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Abstract

Takotsubo syndrome (TTS) is an acute cause of heart failure characterized by a reversible left ventricular (LV) impairment usually in-
duced by a physical or emotional trigger. TTS is not always a benign disease since it is associated with a relatively higher risk of
life-threatening complications, such as cardiogenic shock, ventricular arrhythmias, respiratory failure, cardiopulmonary resuscitation
and death. Despite notable advancements in the management of patients with TTS, physiopathological mechanisms underlying transient
LV dysfunction remain largely unknown. Since TTS carries similar prognostic implications than acute myocardial infarction, the identi-
fication of mechanisms and predictors of worse prognosis remain key to establish appropriate treatments. The greater prevalence of TTS
among post-menopausal women and the activation of the neuro-cardiac axis triggered by physical or emotional stressors paved the way
forward to several studies focused on coronary microcirculation and impaired blood flow as the main physiopathological mechanisms
of TTS. However, whether microvascular dysfunction is the cause or a consequence of transient LV impairment remains still unsettled.
This review provides an up-to-date summary of available evidence supporting the role of microvascular dysfunction in TTS pathogenesis,
summarizing contemporary invasive and non-invasive diagnostic techniques for its assessment. We will also discuss novel techniques
focused on microvascular dysfunction in TTS which may support clinicians for the implementation of tailored treatments.
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1. Introduction scope of the present review is to provide an update on TTS
pathophysiology with a special focus on the emerging role
of CMD. We will also provide a summary of novel inva-
sive and non-invasive techniques to identify CMD in TTS

patients.

Takotsubo syndrome (TTS) is an acute cause of heart
failure characterized by transient left ventricular (LV) dys-
function, usually triggered by emotional or physical stres-
sors, that account for approximately 1-3% of patients with
suspected acute myocardial infarction (AMI) [1]. When fe-
male patients with suspected AMI are separately appraised,
its frequency rises up to 5-6% [1]. Post-menopausal
women account for up to the 90% of TTS subjects [2]. TTS
is not always a benign disease since several studies have
shown similar prognostic implications than AMI [2—4]. Up
to 10% of patients with TTS have an annualized higher risk

2. Physiopatological Mechanisms of TTS

The exact pathophysiological mechanism behind tran-
sient LV dysfunction is still unsettled. Despite TTS resem-
bles for some aspects an AMI, other mechanisms rather
than cardiomyocyte necrosis are involved, as documented
by the limited troponin elevation and lack of late gadolin-

of major adverse cardiac and cerebrovascular events [2].

Several mechanisms have been proposed in the TTS
pathophysiology, but the exact pathway connecting my-
ocardium, nervous system, systemic vasculature and circu-
lating amines is still lacking. Coronary microvascular dys-
function (CMD) is an increasing recognized entity which
has been advocated in the pathophysiology of TTS [5].
However, whether CMD represents an epiphenomenon or
the precipitating cause of TTS is still matter of debate. The

ium enhancement (LGE) at cardiac magnetic resonance
(CMR) [1]. Several hypotheses have emerged to explain
the unique features of this disease (Fig. 1). Among them,
the catecholaminergic theory, based on an increase in sys-
temic or local catecholamines is the most accredited one.
There is consolidated evidence demonstrating the detrimen-
tal effects of catecholamines excess in both human and
pre-clinical models. High levels of serum catecholamines
in patients with pheochromocytoma can induce LV re-
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Fig. 1. Physiopathological mechanisms of TTS. Abbreviations: CNS, central nervous system; NE, norepinephrine; ROS, reactive

oxygen species; TTS, takotsubo syndrome; IL-6, interleukin 6.

