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Abstract 

Propensity score (PS) adjustments have become popular methods used to improve estimates of treatment effects in quasi-experiments. While 

researchers continue to develop PS methods, other procedures can also be effective in reducing selection bias. One of these uses clustering to create 

balanced groups. However, the success of this new method depends on its efficacy compared to that of the existing methods. Therefore, this 

comparative study used experimental and non-experimental data to examine bias reduction, case retention, and covariate balance in the clustering 

method, PS subclassification, and PS weighting. In general, results suggest that the cluster-based methods reduced at least as much bias as the PS 

methods. Under certain conditions, the PS methods reduced more bias than the cluster-based method and under other conditions the cluster-based 

methods were more advantageous. While all methods were equally effective in retaining cases and balancing covariates, other data-specific 

conditions may likely favor the use of a cluster-based approach.   

 

 

Introduction 

Selection bias is one of the most vexing challenges to program evaluation. Problems associated with selection bias arise when one aims at 

assessing a policy’s effectiveness with poorly matched comparison groups. Not all old or new solutions are equally effective in reducing selection 

bias and in producing well-matched cases. Traditionally, researchers have attempted to reduce potential selection bias by accounting for covariates 

in multiple regressions and analyses of covariance (ANCOVAs). However, these approaches are not appropriate considering that the purpose of 
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traditional covariate adjustment is to account for the shared variance between the covariates and the dependent variable, not balance the covariates 

between groups. While adding linear covariates to causal models may reduce the error variance, these models assume that the relationships between 

covariates and the dependent variable are the same in the treatment and control groups. However, if the distributions of covariates in each group are 

different (as is often the case in nonrandomized studies) is it unlikely that their relationships with the dependent variable are similar (Schafer & 

Kang, 2008).  To effectively balance covariates, selection bias must be modeled by considering how covariates relate to selection into groups. In 

recent years, propensity score methods have become popular approaches for creating and applying these models to improve causal estimates. 

Propensity scores are the predicted probabilities that participants will select a treatment, given a set of observed covariates that influence their 

selection (Rosenbaum & Rubin, 1984). In theory, propensity scores should allow researchers to simultaneously balance all observed covariates 

between treatment and comparison groups, which will reduce selection bias. This balance is most commonly achieved by matching, weighting or 

subclassifying participants on the propensity score or including the propensity score as a covariate in a regression or ANCOVA.  Over the last three 

decades, PS adjustments have gained popularity in many fields: Program evaluation (e.g., Harknett, 2006; Peck, 2007), economics (e.g., Dehejia & 

Wahba, 1999; Gerfin & Lechner, 2002; Imbens, 2004; Smith & Todd, 2005), political science (e.g. Ho, Imai, King, & Stuart, 2007), sociology (e.g., 

Morgan & Harding, 2006), medicine (e.g. Christakis & Iwashyna, 2003), and educational research (e.g., Hong & Raudenbush, 2005; Tebes et al., 

2007). While specific propensity score methods may vary in their ability to reduce bias in individual studies, several researchers have shown that, in 

general, propensity scores can substantially reduce bias in observed covariates (Austin, 2014; Bai, 2013; Garrido, et al., 2014; Stone & Tang, 2013). 

Although other comparative studies that examined propensity score adjustments do not consistently agree on the best method, PS 

subclassification tends to be one of the more effective ones. Schafer and Kang (2008) found that PS subclassification reduced more bias than either 
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PS matching or weighting, but was comparable to traditional covariate adjustment. When Zanutto (2006) incorporated survey weights in her 

comparison of PS subclassification with a traditional covariate adjustment, she also found that the two methods were similar in their ability to 

reduce selection bias and balance and covariates. Shadish et al. (2008) compared traditional covariate adjustments to several PS adjustment methods 

(PS subclassification, linear PSs in an ANCOVA, non-linear PSs in an ANCOVA, PS weighting) on two educational outcomes and found varying 

results. For one outcome variable, PS subclassification reduced more bias than the other PS adjustments, but was not more effective than the 

traditional covariate adjustment. However, the most effective adjustment method was a doubly robust procedure that combined the two methods to 

estimate treatment effects from propensity score subclasses while accounting for the same variables used to estimate the propensity scores as 

individual covariates. For the second outcome variable, PS weighting was the most effective PS adjustment method, and accounting for individual 

covariates in additional to the PS adjustments did not improve treatment estimates. In some studies, PS subclassification did not reduce the most 

bias, but it balanced individual covariates better than other methods (Austin & Mamdani, 2006; Harder et al., 2010). Although several researchers 

have found that PS weighting can be problematic (Freedman & Berk, 2008; Rubin, 2001), others have found that it can remove as much as 95% to 

100% of bias if the propensity score model is correctly specified (Hong, 2007, p.16; Kang & Schafer, 2007, p. 534; Lunceford & Davidian, 2004, p. 

21) .Building on previous research that compared various methods for reducing selection bias, we expect that this comparative study between the 

cluster-based approach and PS subclassification and PS weighting will provide methodological guidance to analysts and researchers who are 

similarly vexed by selection bias. 

 Within the last few years, another promising new method, which uses cluster analyses and a global measure of imbalance, has emerged for 

reducing selection bias in nonrandomized experiments. Although cluster analysis (CA) has a long history of use in program evaluation, it is more 
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commonly accepted and applied in experimental studies (e.g., Gibson, 2003; Yoshikawa, Rosman & Hsueh, 2001). Peck (2005) used CA to identity 

subgroups within experimental data to understand variation in program impacts. Because CA is formulated using only baseline characteristics, 

which are, by design, exogenous to the treatment, she was able to successfully estimate unbiased treatment effects for the program she was 

evaluating.  The new-cluster based method proposed here has two unique features (Camillo & D’Attoma, 2012; Peck at al. 2012). First, the use of 

cluster analysis increases the possibility of finding local spaces in which variables are balanced without the typical problems related to the 

estimation of probability models (e.g., functional forms, minimum sample sizes). In cluster analysis, for example, there is no general rule of thumb 

regarding minimum sample sizes or the relationship between units and the number of clustering variables. CA will always render a result 

irrespective of how many variables are used or how small the sample size is (e.g., Mooi & Sarstedt, 2011; Tonks, 2009). The second feature, the 

measure of global imbalance (GI), is a single measure of the imbalance in the data based on the concept of inertia1 as a measure of dependence 

between a set of pre-treatment covariates and the treatment assignment indicator. While the common practice is to assess the extent to which 

comparison and treatment groups are matched on each variable, the GI measure provides an overall assessment of how well cases are matched. The 

GI measure differentiates the cluster-based method from the conventional use of cluster analysis, as used by Peck (2005), where balance is not 

assessed. 

Using two simulated samples, one with a binary treatment case and another with a multi-treatment case, Camillo & D’Attoma (2012) 

compared the performance of the GI measure used in a subgroup analysis to (a) the L1 distance measure of Iacus et al. (2011), (b) the In test statistic 

                                                           
1 Here, the term inertia is used in analogy with applied mathematics, where the “moment of inertia” is the integral of mass times the squared 

distance to the centroid (Greenacre, 1984). 
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of Li et al. (2009), and (c) the Hansen and Bowers’ test. Not only did the results suggest that the GI measure outperformed the other methods, but 

that it also reached the maximum percent bias reduction in most of the examined clusters. These results encouraged us to compare its performance 

to other well-established adjustment methods using real data. 

While there are several widely accepted conventional adjustments to selection bias, this paper examines three approaches to overcome 

selection bias: the new cluster-based method (Peck et al. 2010; D’Attoma & Camillo, 2011) , the traditional propensity score (PS) subclassification 

method (Rosenbaum & Rubin, 1984) and the inverse probability of treatment weighting (IPTW) method (Horvitz & Thompson, 1952; Austin & 

Stuart, 2015). PS subclassification (also referred to as PS stratification) and IPTW are among the most common propensity score methods used in 

applied academic research. Due to their popularity and demonstrated effectiveness in reducing selection bias, they serves as good methods by which 

to compare other bias-reduction methods. Therefore, the objective of this study is to ascertain if the cluster-based method is more effective than 

well-established propensity score methods in reducing selection bias and retaining cases. 

