarski, T.; Masojć, B.; Mierzejewski, M.; Debniak, T.; Teodorczyk, U.; Byrski, T.; Gronwald, J.; Matyjasik,
J.; et al. CHEK2 is a multiorgan cancer susceptibility gene. Am. J. Hum. Genet. 2004, 75, 1131–1135. [CrossRef] [PubMed]

44. Dong, X.; Wang, L.; Taniguchi, K.; Wang, X.; Cunningham, J.M.; McDonnell, S.K.; Qian, C.; Marks, A.F.; Slager, S.L.; Peterson, B.J.;
et al. Mutations in CHEK2 associated with prostate cancer risk. Am. J. Hum. Genet. 2003, 72, 270–280. [CrossRef]
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