gional wall-motion abnormalities similarly as in TTS [6,7]
and also exogenous administration of adrenaline or dobu-
tamine in humans is associated with the development of
the syndrome [8]. High systemic and local levels of cate-
cholamines have been found in the acute phase of TTS, with
plasma values that resulted greater compared with subjects
with heart failure due to AMI [9,10]. Histopathological ob-
servations of contraction band necrosis in biopsies from pa-
tients with TTS further support the sympathetic theory [9].
This is a peculiar form of myocyte injury consisting in con-
tracted sarcomeres, eosinophilic bands and mononuclear in-
flammatory infiltrates, that are normally observed in pres-
ence of catecholamine excess, such as pheochromocytoma
or acute neurological illness [11,12]. A transient form of
LV dysfunction, that sometimes spares the apex region, has
been described in several acute cerebrovascular diseases
such as subarachnoid haemorrhage (SAH), highlighting the
link between neurovascular events and the genesis of TTS
[13]. Additionally, in preclinical models, intravenous ad-

ministration of epinephrine, norepinephrine, dobutamine or
isoprenaline has proven to induce a reversible Takotsubo-
like cardiac dysfunction [14—17]. The description of TTS
in transplanted hearts or in those with chronic spinal cord
transection above the level at which the heart sympathetic
fibers leave the spinal cord, do not support the hypothesis
of catecholamine local release [18,19].

The clinical presentation of TTS seems not consis-
tent with a catecholamine surge, since hypertensive crisis or
sinus tachycardia are relatively uncommon. Furthermore,
there are conflicting data regarding the increase in systemic
catecholamines, with a recent study showing normal lev-
els [20]. Since different patterns of regional wall motion
abnormalities have been described, local distribution of the
adrenergic receptors within the myocardium could explain
the different patterns of TTS. In mammalian heart models
B1 and 32 adrenoreceptor density showed a gradient from
the apex (more represented) to the base, suggesting a poten-
tial higher susceptibility of the apical and mid segments to
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the circulating catecholamines [21]. The sympathetic inner-
vation of the left ventricle, in contrast, is higher at the base
compared to the apex and this could hypothetically explain
a neuro-mediated form of reverse TTS, in which the basal
regions are involved [22,23].

The mechanisms whereby catecholamine excess acts
at myocardium level causing LV stunning is another contro-
versial aspect. Epinephrine and norepinephrine normally
improve cardiomyocytes contractility binding 51 and (52
adrenoreceptors (AR), activating the G stimulatory (Gs)
protein family and consequently increasing the intracellu-
lar calcium. 82AR are less represented in the myocardium
compared to S1 and, at variance with the latter, are linked
to both Gs and G inhibitory (Gi) proteins [16]. Supra-
physiological concentrations of epinephrine, after binding
B2AR and coupling to the Gi proteins, have shown in-
hibitory activities leading to a negative inotropic effect,
which may be prevented via Gi inactivation by pertussis
toxin pre-treatment [16]. Additionally, the S2AR-Gi ac-
tivation determines an antiapoptotic cardioprotective effect
[16,17,24]. The predominant density of S2AR at the api-
cal level supports the physiopathological basis of apical
ballooning in TTS but not the other atypical TTS pheno-
types. A transient myocardial dysfunction, known as neu-
rocardiogenic stunning (NS), is a well-recognized condi-
tion following acute central nervous system injury (e.g.,
SAH or stroke), affecting predominantly the basal and mid-
ventricular segments [25]. These observations allow us to
speculate that NS and TTS are two sides of the same coin of
the catecholamine-mediated myocardial effect through two
different ways. While apical ballooning could be explained
by a systemic increase in catecholamine levels, basal and
mid ventricular patterns of NS may be justified by neuro-
mediated local release of norepinephrine. These findings
are in line with the higher prevalence of neurologic or psy-
chiatric disorders among TTS than AMI patients, observed
in the InterTAK registry [2]. The same group demonstrated
a hypoconnectivity of central brain regions related to au-
tonomic functions and regulation of the limbic system in
acute TTS phase compared to controls, further supporting
the role of the brain-heart interaction in TTS pathogenesis
[26].