Methods 

Data 

The dataset from the work of  Shadish et al. (2008) was used for this study, because it provided a clear benchmark for assessing selection bias and 

consisted of real-world, individual observations, thereby reducing the weaknesses of other approaches, such as, computer simulations, single-study 

comparisons and meta-analysis. As a way of measuring how well nonrandomized experiments can approximate treatment effects found in 

randomized experiments, participants were randomly assigned to either a randomized experiment or a nonrandomized experiment. In the 

randomized experiment, the participants were randomly assigned to mathematics or vocabulary training; in the nonrandomized experiment, the 
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participants chose their training. Several variables expected to predict the condition that participants chose were measured using a battery of 

pretests. These included demographic characteristics: Age, education, marital status, and major area of study; educational assessments: ACT or SAT 

scores, college and high school grade point averages (GPA) and vocabulary and mathematical tests; and personality traits: Extroversion, emotional 

stability, agreeableness, openness to new experiences, conscientiousness, mathematics anxiety, and depression. Table 1 illustrates a complete list of 

covariates and how they relate to treatment selection and outcomes for both the randomized and nonrandomized samples.  

------------------------------------------------------------------------------------------------------------------INSERT TABLE 1 ABOUT HERE 

------------------------------------------------------------------------------------------------------------------Of the 445 undergraduate students from introductory 

psychology classes who volunteered to participate in this study, 235 were randomly assigned to the randomized experiment and 210 to the 

nonrandomized experiment. Of the 235 participants in the randomized experiment, 116 were randomly assigned to vocabulary training and 119 to 

mathematics training. Of the 210 participants in the nonrandomized experiment, 79 selected mathematics training and 131 selected vocabulary 

training. 

After receiving their respective training, all the participants were measured on two outcomes: vocabulary and mathematics. The 50-item 

post-test contained 30 vocabulary items (15 items presented in training and 15 new items) and 20 mathematics items (10 presented in training and 

10 new items). For the math posttest, those who received the mathematics training served as treatment group and those in the vocabulary training 

served as the control group. For the vocabulary posttest, those who received the vocabulary training served as treatment group and those in the 

mathematics training group served as the control group. Therefore, this design created four experiments: a randomized experiment to test a 

vocabulary intervention, a randomized experiment to test a mathematics intervention, a nonrandomized experiment to test a vocabulary intervention, 
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and a nonrandomized experiment to test a mathematics intervention. Since the data collection and treatment procedures for each training method 

were identical in all respects except in the assignment method, it is reasonable to assume that the only difference in these outcomes were due to the 

assignment method. Therefore, selection bias for each intervention could be easily measured by comparing the treatment effects from the 

nonrandomized experiment to the treatment effects from the randomized experiment. 

  

Statistical Analysis 

PS subclassification, IPTW, and the cluster-based method were compared to assess the extent by which they can reduce estimated bias using 

the results obtained from a randomized experiment as a benchmark. Since propensity score methods may be less effective in reducing bias if the 

propensity score models are misspecified (Kang & Schafer, 2007; Lunceford & Davidian, 2004), we also included doubly robust models for PS 

subclassification and IPTW.  

Using Propensity Scores Subclassification. For unit i ( Ni ,....,1= ), let iT  denote the treatment assignment (in this case 1=iT  if the unit i  

receives the vocabulary training, and 0=iT if the unit receives the mathematics training) and let ix  denote the vector of observed covariates. The 

propensity score ( ( )ixe ) for unit i , as proposed by Rosenbaum and Rubin (1983), is defined as the conditional probability that the unit i  receives 

the treatment, given the set of observed covariates, 

 
 

(1) 
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Rosenbaum and Rubin (1983) have shown that the methods, which balance groups on ( )Xe , produce unbiased estimates of the treatment effects, if 

the strong ignorability assumption holds, that is treatment assignment (T ) and the potential outcomes [ ( ) ( )1,0 YY ] are conditionally independent 

given the observed covariates as in eq. (2) 

  (2) 

and if eq. (3) holds. 

 ( )( ) 1Pr0  ixe  (3) 

Once the propensity scores are estimated, units are grouped based on their estimated propensity scores. Although propensity scores may be grouped 

in various ways, Cochran (1968) and Rosenbaum and Rubin (1984) found that one may expect approximately 90% reduction in bias when balancing 

units by quintiles. Following these recommendations, we estimated propensity scores using a logistic regression in which all covariates were used as 

predictors to estimate the predicted probability that each unit would select the vocabulary intervention. Then, units in both treatment groups were 

classified into quintiles based on their propensity scores. For each variable used as covariate, the balance achieved by subclassification was 

examined  using a standardized measure of bias similar to that used by Rosenbaum and Rubin (1985). Odds ratios were computed for the categorical 

covariates, then converted to standardized estimates of bias using a formula similar to Hasselblad and Hedges’s (1995). The standardized bias 

estimates and equation used to compute them are provided in Appendix A. 

 Using Inverse Probability of Treatment Weighting. With IPTW each unit is weighted by the inverse of the probability of receiving the 

treatment that the unit actually received. In particular, treated individuals receive an IPTW equal to (4): 

 1/𝑒(𝑥𝑖) (4) 
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and control individuals receive a weight equal to (5) (e.g., Harder et al., 2010; Lanehart et al., 2012).  

 1/(1 − 𝑒(𝑥𝑖)) (5) 

 

The weights are then used in a weighted least squares regression model along with other predictor covariates. The main characteristic of IPTW is 

that it includes all subject in a study, causing no loss of sample as in other methods. The main disadvantage of using this conditioning method is the  

potential bias caused by the possible presence of extreme propensity scores (e.g., Lanehart et al., 2012; Austin, 2011; Shadish & Steiner, 2010). In 

the presence of extreme propensity scores, stabilization techniques can be used to attenuate bias (e.g. Harder et al. 2010; Robins et al. 2000). 

Using Cluster Based Method. The general idea underlying the cluster-based method is to balance unequal group distributions by stratifying 

on clusters based on several pre-treatment covariates and using a global measure of imbalance (Peck et al. 2012; Camillo & D’Attoma, 2012; 

D’Attoma & Camillo, 2011; Peck, 2005). Cluster analysis does not create a single aggregate score, permitting each covariate to maintain its 

functional form. In general, balancing by clusters, rather than by units, increases common support, which is the likelihood that each unit in the 

treatment group will be compared to a similar unit in the control group. Although, this increased common support often means that units in the 

clustered analysis are less similar to each other than when matching pairs of units, group homogeneity can be controlled by varying the number of 

clusters. As with other subclassification adjustments, fewer clusters retain more participants and more clusters allow for better covariate balance. 

Finding the number of clusters will be illustrated and explained further in the results section.  

The global measure of imbalance is used to evaluate balance within each cluster solution. As explained in Camillo & D’Attoma (2010), it 

originates from the decomposition of the variability (total inertia) associated with a matrix into the variability due to covariates (X) (inertia within) 

and the variability caused by the selection into treatment mechanism (T) (inertia between), which is called GI (Camillo & D’Attoma, 2010, p. 179).  
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 The GI measure can be computed according to the formula in eq. (6): 

 

 𝐺𝐼 =
1

𝑄
∑ ∑

𝑏𝑡𝑗
2

𝑘.𝑡𝑘.𝑗
− 1

𝐽𝑄

𝑗=1

𝑇

𝑡=1
 (6) 

                                                                                                                           

where Q denotes the number of pre-treatment covariates, T denotes the number of treatment levels, 𝐽𝑄 denotes the set of all categories of the Q baseline 

variables, 𝑏𝑡𝑗 is the number of units in category j in treatment group t. 𝑘.𝑡 is the treatment group size and 𝑘.𝑗 is the number of units in category j. 

According to the GI measure, perfect imbalance occurs when the between-groups inertia  BI  equals the total inertia  TI , which implies that the 

observed total variability of the covariates X-space is completely due to the selection-into-treatment mechanism. Thus, the proposed GI measure in 

data varies in  TI,0 . Then, following D’Attoma & Camillo (2011) and Peck et al. (2012), we determine the significance of the GI measure by 

performing an imbalance test of the null hypothesis of independence between X and T. According to such a test (for more details, see D’Attoma & 

Camillo, 2011; Camillo & D’Attoma, 2012), the interval of plausible values for GI is defined as in (7): 

 𝐺𝐼 ∈ (0,
𝜒(𝑇−1)(𝐽−1),𝛼

2

𝑛𝑄
) (7) 

If the GI calculated on the specific dataset is outside the interval, then the null hypothesis is rejected and data are deemed unbalanced. Estadella et 

al. (2005) have demonstrated that the length of the interval depends on n, Q, J and T. As a consequence, its length decreases with sample size n. 

When n increases, the length decreases and it becomes more plausible to reject the null and deem data unbalanced. For more comprehensive 

explanations of the theoretical framework of the GI measure, its related test, and illustrations of its use and effectiveness, see D’Attoma & Camillo 

(2011), Camillo & D’Attoma (2012),  and Peck et al. (2012). 
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Although some might argue that significance testing is inadequate to evaluate covariate balance because it is affected by the sample size, this test 

does not depend only on n. To avoid potential critiques and improve reliability of results we have opted for an additional statistic to evaluate global 

imbalance in data, that is the multivariate imbalance coefficient (MIC) proposed in D’Attoma & Camillo (2011).  The MIC is an index that ranges 

between 0 and 1 and it is defined as one minus the ratio between the within-groups inertia relative to the total inertia as in (8):  

 𝑀𝐼𝐶 = 1 −
𝐼𝑊

𝐼𝑇
 (8) 

MIC=0 denotes perfect balance; whereas, MIC=1 indicates perfect imbalance. It expresses the importance of the measured imbalance relative to the 

total inertia. 

In short, the method is carried out in three steps for estimating treatment effects in non-experimental data in which selection bias on 

observed variables is minimized without drawing upon the specification and the estimation of a probabilistic model.  

Step 1: Measure and test balance. Compute the MIC index, the GI measure on the overall unclustered data and test its statistical significance. 

Step 2: If imbalance exists, which is probable in all non-experimental data, perform a subgroup analysis, which involves implementation of cluster 

analysis to identify homogeneous groups. Based on previous studies (Green & Krieger, 1995; Lebart, Morineau, & Piron, 1997; Peck et al., 2012), 

we suggest using Ward’s algorithm on multiple correspondence analysis (MCA) factorial coordinates, where the proximity between two groups is 

measured by the squared Euclidean distance. By using MCA as an intermediate step before cluster analysis, it is possible to exploit the advantage of 

working with continuous variables (the MCA factorial coordinates) rather than categorical covariates (some or all the original variables), which 

need to be treated with unusual metrics. 
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Step 3: Measure and test the balance in each cluster and compute local treatment effects in balanced clusters, and prune the observations in 

unbalanced clusters. 

All the three steps may be easily carried out using the %GI SAS macro (Camillo & D’Attoma, 2012) that can be downloaded at 

https://www.jstatsoft.org/article/view/v051c01 

 

Results 

The Effects of Mathematics Training on Mathematics Outcome: The Benchmark and the Propensity Score Results 

The effects estimated from randomized experiments are considered the best against which all adjusted and unadjusted nonrandomized results 

are compared (Shadish et al. 2008). Since these data include observations from both randomized and nonrandomized experiments, the randomized 

experiments made it possible to measure the selection bias in the nonrandomized studies.  Because some of the covariates in the randomized 

experiments were not balanced due to sampling error, the average treatment effects (ATEs) were adjusted following the procedures recommend by 

Schafer and Kang (2008), in which each outcome was estimated from the group differences in the randomized experiment after accounting for all of 

the available covariates and interactions between these covariates and treatment conditions that were statistically significant at p < .1. This 

covariate-adjusted effect from the randomized experiment (reported in Table 2) was the benchmark against which the performances of the PS 

subclassification, IPTW, and the cluster-based methods were compared. In particular, the participants who received mathematics training performed 

better on the mathematics outcome by 3.98 points than those who received vocabulary training. The absolute value of the difference between the 
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randomized covariate-adjusted results and those of the unadjusted nonrandomized experiment (Δ=|3.98-5.01|=1.03) is a measure of the bias in the 

unadjusted nonrandomized results. 

--------------------------------------------------------------------------------------------------------------------- 

INSERT TABLE 2 ABOUT HERE 

--------------------------------------------------------------------------------------------------------------------- 

After making some adjustments to expression (2.6) in Rubin (1973), the percent bias reduction (p.bias) was calculated as in (9): 

 

( ) ( )
( )

100. 















 −

=
U

AU

ybias

ybiasybias

biasp  (9)  

 

where 
U

y and 
A

y  are respectively the unadjusted and adjusted estimates of the average treatment effect. 

The propensity score subclassification on propensity score quintiles (Rosenbaum & Rubin, 1984), already implemented by Shadish et al. 

(2008), was replicated. Like the previous study, propensity scores were created using logistic regression and included the following covariates: 

Vocabulary pretest, mathematics pretest, log(number of prior mathematics courses), like mathematics, preferring literature over mathematics, 

extraversion, conscientiousness, emotionality, mathematics anxiety, log(depression), Caucasian, male, mother’s education, father’s education, math-

intensive major, college GPA, mother’s education squared, and college GPA squared. All five subclasses were balanced according to the 

conventional variable-by-variable tests, and no units were discarded. The percent of bias reduction was similar to that estimated by Shadish et al. 

(2008), wherein ATE=3.72, SE=.57 and p.bias=75%.  
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Using the traditional PS subclassification approach, Shadish et al. (2008) were able to reduce selection bias by 71% and by 96% by 

including additional covariates in the PS model, thereby reducing the difference between the randomized and adjusted nonrandomized effects to 

nearly zero. Using slightly different randomized treatment effects, we were able to reduce bias by 75% and 93%, respectively. Due to the additional 

bias reduced by the doubly robust approach, it is likely that the propensity scores were not modeled correctly, despite testing several interactions 

and including non-linear terms. Therefore, our comparisons with other models will focus on the results from the PS subclassification with additional 

covariates.  

--------------------------------------------------------------------------------------------------------------------- 

INSERT TABLE 3 ABOUT HERE 

--------------------------------------------------------------------------------------------------------------------- 

The Effects of Mathematics Training on Mathematics Outcome: The IPTW results 

Using the same propensity scores estimated for PS subclassification, weights were computed according to formula (4) and (5). In order to 

adjust for potential bias due to extreme weights, following Lanehart et al. (2012), normalized weights were computed. The normalized weights were 

then used to estimate the desired treatment effect via weighted least squares regression. Table 3 shows that the IPTW method alone reduced the bias 

by 63%, and IPTW with additional covariates reduced bias by 75%. Given this difference between the two methods, we will use the second model 

as the basis for comparison to the other methods.  

The Effects of Mathematics Training on Mathematics Outcome: The Cluster-based Method Results 
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The extent by which similar or better bias reduction can be obtained by using the cluster-based method was examined. The same covariates 

used to estimate propensity scores in the previous adjustments were used for the cluster analysis. The three-step cluster-based method was 

performed as detailed below: 

Step 1: The GI measure for the overall data was computed using the %GI SAS macro (Camillo & D’Attoma, 2012). The resulting value of 0.03646 

(shown in Table 4) can be interpreted as a reflection of an imbalance in the data. The GI measure falls in the critical region, thereby requiring a 

statistical adjustment to estimate an unbiased treatment effect. Unlike PS methods, this method provides a single measure of sample balance that, by 

construction, takes into account all possible interactions between variables.  