Several reports described the occurrence of TTS
among family members [27-30]. Genetic polymorphisms
of Bland 32 adrenoreceptor have been inconsistently asso-
ciated with myocardial stunning after a SAH [31-33]. Ad-
ditionally, the rs17098707 polymorphism in the G protein-
coupled receptor kinase 5 gene, implicated in the intracel-
lular pathway of 3 adrenoreceptors signalling, has shown
to carry a higher risk of TTS [34]. A larger study charac-
terizing the genotype of TTS subjects is currently ongoing
to definitely ascertain a potential role of genetic predisposi-
tion in TTS (GENETIC [Is There a Genetic Predisposition
for Acute Stress-induced {Takotsubo}Cardiomyopathy],
NCT04513054).
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There is increasing evidence supporting the role of
local and systemic inflammation in the acute and chronic
phase of TTS. A recent multicentre study demonstrated
an intramyocardial macrophage infiltrate during the acute
phase using ultrasmall superparamagnetic particle of iron
oxide enhanced CMR, in both affected and not affected
LV, which was no longer detectable at follow-up [35]. Ad-
ditionally, some studies demonstrated a sustained inflam-
matory response in TTS patients as documented by the
increase in serum interleukine-6, chemokine (C-X-C mo-
tif) ligand one and classic cluster of differentiation (CD)
14T+ CD16~~ monocytes [35]. From a clinical standpoint,
the occurrence of heart failure might be explained by this
low-grade, chronic inflammatory substrate [36]. Differ-
ently from other cardiac conditions, such as myocarditis,
macrophages are the main component of the inflammatory
infiltrate of TTS, with a preponderance of proinflammatory
M1 than M2 type [37,38].

The impaired cardiac metabolism and energetics
found in preclinical models of TTS can also have a role in
the pathogenesis of the disease [39].

TTS is one of the cardiovascular disorders with the
most pronounced gender difference, since up to 90% of the
affected subjects are women [2]. There is increasing evi-
dence suggesting that supplementation of oestrogens is able
to mitigate the stress-induced LV dysfunction in a rat model
and oestradiol seemed to have a protective effect against
the excess of catecholamines on cardiomyocytes [40,41].
Despite this preclinical evidence, no difference in oestro-
gens plasma levels has been documented between patients
with TTS and AML. In addition, the presence of hormone re-
placement therapy in postmenopausal women doesn’t seem
to have a protective role against the occurrence of TTS
[42,43]. On the basis of the peculiar epidemiology of TTS,
its relationship with gender and sex hormones deserves fur-
ther investigations.

The vascular system has been also advocated as one
of the main players in the pathogenesis of TTS. At the
very beginning, a spontaneous multivessel epicardial spasm
was described during invasive coronary angiography and
consequently advocated as the mechanism responsible of
the observed LV-dysfunction [44]. This hypothesis is little
supported by evidences, due to the lack of reproducibility
of this pioneering finding in subsequent reports and, ad-
ditionally, epicardial coronary spasm hardly would justi-
fied the non-coronary distribution of the akinetic regions.
CMD is an increasingly recognize entity that has been re-
ported in several cardiovascular diseases, especially in my-
ocardial infarction without obstructive coronary artery dis-
ease (MINOCA) [45]. Reversible myocardial perfusion de-
fects and CMD, were extensively demonstrated in the acute
phase of TTS using both invasive and non-invasive tech-
niques [45-55]. Whether CMD has a causative role or
represent a secondary phenomenon, triggered by myocar-
dial inflammation and oedema, remains to be entirely es-
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tablished. The apparently increased vascular reactivity and
decreased endothelial function in patients with a previous
TTS episode might suggest a vasomotor dysfunction as a
potential precipitating cause of TTS [56]. Preclinical ev-
idence, in which the normalization of myocardial perfu-
sion restores its function, seems to support this hypothesis
[55,57]. An attempt to address this question was done in a
continuously monitored rat preclinical model, in which no
detectable perfusion defects preceded the isoproterenol in-
duced apical ballooning [58], making CMD most likely a
consequence rather than the cause of TTS. Several mech-
anisms could potentially explain the microcirculatory im-
pairment as a secondary phenomenon: (i) the inflamma-
tory infiltrate and oedema described in the myocardial aki-
netic segments; (ii) the decreased relaxation of involved
regions, being the myocardial perfusion mainly a diastolic
process, and (iii) the connection between cardiac metabolic
demand, that is expected to be reduced in the affected my-
ocardium, and perfusion provided by autoregulatory mech-
anisms [23,59].