--------------------------------------------------------------------------------------------------------------------- 

INSERT TABLE 4 ABOUT HERE 

--------------------------------------------------------------------------------------------------------------------- 

Step 2: The second step involves cluster analysis to identify homogeneous groups on the basis of 

MCA coordinates (Benzecri, 1973). The cluster analysis was carried out in Spad v6 software employing Ward's algorithm on the MCA coordinates, 

where the proximity between two groups is the square of the Euclidean distance between them. The MCA was carried out using the following 

variables: Vocabulary pretest, mathematics pretest, log (number of prior mathematics courses), like mathematics, preferring literature over 

mathematics, extraversion, conscientiousness, emotionality, mathematics anxiety, log(depression), Caucasian, male, mother’s education, father’s 

education, math-intensive major, and college GPA. Twelve of these variables were originally continuous, but grouped in classes prior to including 

them in the MCA analysis. The result of the MCA is a set of new variables (factorial coordinates) that are continuous and orthogonal to one other. 
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The MCA coordinates obtained were used as input for cluster analysis. Although cluster analysis is an atheoretical approach, the covariates we 

included in the preceding MCA were known predictors of treatments and selection. 

Figure 1 is a dendrogram (or tree diagram) used to document the clustering process and to choose the number of clusters. The dendrogram 

produces sequences of nested partitions of increasing heterogeneity between a partition into K clusters, where each unit is isolated, and a partition 

into one cluster which includes all the units. The dendrogram can be cut at a greater or lesser height to obtain a smaller or larger number of clusters; 

this number can be chosen by the statisticians or practitioners to optimize certain quality criteria. The main criterion is the loss of between-cluster 

sum of squares represented in Figure 1 by the height of the pairs of connecting branches. Since this loss must be as small as possible, the 

dendrogram should be cut at the level where the height of the branch is large. Such large gaps between clusters arguably indicate natural groups. 

Unfortunately, natural clusters are not always obvious and may differ according to the algorithm used to compute them.  In practice, the 

determination of the “real” number of clusters must be empirical as much as theoretical. From a practitioner’s point of view, cluster solutions must 

be clearly evident rather than theoretically optimal.  In an evaluation context, determining natural clusters is easier because both covariate balance 

and common support must be considered, which limits the number of acceptable cluster solutions, making optimal choices more obvious. The 

purpose of this comparative study is not to find one optimal solution, but to explore all possible solutions from the dendrogram to study how the 

percent of bias reduction relates to the number of clusters. It was decided to examine 18 partitions, from 2-cluster partition to 20-cluster partition2. 

--------------------------------------------------------------------------------------------------------------------- 

INSERT FIGURE 1 ABOUT HERE 

                                                           
2 We limited the analysis to a 20-cluster partition because a partition with more than 20 clusters might not have sense from a practitioner’s point of view. 
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--------------------------------------------------------------------------------------------------------------------- 

GI was measured and tested for each of the 18 cluster solutions using three different alpha levels. As reported in Table 5, the smallest cluster 

solutions (k < 9) did not satisfy the balance criterion; and the largest cluster solutions (k > 16) did not satisfy the common support criterion. 

However, cluster solutions 9 through 16 satisfied both balance and the common support criteria. Therefore, any of these solutions are acceptable.  

--------------------------------------------------------------------------------------------------------------------- 

INSERT TABLE 5 ABOUT HERE 

--------------------------------------------------------------------------------------------------------------------- 

As can be seen from Table 5 and Figure 2, when there is common support, more clusters result in better group balance and fewer discarded 

units. As the number of groups increases, cluster size and the probability of common support decrease. The red vertical line in Figure 2 indicates the 

point in which the common support ceases to hold. In this case, common support declines with more than 16 clusters. 

--------------------------------------------------------------------------------------------------------------------- 

INSERT FIGURE 2 ABOUT HERE 

--------------------------------------------------------------------------------------------------------------------- 

Step 3: During the final stage of the procedure, the effects of interest were analyzed and the percent bias of reduction was examined. Specifically, 

the treatment effect was measured in all eight cluster solutions that satisfied both balance and common support criteria. Clearly, the more clusters 
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we retain, the smaller the clusters sizes will be, and statistical power might diminish especially in studies like this that have so few observations. For 

all eight cluster partitions the effect of mathematics training on the mathematics outcome was computed with the related standard errors3.  

The weighted sum of the average treatment effect for each k-cluster partition ( dATE ) was estimated by (10):  

 

=

=
K

k

k
k

d ATE
N

n
ATE

1

 (10) 

 

where k is the number of clusters in the partition, kn  is the number of participants in each cluster, N  is the total sample size of the study, and  

kATE  is the average treatment effect for cluster k. Table 6 reports the weighted treatment effect  with standard errors in parentheses, the absolute 

bias and the percent bias reduction for each K-cluster partition for the mathematics outcome. Absolute bias and percent bias reduction were 

computed using the ATE from the covariate-adjusted randomized experiment as the benchmark for comparison. 

--------------------------------------------------------------------------------------------------------------------- 

INSERT TABLE 6 ABOUT HERE 

--------------------------------------------------------------------------------------------------------------------- 

The average treatment effect of all the selected partitions ( TOTATE ) was computed by (11): 
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3 The standard errors are computer using the formula in Zanutto (2006, p. 70) 
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where D is the number of considered partitions and d is the specific partition ( Dd  ).  The computation of the ATE of all the acceptable cluster 

solutions, avoids the choice of the best cluster partition that might introduce more subjectivity in the analysis. However, TOTATE might reduce less 

bias than some single cluster solutions.  For the mathematics intervention, the average treatment effect (ATETOT) of all the selected partitions was 

4.16, the average absolute mean difference (Δ) was 0.18 and the average percent bias reduction was 82.52% 

--------------------------------------------------------------------------------------------------------------------- 

INSERT FIGURE 3 ABOUT HERE 

--------------------------------------------------------------------------------------------------------------------- 

It clearly emerges from Figure 3 and Figure 4 that the selection of a k-cluster partition with a greater number of clusters leads to increased 

percent bias reduction and produces more precise estimates. If one prefers to select the single best partition instead of using the average treatment 

effect of all the selected partitions, the best option in this case is the 15-cluster partition because it reduces the most bias (97%). Within the 

13,15,16-cluster solutions, Tables 7,8 and 9 respectively,  show that the average treatment effects are heterogeneous. However, computing the 

average effect of all k-cluster solutions might obscure this heterogeneity. The ability to examine heterogeneity in the effects is another advantage of 

subgroup analysis that conventional PS subclassification analyses may lack since subclasses are not “natural” groups4. Instead, PS bins and their 

number are based on an artificial division of data.  

                                                           
4 For an in-depth analysis of unsupervised learning techniques to identify natural group structures underlying the data see for example Everitt (1993; 2011); Duda et al. (2001) and Hastie et al. 

(2001). 
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This is due to the different essence of cluster analysis. Cluster analysis is a technique that “finds natural groups by sorting the observations into 

groups such that the degree of natural association is high among members of the same group and low between members of different groups” 

(Anderberg, 1973, p.3). The definition of natural group is not obvious, but it is typical of data mining and natural language processing that provide 

different methods to find patterns. A group is natural when it already exists in the unstructured data5 and the algorithms detect it on the basis of 

similarity of objects within it. As reported in Anderberg (1973, p.5), “since similar observation are grouped together, the individuals tend to assume 

class labels and the whole process may give names to things” 

--------------------------------------------------------------------------------------------------------------------- 

INSERT TABLE 7 ABOUT HERE 

--------------------------------------------------------------------------------------------------------------------- 

INSERT TABLE 8 ABOUT HERE 

--------------------------------------------------------------------------------------------------------------------- 

--------------------------------------------------------------------------------------------------------------------- 

INSERT TABLE 9 ABOUT HERE 

--------------------------------------------------------------------------------------------------------------------- 

 

The Effects of Vocabulary Training on Vocabulary Outcome: The Benchmark and the Propensity Score Results 

                                                           
5 Unstructured data do not have an underlying pre-defined data model as is not organized in a pre-defined manner. 
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Following the procedures used for the mathematics outcome, the covariate-adjusted effect from the randomized experiment (reported in 

Table 10) became the benchmark against which the performances of the PS subclassification and the cluster-based method were compared. In 

particular, the participants who received vocabulary training performed better on the vocabulary outcome by 8.25 points than those who received 

mathematics training. The absolute value of the difference between the randomized covariate-adjusted results and those of the unadjusted 

nonrandomized experiment (Δ=|8.25-9.00|=.75) is the measure of the bias in the unadjusted quasi-experiment results from the vocabulary outcomes. 

--------------------------------------------------------------------------------------------------------------------- 

INSERT TABLE 10 ABOUT HERE 

--------------------------------------------------------------------------------------------------------------------- 

Using the traditional PS subclassification approach, Shadish et al. (2008) were able to reduce selection bias by 87%. Although including 

additional covariates in the PS subclassification model did not reduce much more bias than the model without the added covariates, it did make a 

small improvement (see Table 11). Since it is not clear from this difference whether or not propensity scores had been modeled correctly, we will 

compare the results from both PS subclassification methods to IPTW and cluster methods. 

--------------------------------------------------------------------------------------------------------------------- 

INSERT TABLE 11 ABOUT HERE 

---------------------------------------------------------------------------------------------------------------------  

The Effects of Vocabulary Training on Vocabulary Outcome: The IPTW results 
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Following the procedures for the mathematics outcomes, the propensity scores computed for the other PS methods were weighted according to 

formula (4) and (5) using normalized weights, and the normalized weights were used to estimate treatment effect. Table 11 shows that the IPTW 

method alone reduced bias by 96%, and the IPTW with additional covariates reduced bias by 91%. 

The Effects of Vocabulary Training on Vocabulary Outcome: The Cluster-based Method Results 

The extent by which similar or better bias reduction could be obtained by using the three-step cluster-based method described previously 

was examined. Steps 1 and 2 from the mathematics outcome were replicated for this outcome. However, in the third step, the effects of vocabulary 

training on vocabulary outcome were analyzed and the percent bias reduction examined. As was done for the mathematics outcome, the treatment 

effect was measured in all eight cluster partitions that satisfied both balance and common support criteria. Table 12 reports the ATEd with standard 

errors in parentheses, the absolute bias, and the percent bias reduction relative to each selected K-cluster partition. 

 

--------------------------------------------------------------------------------------------------------------------- 

INSERT TABLE 12 ABOUT HERE 

--------------------------------------------------------------------------------------------------------------------- 

The average treatment effect (ATETOT) of all the selected partitions was 8.07, the average absolute mean difference (Δ) was 0.18 and the average 

percent bias reduction was 76%. For the vocabulary outcome, the 16-cluster partition was most effective in reducing bias with a percent bias 

reduction of 97%. Within the 16-cluster solution, Table 13 shows the heterogeneity of the average treatment effects for each cluster.  

--------------------------------------------------------------------------------------------------------------------- 
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INSERT TABLE 13 ABOUT HERE 

--------------------------------------------------------------------------------------------------------------------- 

Propensity Score Methods versus the Cluster-based Method 

When comparing the average reduction in bias for all eight k-cluster solutions that met the balance and common support standards to the PS 

subclassification and IPTW methods, the cluster-based method reduced less bias (82.52%) in the mathematics outcome than the PS subclassification 

method with added covariates (93%), but was still better than the  IPTW with added covariates (75%). However, the 15-cluster partition reduced 

bias by 97%, which was better than either of the PS methods. For the vocabulary outcome, the average bias reduction from the eight k-cluster 

solutions (76%) was less than that from either PS subclassification method (91% with added covariates and 87% without added covariates) and 

either IPTW (96% without added covariates and 91% with added covariates). However, using only the 16-cluster partition with the cluster-based 

method reduced more bias (97%) than  any of the PS methods. 

The standard error bar graphs depicted in Figure 4 and Figure 5 show no relevant difference in the two methods with respect to the precision 

of the treatment effects, but generally, the estimates produced by the cluster-based method are, for some cluster solutions, slightly more precise than 

estimates produced by PS subclassification or by IPTW. Though several factors can affect the precision of an estimate, sample size is always a 

factor because the standard error formula includes the sample size in the denominator. Hence, with all other factors held steady, as sample size 

increases, the standard error decreases and the treatment estimates are more precise. For such a reason, it does not make sense to compare standard 

errors of PS adjustments with standard errors of ATE within a single cluster, since the sample size of a single cluster is always smaller than that 
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from the entire data set. Therefore, in Figure 4 and Figure 5, standard errors of PS subclassification are compared to the standard errors of the ATEd 

calculated on the overall k-clusters partition. 

--------------------------------------------------------------------------------------------------------------------- 

INSERT FIGURE 4 ABOUT HERE 

--------------------------------------------------------------------------------------------------------------------- 

--------------------------------------------------------------------------------------------------------------------- 

INSERT FIGURE 5 ABOUT HERE 

--------------------------------------------------------------------------------------------------------------------- 

 

Discussion and Conclusions 

Bias Reduction 

The aim of this paper was to examine the effectiveness of the cluster-based approach when compared to PS subclassification and IPTW in 

terms of percent bias reduction. In general, the propensity score and cluster-based methods were comparable in their ability to reduce selection bias. 

Under certain conditions, the PS methods reduced more bias than the cluster-based method and under other conditions the cluster-based methods 

were more advantageous. PS subclassification using a doubly robust analysis consistently reduced more bias than the total average treatment effect 

computed for all the eight k-cluster solutions. Whereas the IPTW reduced more bias than the total average treatment effect computed for all eight k-

cluster solution only for the vocabulary outcome. However, specific cluster solutions (e.g., 15-clusters for the mathematics outcome and 16-clusters 
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for the vocabulary outcome) were more effective in reducing bias than the PS methods.  Likewise, there is no significant difference in the precision 

of the estimates between the three methods. However, for the vocabulary outcome, standard errors from the cluster-method tended to be smaller 

(0.42-0.51) than those from PS subclassification (0.49-0.60) and IPTW (0.38-0.49). 

Case Retention 

In this particular study, we found that all of the methods retained the same number of units. However, this may not always be true for studies that 

use PS subclassification where (a) many subclasses are used and (b) the covariates are very strong predictors of selection, which reduces the 

common support between the propensity scores in the treatment and control groups. In such cases, the cluster-based method may allow for better 

case retention, which could improve external validity. On the other hand, some argue that the atheoretical nature of the cluster-based approach limits 

the ability of this method to produce generalizable findings (Peck et al. 2012). Since the IPTW method has neither of these limitations, it may be the 

best method with respect to generalizability.  

Advantages to Using Cluster Analysis over Propensity Score Adjustments 

While the amount of bias reduced by the cluster-based approach may not be significantly different than that from the PS subclassification 

method in this study, other studies have shown that the cluster-based method can be more effective in reducing bias than propensity score methods 

(Clark, 2011). Furthermore, the cluster-based approach offers some advantages over the propensity score methods. First, the cluster-based method 

balances unequal group distributions by stratifying on the covariates themselves, rather than on an aggregate of the covariates, permitting each 

covariate to maintain its functional form. 
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Second, it reduces the subjectivity of covariate selection that propensity score researchers are faced with. The choice of covariates and 

interaction terms or higher order terms to be included in statistical models plays a fundamental role in their ability to reduce selection bias. 

However, the criteria that propensity score researchers use to include covariates in propensity score models are inconsistent and many do not 

include any interactions or higher order terms (Thoemmes & Kim, 2011). Some researchers include any covariate that has a standardized bias less 

than 5 (e.g., Bai, 2013), others rely on significance tests (e.g., Diamond & Sekhon, 2013), and others include all available variables that are 

theoretically related to outcomes (e.g., Harknett, 2006). While there are algorithms that automatically include interactions and nonlinear covariates 

for propensity score estimations (e.g., Matchit in R), not all researchers regularly use these packages. As demonstrated in our own results, when 

propensity score models are misspecified, propensity scores alone may not sufficiently reduce bias. When using cluster analysis, researchers 

frequently choose covariates by applying CA to the observations’ factor scores derived from a previous factor analysis. The implementation of CA 

on factor scores allows to use an abundance of clustering variables of different nature (qualitative or quantitative)6 and with a different degree of 

correlation or association.  