A comprehensive appraisal of the mechanisms under-
lying TTS would help to address an appropriate treatment,
that represents the major unmet need in this scenario.

3. Coronary Microvascular Dysfunction

CMD encompeass a large spectrum of structural and/or
functional microcirculatory conditions that determines an
impairment in coronary blood flow resulting in a my-
ocardial demand-supply mismatch. Architectural changes
within microcirculation such as vascular smooth muscle hy-
pertrophy, capillary rarefaction, perivascular fibrosis, to-
gether with endothelium-dependent or independent vaso-
motor dysfunction contribute to the development of CMD
[60]. Given the established role of microcirculation in dif-
ferent cardiovascular diseases, several invasive and non-
invasive techniques have been developed for coronary mi-
crovascular function assessment as summarized in Table 1.

3.1 CMD by Non-Invasive Techniques

Several non-invasive imaging modalities are utilized
in the assessment of CMD and could be useful in the work-
up of patients with TTS [61,62]. Non-invasive techniques
are able to evaluate, through different methods, the va-
sodilatory response of the coronary microcirculation but,
differently from invasive methods, they do not allow to test
the tendency of coronary arteries to spasm [63].

Transthoracic echocardiography (TTE) is usually the
first-line imaging technique applied in TTS patients, due to
its large availability and the possibility to be performed bed-
side [64]. TTE enables the detection of CMD through either
Doppler technique or contrast echocardiography [61,65].
A study conducted by Galiuto ef al. [46] utilized contrast
echocardiography to show that patients with TTS exhibited
reversible apical perfusion defects following adenosine in-
fusion. This study demonstrated an acute and reversible

coronary microvascular impairment in subjects with api-
cal TTS, by showing that segments with dysfunctional wall
motion had lower myocardial blood flow (MBF) velocity
and MBF [46]. The existence of CMD can be also assessed
by Doppler TTE evaluating on left descending coronary
artery the coronary flow reserve (CFR) dividing stress peak
coronary flow velocity by the resting one [61]. In thirty TTS
patients the evaluation of CFR through Doppler TTE was
feasible and showed an impaired value upon admission (1.8
=+ 0.2) with a progressive recovery in the sub-acute phase
at discharge [66]. However, it must be noticed that CFR
measured by TTE can be challenging and strongly depends
on patient’s acoustic window. Therefore, CFR by Doppler
TTE is not routinely evaluated in clinical practice [67].

Nuclear medicine techniques represent the non-
invasive gold-standard for evaluation of non-endothelial
dependent microvascular function in absence of obstruc-
tive coronary artery disease (CAD) by measuring absolute
MBF and MBF reserve [68]. Small studies have demon-
strated minor perfusion abnormalities in patients with TTS
by 18-fluorodeoxyglucose (FDG) positron emission tomog-
raphy (PET) or single-photon emission computed tomog-
raphy (SPECT) imaging [69]. Nuclear medicine imaging
has proven its worth also in giving insight about the phys-
iopathology of TTS, showing an “inverse metabolic perfu-
sion mismatch” characterized by an impaired metabolism in
the involved LV regions with normal MBF at rest [70-72].