Another clear advantage of the cluster-based method is that it captures heterogeneity in the effects on natural groups, which cannot be done 

by matching or propensity score adjustments. Average treatment effects often obscure the changing effects within heterogeneous populations; the 

cluster-based approach capitalizes on this heterogeneity and allows for impact estimates within subgroups that might otherwise fail to be easily 

recognized. Particularly if subgroup effects operate in opposite directions, the overall treatment effect will be estimated as zero. 

                                                           
6 Tonks (2009) provides a discussion of segment design and the choice of clustering variables in consumer markets. 
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Generally, clustering yields differentiated clusters that remain stable when small changes in data occur. As reported in Everitt (1993) and 

Jolliffe et al. (1982), deleting a small number of variables from the analysis should not, in most cases, greatly alter the clusters if these clusters are 

real and not mere artifacts of the technique being used. Furthermore, clustering allows researchers to process large data sets efficiently and can 

accommodate both quantitative and qualitative variables if conducted on factorial coordinates. It can also accommodate small sample sizes without 

restricting the number of covariates in the model. Moreover, using well-consolidated techniques of cluster profiling (e.g., Cohen et al. 1977; Jobson, 

1992), a direct description of the clusters can be obtained, making it simpler to interpret and use the results compared to other methods. 

Limitations 

We are aware that the subgroup analysis strategy here proposed might have some limitations. First, the algorithm chosen for a given cluster 

analysis can have important implications for analytical results (e.g., Aldenderfer & Blashfield, 1984). Almost all clustering algorithms will produce 

partitions for any dataset, regardless of whether the resulting clustering actually represents a significant cluster structure or not (Milligan, 1981). 

Since each algorithm is associated with potential shortcomings, no one particular algorithm can be considered the best. However, several studies 

have demonstrated that some algorithms are more appropriate than others for particular kinds of data (e.g., Jobson, 1992; Lebart, Morineau, & 

Tabard, 1977; Lebart, Morineau, & Warwick, 1984; Milligan, 1980). Because Lebart, Morineau, and Tabard (1977) demonstrated that Ward’s 

algorithm is compatible with MCA, as both are based on a similar optimization criterion (inertia definition), we also used Ward’s algorithm for this 

study. However, other less appropriate algorithms may have given different results. Rather than focusing on a particular algorithm to perform our 

cluster analysis, future studies might follow a new line of research that  employs consensus clustering to obtain a single consensus solution (e.g., 
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Goder & Filkov, 2008; Topchy et al. 2004; Strehl & Gosh, 2002). This methodology might avoid the potential shortcomings of various clustering 

methods and improve the reliability of our clusters solutions. 

Single Cluster Solution vs. Averaged Cluster Solutions  

Selecting an optimal cluster solution also involves some subjectivity on the part of the researcher. Although several reasonable solutions can 

be identified, the optimal number of subgroups often depends on the specific technique used to determine the number of clusters used for the 

statistical adjustment (Chiu, Fang, Chen, Wang, & Yeris, 2001; Fraley & Raftery, 1998; Salvador & Chan, 2004; Tibshirani, Walther, & Hastie, 

2001; D’Attoma & Liberati, 2011). To the best of authors’ knowledge, no optimal criterion takes into account balance and common support. 

Therefore, we estimated the average treatment effect for several k-cluster solutions, rather than choosing a particular optimal solution, in addition to 

providing the results from a single, hand-picked cluster solution. That was possible because, in an evaluation context, the number of all possible k-

clusters solutions is limited since partitions without sufficient common support and/or covariate balance are excluded. Therefore, we were able to 

avoid the potential shortcomings in using various criteria to select an optimal number of groups by providing results from the weighted ATE.  This 

is a good alternative to using optimization criteria because it simultaneously allows for maintaining criteria for selecting appropriate cluster 

solutions and some flexibility in interpreting the results to account for statistical error.  

Theoretically, several cluster-based solutions may be equally effective in reducing bias. However, when applying this method in a program 

evaluation, it is important to obtain a final cluster solution that balances covariates without discarding too many units. The measure of GI permits 

researchers to gauge the trade-off between covariate balance, which improves with more clusters, and common support, which improves with fewer 

clusters, when selecting the optimal cluster solution from the dendrogram. 
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Conclusions  

Although the results from this study do not permit us to definitively claim that the cluster-based method was significantly more effective in 

reducing bias than propensity score subclassification or IPTW,  we were able to show strong evidence that it reduces bias and retains participants as 

well as two of the better propensity score adjustment methods that many researchers use. Furthermore, the cluster-based approach may reduce some 

of the limitations that propensity score adjustment methods face. For those wanting to use the cluster-based approach to reduce selection bias in 

nonrandomized studies, this study offers two possible strategies: 1) compute the ATE of all possible k-cluster solutions that permit sufficient 

common support and global balance; and 2) select a single cluster solution that might produce the most bias reduction. The first strategy minimizes 

the researcher’s choices in conducting the analysis, while still providing an acceptable reduction in bias reduction. While the second strategy 

provides a greater reduction in bias with a little more effort.  
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Table 1. Means, Standard Deviations and Correlations for Covariates and Outcome Variables  

 Nonrandomized Samples Randomized Samples 

Variable 

Mean 

(Standard 

Deviation) 

Correlation 

with 

Vocabulary 

Training 

Correlation 

with 

Vocabulary 

Posttest 

Correlation 

with 

Mathematics 

Posttest 

Mean 

(Standard 

Deviation) 

Correlation 

with 

Vocabulary 

Training 

Correlation 

with 

Vocabulary 

Posttest 

Correlation 

with 

Mathematics 

Posttest 

Vocabulary Pretest 21.01 (5.20) .17 .47 .11 20.69 (4.64) -.05 .26 .24 

Mathematics Pretest 6.29 (2.73) -.09 .15 .45 6.21 (2.79) -.02 .17 .27 

Number of Previous 

Mathematics Courses 

2.09 (1.12) 

-.02* -.06* .33* 

1.86 (0.92) 

-.07* -.04* .36* 

Like Mathematics 4.86 (2.42) -.36 -.29 .47 4.33 (2.28) .02* -.04* .30* 

Like Literature 6.40 (2.22) .16 .23 -.23 6.34 (2.13) -.04 .09 -.17 

Prefer Literature over 

Mathematics 

2.30 (.898) 

.38* .42* -.43* 

2.39 (0.86) 

-.04* .02* -.27* 

Extraversion 32.32 (7.82) .09 .01 -.16 32.19 (7.57) .04 0.00 -.21 

Agreeableness 40.50 (4.85) .10 .12 -.08 39.54 (5.24) -.11 -.06 -.03 

Conscientiousness 34.83 (5.96) -.13 -.19 -.04 34.92 (5.37) .05 .09 -.02 
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Emotional Stability 29.81 (7.74) -.02 -.10 -.12 28.98 (8.14) .14 .13 -.05 

Openness to New 

Experiences 

36.32 (5.08) 

.05 .20 .05 

35.65 (5.14) 

-.09 .07 .07 

Mathematics Anxiety 

58.03 

(22.21) 

.00 -.05 -.14 60.09 

(21.25) 

-.05 -.05 -.16 

Depression 4.83 (6.18) .10* .05* .16* 4.84 (4.77) -.09* -.05* .09* 

Caucasian 0.56 (0.50) .18** .32 -.07 0.58 (0.49) .02** .15 .01 

African American 0.39 (0.49) -.14** -.30 -.02 0.34 (0.48) -.02** -.19 -.04 

Age 21.67 (5.43) .10*  .08* -.22* 20.85 (4.69) .06 .11 -.19 

Male 0.24 (0.43) -.07** .06 .14 0.28 (0.45) .05** .08 .08 

Married 0.08 (0.27) .00** -.07 -.16 0.03 (0.17) .03** .14 -.05 

Mother’s Education (years) 14.26 (2.30) .01 .09 -.02 14.09 (2.39) -.05* -.04* .10* 