CMR and cardiac computed tomography angiography
(CCTA) can also be used in the TTS diagnostic work-up
[61,62,64]. CMR is able to overcome some limitations of
poor TTE acoustic window and can be very useful in the
subacute phase [73]. At CMR, the microcirculation can be
assessed by employing the myocardial perfusion reserve in-
dex (MPRI) as a semiquantitative parameter that reflects the
vasodilatory capacity of small blood vessels [61,62]. The
MPRI is defined as the ratio of stress to rest upslope nor-
malized to the upslope of the LV blood pool [74]. How-
ever, to date, the evaluation of CMD by CMR remains un-
derutilized in clinical practice, especially in TTS patients.
There is increasing evidence suggesting that CMD may af-
fect myocardial perfusion during hyperemia [75]. Thus far,
only high-resolution CMR has been associated with good
accuracy in quantitatively detecting CMD [76].

Recent advances in CMR and CCTA technology now
also afford to serially imaging the transit of the contrast
(gadolinium or nonionic iodine) in the arterial circula-
tion and in the myocardium and quantification of MBF in
milliliters per minute can also apply per gram as described
for PET imaging.

Semi-quantitative evaluation of resting and hyperemic
myocardial perfusion is feasible by static computed tomog-
raphy (CT) perfusion (CTP) and recently, the presence of
impaired myocardial perfusion in women with angina and
no obstructive CAD was demonstrated by CT-CPT [77,78].

&% IMR Press


https://www.imrpress.com

Table 1. Invasive and non-invasive diagnostic techniques for CMD.

Measure Technique Formula Specific for
micro-circulation
Invasive Tech- Coronary flow reserve Bolus/continuous  ther- _ Hyperemic APV No
CFR Doppler = W
niques (CFR) modilution or intracoro- esting
nary Doppler CFR Bolus = Resting Tmn
" Hyperemic Tmn
. Hyperemic Flow
CFR Continuous = ——————
Resting Flow
Index of microcircula-  Bolus thermodilution IMR = Pd x Tmn at hyperemia Yes
tory resistance (IMR)
. . Pd
Hyperaemic microvas-  Intracoronary Doppler HMR = -7 at hyperemia Yes
cular resistance index
(HMR)
Microvascular resistance ~ Continuous thermodilu- Ru= Pd Yes
i absolute coronary flow
(Rp) tion
Microvascular resistance ~ Continuous thermodilu- MRR CFR  resting Pa Yes
= =X —
reserve (MRR) tion, potentially also with FFR ~ hyperemic Pa
other techniques
Angio-derived IMR Computation of coronary vl Yes
) Pa (f_v) x ([1.35xcQFR] — 0.32)
flow velocity from an- +A—IMR = 100
giography
Non-Invasive Coronary flow velocity  Transthoracic Doppler Hyperemic coronary flow velocity No
. . . CFVR = - -
Techniques ratio (CFVR) echocardiography Baseline coronary flow velocity
Myocardial perfusion re- PET, CMR, contrast MPR = _Stress MBF No
. Baseline MBF
serve (MPR) echocardiography
. . Semiquantitative parameter
Myocardial perfusionre- CMR, CT q Stresps MPI No

serve index (MPRI)

MPRI = Baseline MPI

*Different formulae are provided for the calculation of angio-derived IMR.

Abbreviations: APV, average peak velocity; Tmn, mean transit time; Pa, aortic pressure; vl, vessel length; fv, flow velocity; cQFR, contrast

quantitative flow ratio; PET, positron emission tomography; CMD, coronary microvascular dysfunction; CMR, cardiac magnetic resonance;

MBEF, myocardial blood flow; CT, computed tomography; MPI, myocardial perfusion index; Pd, distal coronary pressure; FFR, fractional

flow reserve.

In order to assess properly the results of non-invasive
imaging modalities, the presence of obstructive CAD
should be excluded through invasive coronary angiogra-
phy or CCTA. From this perspective, CCTA could become
a useful tool in the assessment of TTS patients, giving its
well-established role in rule out significant CAD and the
potential information provided about myocardial perfusion.

3.2 CMD by Invasive Techniques

The main parameter used to detect CMD by inva-
sive techniques is the ratio between hyperaemic and rest-
ing coronary flow, named CFR [79]. This proportion rep-
resents the capacity of coronary flow to increase following
a hyperaemic stimulus, mainly consisting of adenosine ad-
ministration, that simulate the physiologic response to ef-
forts [79]. Typically coronary blood flow is able to increase
at least 2-times and consequently the normal CFR value is
above 2 or 2.5, depending on the implemented methodol-
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ogy [79]. Two surrogates of flow can be used in clinical
practice to calculate CFR: coronary flow velocity and mean
transit time of a room-temperature saline bolus. The former
is measured by a dedicated wire with a pressure-Doppler
sensor while the latter technique evaluates the saline bolus
mean transit time through a pressure-temperature wire by
thermodilution principles. The Doppler method is techni-
cally more challenging, due to the difficulty in obtaining
good velocity Doppler signals [80]. On the other hand, bo-
lus thermodilution is highly operator-dependent, given the
manual rapid injections required, characterized by large in-
traobserver variability [81]. Using both techniques, hyper-
aemic values are divided by baseline values to obtain CFR
and CMD can be defined based on CFR (<2 with Doppler
or <2.5 with bolus thermodilution) only in the absence of
coronary epicardial disease, being this index potentially in-
fluenced by both micro and macro-circulation. The index
of microcirculatory resistance (IMR) was proposed to over-
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come this limitation as a metric specific for the microcircu-
lation, defined as the product between distal coronary pres-
sure and mean transit time of a 3-cc saline bolus during
steady-state hyperaemia. An IMR value equal or greater
than 25 is suggestive of CMD [82].

Recently, a method measuring absolute coronary
blood flow based on continuous thermodilution principle
has emerged [83,84]. This quantitative approach is com-
pletely operator-independent and allow to directly assess
the resting and hyperaemic flow (mL/min) and microvas-
cular resistance (WU) by a continuous coronary infusion
of saline through a dedicated monorail microcatheter. The
ratio between true baseline and hyperaemic microvascu-
lar resistance defined the microvascular resistance reserve
(MRR) which is a new attractive microvasculature specific
metric to quantify CMD [85]. CFR and MRR derived from
continuous thermodilution resulted significantly lower and
showed higher repeatability compared to CFR and MRR
obtained with bolus thermodilution [86].

All the techniques described above required dedicated
and expensive tools (i.e., guidewires with specific sen-
sors, microcatheters) and the administration of vasodilator
agents, resulting in a longer procedural time. A novel met-
ric specific for the microcirculation directly derived from
angiography, named angio-derived IMR has been also de-
veloped [87]. Several formulae with a superimposed diag-
nostic performance have been proposed to calculate angio-
derived IMR [47], characterized by an overall high diagnos-
tic accuracy (AUC 0.86) in assessing CMD when compared
to wire-based IMR [88,89].

A comprehensive full physiology approach for CMD
includes also the evaluation of coronary vasomotor func-
tion through specific provocative tests [90]. The agents
commonly used in clinical practice to test the coronary
endothelium-dependent vasomotion function are acetyl-
choline (ACh) and ergonovine. While in the healthy en-
dothelium ACh mediates the production of nitric oxide
(NO), a potent vasodilator, in the presence of endothelial
dysfunction (ED) it is able to trigger a paradoxical epi-
cardial or microvascular vasoconstriction [90]. While the
epicardial spasm is easily recognized in the angiographic
images following increasing doses of ACh, given the in-
ability to visualize directly the microvascular bed, its vaso-
constriction is suggested by the concomitant occurrence of
chest pain and ischemic electrocardiographic changes in the
absence of epicardial spasm. The presence of abnormal
endothelium-dependent vasoreactivity, consisting of coro-
nary vasospasm induced by ACh, was reported in up to 85%
of patients with TTS during the acute phase [91].