Father’s Education (years) 14.50 (2.74) .01 .11 .07 14.19 (2.50) -.01 .04 .16 

Hours of College Credit  

31.36 

(33.48) 

.03 .10 .10 26.69 

(30.15) 

-.13* *-.07 .23* 

STEM Major 0.20 (0.40) -.19** -.17 .30 0.27 (0.44) .04** .03 .11 

ACT Score 21.66 (4.75) .03 .34 .42 21.05 (4.06) -.05 .24 .42 
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High School GPA 3.10 (0.56) -.04 .00 .40 2.99 (0.63) -.05 .06 .33 

College GPA 2.77 (0.69) -.03 .06 .22 2.60 (0.73) -.02 .13 .28 

Vocabulary Posttest 13.36 (5.64) .78  -.27 12.08 (5.29) .77  -.27 

Mathematics Posttest 9.26 (4.57) -.53 -.27  9.29 (4.01) -.52 -.27  

Note: Point biserial correlations were used to compare continuous covariates with vocabulary training condition and dichotomous covariates with 

outcome variables. Pearson correlations were used to compare continuous covariates with outcome variables. *Spearman’s rho was used when 

variables were ordinal or not normally distributed. **Phi coefficients were used when both variables were dichotomous. 
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Table 2. Mathematics outcome 

 
Treatment Effect 

(standard error) 

Absolute bias 

 

Covariate-adjusted randomized experiment 3.98 (.34) .00 

Unadjusted randomized experiment 4.19 (.44) .21 

Unadjusted quasi-experiment 5.01 (.55) 1.03 

Note. The treatment effect is the difference between the average number of items correct from the treatment and 
control groups. The absolute bias is the difference between each treatment effect and the treatment effect from the 
Covariate-adjusted randomized experiment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. Propensity score adjustment results for the mathematics outcome. 

PS Adjustment 

 

Treatment Effect 

(standard error)*** 

Absolute bias 

 

Percent Bias 

Reduction 

PS stratification 3.72(.57) .26 75% 
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PS stratification plus covariates  4.05(.59) .07 93% 

IPTW 3.60(.54) .38 63% 

IPTW plus covariates  3.72(.36) .26 75% 

Note. The treatment effect is the difference between the average number of items correct from the treatment and 
control groups. The absolute bias is the difference between each treatment effect and the treatment effect from the 
Covariate-adjusted randomized experiment. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. Global balance of all covariates. 

Mathematics training Vocabulary training Global Imbalance Interval Balance N 

N=79 N=131 0.03646 (0;0.02558) NO 210 
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Table 5. Balance summary within the selected  k-cluster solutions. 

k-cluster solution 
Balance 

Alpha=0.05 Alpha=0.1 Alpha=0.01 

k=2 1 unbalanced group 1 unbalanced group 1 unbalanced group 

k=3 1 unbalanced group 1 unbalanced group All balanced 

k=4 1 unbalanced group 1 unbalanced group 1 unbalanced group 

k=5 1 unbalanced group 1 unbalanced group All balanced 

k=6 1 unbalanced group 1 unbalanced group 1 unbalanced group 

k=7 1 unbalanced group 2 unbalanced groups 1 unbalanced group 

k=8 1 unbalanced group 2 unbalanced groups 1 unbalanced group 

k=9 All balanced All balanced All balanced 

k=10 All balanced All balanced All balanced 

k=11 All balanced All balanced All balanced 

k=12 All balanced All balanced All balanced 

k=13 All balanced All balanced All balanced 

k=14 All balanced All balanced All balanced 

k=15 All balanced All balanced All balanced 

k=16 All balanced All balanced All balanced 

k=17 No common support No common support No common support 

k=18 No common support No common support No common support 

k=19 No common support No common support No common support 

k=20 No common support No common support No common support 
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Table 6. ATEd and percent bias reduction by k-cluster partition for the mathematics 

outcome. 

k-cluster partition 

Overall Math ATEd  

(standard error)  

Absolute Bias 

 

Percent Bias Reduction 

 

9 4.4 (.61) 0.42 59% 

10 4.36 (.64) 0.38 63% 

11 4.49(.67) 0.51 50% 

12 4.08(.56) 0.10 90% 

13 4.02(.55) 0.04 96% 

14 4.05(.56) 0.07 93% 

15 3.95(.45) 0.03 97% 

16 3.94(.45) 0.04 96% 
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Table 7. ATEs and balance in the 13-cluster solution for the mathematics outcome. 

Cluster N 

Mathematics 

training 

Vocabulary 

training 

GI 

95%CI Balance Treatment 

effect (std) 

MIC 

1 14 6 8 0.16 (0,0.33) Yes 6.29(2.03) 0.0640 

2 14 9 5 0.26 (0,0.33) Yes 2.68(2.41) 0.1058 

3 17 11 6 0.21 (0,0.28) Yes 5.51(1.61) 0.0796 

4 14 2 12 0.22 (0,0.34) Yes 4.41(3.37) 0.0834 

5 18 4 14 0.21 (0,0.25) Yes 5.92(2.1) 0.0861 

6 23 10 13 0.10 (0,0.21) Yes 4.55(1.06) 0.0370 

7 11 6 5 0.29 (0,0.43) Yes 1.7(2.08) 0.1126 

8 29 1 28 0.14 (0,0.16) Yes 1.17(3.31) 0.0523 

9 8 6 2 0.34 (0,0.50) Yes 9(2.75) 0.1696 

10 15 7 8 0.15 (0,0.30) Yes 0.83(2.05) 0.0605 

11 10 3 7 0.22 (0,0.36) Yes 5.19(2.77) 0.1293 

12 18 6 12 0.17 (0,0.25) Yes 4.41(1.85) 0.0719 

13 19 8 11 0.12 (0,0.24) Yes 4.43(1.83) 0.0505 
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Table 8. ATEs and balance in the 15-cluster solution for the mathematics outcome. 

Cluster N 

Mathematics 

training 

Vocabulary 

training 

GI 

95%CI Balance Treatment 

effect (std) 

MIC 

1 14 5 9 0.19 (0,0.33) Yes 6.29(2.12) 0.0762 

2 14 9 5 0.26 (0,0.33) Yes 2.68(2.42) 0.1058 

3 17 11 6 0.21 (0,0.28) Yes 5.51(1.61) 0.0796 

4 14 1 13 0.22 (0,0.34) Yes 1.00(4.79) 0.0811 

5 10 2 8 0.34 (0,0.36) Yes 10.12(1.87) 0.1991 

6 10 4 6 0.33 (0,0.44) Yes 2.67(2.95) 0.1417 

7 23 10 13 0.10 (0,0.21) Yes 4.55(1.06) 0.0370 

8 10 6 4 0.28 (0,0.41) Yes 3.25(1.74) 0.1227 

9 27 1 26 0.14 (0,0.17) Yes 1.03(3.39) 0.0539 

10 8 6 2 0.33 (0,0.50) Yes 9.00(2.75) 0.1696 

11 8 5 3 0.19 (0,0.45) Yes -0.93(2.66) 0.1137 

12 8 2 6 0.17 (0,0.46) Yes 3.67(4.13) 0.0973 

13 10 3 7 0.22 (0,0.36) Yes 5.19(2.77) 0.1293 

14 18 6 12 0.17 (0,0.25) Yes 4.41(1.86) 0.0719 

15 19 8 11 0.13 (0,0.25) Yes 4.07(1.65) 0.0493 
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Table 9. ATEs and balance in the 16-cluster solution for the mathematics outcome. 