In TTS patients undergoing coronary angiography,
retrospective evaluation of angio-derived IMR confirmed
the presence of microvascular dysfunction in at least one
coronary vessel [45,47,92]. Angio-IMR values were in-
versely correlated with LV function and associated with
higher N-terminal pro B-type natruretic peptide (NT-pro-

BNP) levels, implying a connection between the degree of
microvascular and myocardial dysfunction [92]. In TTS
angio-IMR was not significantly higher, compared to the
other forms of MINOCA, in which a microvascular impair-
ment has been also documented [45]. Small prospective
studies and several case reports further acknowledge the
microvascular dysfunction, defined in terms of IMR and
CFR derived from bolus thermodilution, as a key feature
of TTS; an example is depicted in Fig. 2 [48,50-52,93]. In
20 female patients with TTS, concomitant measure of IMR
and inflammatory mediators from aorta and coronary sinus
samples confirmed the presence of high levels of inflam-
matory biomarkers without showing any correlation with
IMR values [52]. Recently, a comprehensive invasive as-
sessment with both bolus and continuous thermodilution in
the acute TTS phase, reported the presence of CMD, charac-
terized by high microvascular resistance and low coronary
flow during the steady-state hyperaemia. CMD as well as
LV function showed a recovery at the 3 months follow-up
[94]. The demonstration of the transient nature of CMD is
more challenging, due to the risk at which the patient would
be exposed in case of a systematic reassessment of micro-
circulation. However, the normalization of microvascular
function at one or three months follow-up has been reported
in small patient cohorts [93,94].

4. Evidence Supporting the Role of CMD in
TTS

The potential impact of CMD in the complex patho-
genesis of TTS is presented in the following paragraphs.

4.1 Catecholamine-Induced Transient LV Dysfunction and
CMD

An overactivation of sympathetic drive remains one of
the most accredited physiopathological hypothesis of tran-
sient CMD as a result of catecholamines effects on vas-
cular o adrenoreceptors or of direct toxic myocyte injury.
Recently, in a murine model, Dong et al. [55] demon-
strated an altered flow regulation in the apex before devel-
opment of TTS-like phenotype. In addition, the restora-
tion of perfusion, through coronary vasodilator or via ge-
netic re-expression of a K channel involved in coronary
flow regulation, determined a normalization in the LV func-
tion. These findings support the pivotal role of CMD in the
pathophysiology of TTS and a strategy aimed at restoring
the MBF, such as the use of coronary vasodilator, might
represent a potential therapeutic target. On the other hand,
Redfors et al. [58] failed to demonstrate the presence of
myocardial perfusion defects preceding a isoproterenol in-
duced apical ballooning in a rat model, without evidence at
the biopsies of microvascular structural damage.

In humans, an acute myocardial perfusion defect has
been documented through contrast echocardiography in the
stunned myocardial regions and this alteration, differently
from AMI, slightly improved as LV function recovers af-
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Fig. 2. Invasive assessment of CMD on left anterior descending artery through bolus thermodilution in a patient during the acute

phase of TTS, characterized by high IMR and low CFR values. Abbreviations: CMD, coronary microvascular dysfunction; FFR,

fractional flow reserve; Pd, distal pressure; Pa, aortic pressure; CFR, coronary flow reserve; IMR, index of microcirculatory resistance;

RRR, resistive reserve ratio; TTS, takotsubo syndrome; Hyp, Hyperemia; PB-CFR, pressure bounded coronary flow reserve.

ter adenosine infusion [46]. Thus, a transient coronary mi-
crovascular constriction, completely recovered at 1 month
follow-up, which could be induced after a stressful event
by catecholamines, could represent another potential patho-
genetic pathway [46].

The precise role played by coronary microcirculation
in the pathogenesis of TTS and its relationship with cate-
cholamines, remains matter of investigation, albeit its in-
volvement as a key feature of the syndrome is unquestion-
able.

4.2 Crosstalk between Hormonal Variations and
Endothelial Function

Post-menopausal older women are typically affected
by TTS and the risk of developing the disease increases
about five times in females >55 years old, compared to
younger ones [95]. An enhanced activity of the sympa-
thetic nervous system is associated with progressive age-
ing, regardless of gender, potentially contributing to the in-
creased incidence of TTS with older age [96]. Addition-
ally, in post-menopausal women, vagal cardiac tone seems
to decrease [97]. The switch between the two compo-
nents of the autonomous nervous system, with a prevalence
of the sympathetic over the vagal tone in postmenopausal
women, could predispose to TTS. Oestrogens have a pro-
tective role against the development of cardiovascular dis-
eases in women and probably, also against the occurrence
of TTS. The way through sex hormones explicate this effect
has been extensively investigated and one possible explana-

&% IMR Press

tion might reside in their effect on stress response. Oestra-
diol supplementation in perimenopausal women attenuates
the response to mental stress in terms of blood pressure and
release of cortisol, adrenocorticotropic hormone (ACTH),
plasma epinephrine and norepinephrine [98]. Another sig-
nificant aspect in the pathogenesis of TTS is the link be-
tween sex hormones, ED and CMD [99]. There is increas-
ing evidence that ED is a key aspect of TTS both during the
acute and long-term phase [56,57,100]. The endothelium
is the main determinant of vascular tone, through the pro-
duction of vasodilatory and vasoconstrictive substances and
its function can be influenced by sex hormones with either
receptor-dependent or independent mechanisms, thanks to
the direct expression of oestrogens receptors on human vas-
cular endothelium and smooth muscle cells [101,102]. Oe-
strogens are vasoactive hormones, able to upregulate the
synthesis of NO, one of the most potent vasodilators in a
receptor-mediated manner and physiologic oestrogen levels
in postmenopausal women can potentiate the endothelium-
dependent coronary and systemic vasodilatation [103—105].
The endothelium shows an age-related dysfunction, as doc-
umented by the progressive loss of systemic flow mediated
dilatator capacity, which differs across sexes [106]. In ad-
dition, the documented relationship between endothelial-
dependent vasomotion in systemic (i.e., brachial) and coro-
nary arteries, supports an interplay between ED and CMD,
that are probably two faces of the same coin [107].
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5. Knowledge Gaps

Despite the increasing awareness of TTS as a transient
heart failure syndrome and the advancements in its diagnos-
tic processes, the precise pathophysiological mechanisms
remain matter of further investigation. Different hypothe-
ses have emerged to explain the unique course of the disease
and recently, the involvement of coronary microcirculation,
has gained popularity.

The uncertainties regarding the exact pathophysiolog-
ical process at the basis of the disease, is probably the
main reason behind the lack of validated therapeutic op-
tions. Currently no evidence-based therapy exists for TTS
either in the acute phase of the disease or at long-term, char-
acterized by significant morbidity and mortality. Random-
ized controlled clinical trials are still ongoing to investigate
different therapeutic options in TTS, including the use of
apixaban for the prevention of thromboembolic complica-
tions [108,109]. Future large-scale studies are warranted to
better understand this unique disease and to identify novel
therapeutic targets.

6. Conclusions

TTS represents a peculiar cardiovascular syndrome
characterized by a transient myocardial dysfunction, usu-
ally precipitates by emotional or physical triggers. Despite
its apparent benign nature, TTS is associated with a signif-
icant morbidity and mortality, comparable to acute coro-
nary syndromes. Sex hormonal variations and their effect
on endothelial function can predispose to the development
of TTS. Enhanced activity of sympathetic nervous system
and CMD play a crucial role in the pathophysiology of the
disease, although the exact pathway involved remains mat-
ter of further investigations. Whether CMD could represent
a potential therapeutic target in the acute phase of TTS is
worthy of future research.
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