Cluster N 

Mathematics 

training 

Vocabulary 

training 

GI 

95%CI Balance Treatment 

effect (std) 

MIC 

1 14 5 9 0.19 (0,0.33) Yes 6.29(2.12) 0.0762 

2 14 9 5 0.26 (0,0.33) Yes 2.69(2.42) 0.1058 

3 7 4 3 0.31 (0,0.50) Yes 6.75(2.66) 0.1983 

4 10 7 3 0.36 (0,0.41) Yes 4.52(2.26) 0.1682 

5 14 1 13 0.22 (0,0.34) Yes 1.00(4.79) 0.0811 

6 10 2 8 0.34 (0,0.36) Yes 10.12(1.87) 0.1991 

7 10 4 6 0.33 (0,0.44) Yes 2.67(2.95) 0.1471 

8 23 10 13 0.10 (0,0.21) Yes 4.55(1.00) 0.0370 

9 10 6 4 0.28 (0,0.44) Yes 3.25(1.74) 0.1227 

10 27 1 26 0.14 (0,0.17) Yes 1.04(3.40) 0.0539 

11 8 6 2 0.34 (0,0.50) Yes 9.00(2.75) 0.1696 

12 8 5 3 0.19 (0,0.45) Yes -0.93(2.66) 0.1137 

13 8 2 6 0.17 (0,0.46) Yes 3.67(4.13) 0.0973 

14 10 3 7 0.22 (0,0.36) Yes 5.20(2.77) 0.1293 

15 18 6 12 0.17 (0,0.25) Yes 4.42(1.86) 0.0719 

16 19 8 11 0.13 (0,0.25) Yes 4.07(1.65) 0.0493 



 

 

Table 10. Vocabulary outcome 

 
Treatment effect 

(standard error)*** 

Absolute bias 

 

Covariate-adjusted randomized experiment 8.25 (.37) .00 

Unadjusted randomized experiment 8.11 (.44) .14 

Unadjusted quasi-experiment 9.00 (.51) .75 

Note. *** The treatment effect is the difference between the average number of items correct from the treatment 
and control groups. The absolute bias is the difference between each treatment effect and the treatment effect 
from the Covariate-adjusted randomized experiment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 11.  Propensity score adjustment results for the vocabulary outcome. 

PS Adjustment 

 

Treatment Effect 

(standard error)*** 

Absolute bias 

 

Percent Bias 

 Reduction 

PS stratification 8.15(.60) .10 87% 

PS stratification plus covariates with strata 8.32(.49) .07 91% 

IPTW 8.22(.49) .03 96% 

IPTW plus covariates 8.18(.38) .07 91% 

Note. *** The treatment effect is the difference between the average number of items correct from the treatment 
and control groups. The absolute bias is the difference between each treatment effect and the treatment effect 
from the Covariate-adjusted randomized experiment. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table 12. ATEd and percent bias reduction by k-cluster partition for the vocabulary outcome. 

k-cluster partition 

Overall Vocab 

ATEd  

(standard error)  

Absolute Bias 

 

Percent Bias Reduction 

 

9 8.04 (.43) .20 72% 

10 8.10 (.44) .15 80% 

11 7.95 (.51) .30 60% 

12 8.00 (.50) .25 67% 

13 8.04 (.51) .21 72% 

14 8.01 (.50) .24 68% 

15 8.15 (.42) .10 87% 

16 8.27 (.42) .02 97% 

 

 

 

 

 

 

 

 

 

 

 



 

Table 13. ATEs and balance in the 16-cluster solution for the vocabulary outcome. 

Cluster N 

Mathematics 

training 

Vocabulary 

training 

GI 

95%CI Balance Treatment 

Effect (std) 

MIC 

1 14 5 9 .19 (0,0.33) Yes 9(1.89) 0.0762 

2 14 9 5 .26 (0,0.33) Yes 11.91(1.61) 0.1058 

3 7 4 3 .31 (0,0.50) Yes 10.42(0.93) 0.1983 

4 10 7 3 .36 (0,0.41) Yes 8.86(1.77) 0.1682 

5 14 1 13 .22 (0,0.34) Yes 10(4.42) 0.0811 

6 10 2 8 .34 (0,0.36) Yes 9.75(2.53) 0.1991 

7 10 4 6 .33 (0,0.44) Yes 7.25(2.62) 0.1471 

8 23 10 13 .1 (0,0.21) Yes 6.87(1.38) 0.0370 

9 10 6 4 .28 (0,0.44) Yes 5.67(2.06) 0.1227 

10 27 1 26 .14 (0,0.17) Yes 7.31(4.13) 0.0539 

11 8 6 2 .34 (0,0.50) Yes 1.33(2.89) 0.1696 

12 8 5 3 .19 (0,0.45) Yes 9.8(1.07) 0.1137 

13 8 2 6 .17 (0,0.46) Yes 10.17(2.33) 0.0973 

14 10 3 7 .22 (0,0.36) Yes 5.71(1.85) 0.1293 

15 18 6 12 .17 (0,0.25) Yes 9.08(1.92) 0.0719 

16 19 8 11 .13 (0, 0.25) Yes 8.91(1.40) 0.0493 

 

 

 

 



 

 

 

 

Figure 1. The dendrogram from the cluster-based method results. 

Hierarchical Cluster Analysis
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X-Axis: Name of Observation or Cluster 

Figure 2. The percent of units discarded for each k-cluster solution. 

 

      Note. Cluster solutions to right of the red vertical line did not satisfy the common support criterion. 



 

 

 

Figure 3. Percent bias reduction in the selected partitions for the mathematics outcome. 

 



 

Figure 4. ATEd with standard error bars for the mathematics outcome. 

 

 

 

 

 

 

 

 

 

 



 

Figure 5. ATEd with standard error bars for the vocabulary outcome. 

 

 

 

 

 

 

 

 

 

 



 

Appendix A 

Standardized bias estimates before and after propensity score adjustments and the percent of 

selection bias reduced by each method. 

Covariate SBunadjusted SBsubclass % BRsubclass SBIPTW 

Vocabulary pretest -0.353 -0.046 87.055 -0.014 

Mathematics pretest 0.186 0.016 91.544 0.014 

Previous mathematics courses 0.272 -0.026 90.595 -0.006 

Liked mathematics  0.782 -0.006 99.207 0.001 

Preferred literature over mathematics -0.855 0.039 95.430 -0.003 

Extraversion -0.191 -0.027 86.080 -0.038 

Conscientiousness 0.262 -0.038 85.323 -0.002 

Emotional Stability 0.031 -0.038 -20.422 -0.050 

Mathematics anxiety -0.006 -0.024 -326.905 -0.024 

Depression 0.029 -0.031 -7.085 -0.014 

Caucasian -0.410 -0.068 83.468 -0.006 

Male 0.169 0.010 94.118 -0.038 

Mother's Education -0.205 -0.115 43.818 -0.089 

Mother's Education2 -0.200 -0.107 46.455 -0.084 

Father's Education -0.018 -0.094 -417.044 -0.043 

Math-intensive major 0.521 0.061 88.254 -0.023 

College GPA 0.054 0.004 93.303 0.014 

College GPA2 0.100 0.008 92.276 0.016 



 

Notes: SBunadjusted is the standardized bias of the covariates before propensity score methods were 

applied, SBsubclass is the bias after propensity score subclassification, % BRsubclass is the percent of bias 

reduced after subclassification, SBsubclass + cov is the bias after subclassification and accounting for the 

covariates, % BRsubclass + cov is the percent of bias reduced after subclassification and accounting for the 

covariates. 

 

Covariate bias was estimated using a formula similar to that used by Rosenbaum and Rubin (1985). 

Because the sample sizes were not equal (nm = 79 and nv = 131), the standardized measure of bias (SB) 

used the pooled standard deviation, rather than the average standard deviation of the groups: 

( ) ( ) ( )2/)1()1(/ 22 −+−+−−= vmVVmmvm nnnsnsMMSB
, where Mm is the mean of the 

mathematics training group, Mv is the mean of the vocabulary training group, 
2

ms
is the variance of the 

mathematics training group, 
2

vs
is the variance of the vocabulary training group, and nm and nv are the 

sample sizes of the mathematics and vocabulary training groups, respectively. Odds ratios computed for 

the categorical covariates were converted to SB using a formula similar to Hasselblad and Hedges’s 

(1995): /)3)(ln(ORSB = .      

 

 

 

 

 

 


