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A B S T R A C T   

Robust Decision Making (RDM) is an established framework for decision making under deep uncertainty. RDM 
relies on the idea of scenario neutrality, namely that decision robustness is not affected by how scenarios are 
generated if these are uniformly distributed and span a sufficiently large range of future states of the world. 
Several authors have shown that scenario neutrality may not hold, but they did so by adopting either new or 
computationally expensive modeling. We introduce the Belief-Informed Robust Decision Making (BIRDM) 
framework to assess how robustness might change under an arbitrary large number of non-uniform distributions 
at virtually no additional costs with respect to RDM. We apply BIRDM to a flood management problem and find 
that alternative distributions change the robustness and ranking of measures. BIRDM allows identifying what 
distributions lead to these changes and under what set of distributions a measure has a specific robustness and 
rank.   

1. Introduction 

Long-term infrastructure planning requires making decisions amid 
climatic and socio-economic uncertainties. Many of these uncertainties 
are epistemic in nature as they are due to a lack of knowledge, and they 
might become better characterized as one acquires new information 
over time. However, decisions about future infrastructures are urgent 
and need to be made today such that chances that future infrastructures 
perform adequately are maximized, regardless of how exactly the future 
unfolds. Lempert et al. (2003) defined this challenge as a problem of 
decision making under deep uncertainty. That is, a situation where ex-
perts do not know or cannot agree upon the probability distributions of 
the uncertain factors that influence decision outcomes. In a context of 
deep uncertainty, decisions must be made based on their robustness, 
namely on their capability to perform satisfactorily under a plausible 
range of assumptions regarding deep uncertainties. 

Various authors have proposed decision-support frameworks for 
decision making under deep uncertainty (DMDU) such as Robust Deci-
sion Making (Lempert et al., 2006), Many-Objective Robust Decision 
Making (Kasprzyk et al., 2013), Info-Gap decision theory (Ben-Haim 
2006), Decision Scaling (Brown et al., 2012), and Dynamic Adaptive 

Policy Pathways (Haasnoot et al., 2013). These frameworks differ sub-
stantially, but they all rely on the idea of scenario neutrality (Quinn et al., 
2020) as they generate plausible scenarios by sampling independently 
and uniformly over the widest range of physically plausible climatic and 
socio-economic states of the world. Scenarios are latter explored via 
factor mapping techniques to discover which ones are critical and lead 
to poor system performances. Robust decisions are then taken to allow 
maintaining satisfactory system performances if these critical scenarios 
manifest. It follows from scenario neutrality that decision robustness 
should be insensitive to how scenarios are sampled. However, Quinn 
et al. (2020) and McPhail et al. (2020) challenged this idea and showed 
that the selected experimental design, namely the way scenarios are 
constructed, does affect decision robustness. 

Quinn et al. (2020) conducted a robustness study of the Upper Basin 
of the Colorado River by reconstructing discharge time series using four 
alternative information sources, namely historic data, paleo-data, future 
projections, and all three together. They found that the choice of which 
information is used for setting up the experimental design dramatically 
changed the range used to generate scenarios, the model parameters 
deemed critical for the system, and the resulting robustness values. 
McPhail et al. (2020) addressed a fictitious lake management problem 
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using different scenario generation techniques. These techniques varied 
in the way the space of input parameters is covered during sampling and 
the number of considered scenarios. This resulted in different robustness 
values for the various decision criteria, although the final ranking of 
decision alternatives remained the same, at least for their case study. 

Other authors (e.g. Shortridge and Zaitchik 2018; Taner et al. 2019; 
and Reis and Shortridge 2020) relaxed the main assumption underpin-
ning the idea of scenario neutrality, namely that all scenarios are equally 
likely. They did so by exploring alternative approaches for when, where 
and how to integrate probabilistic information into DMDU frameworks. 
Shortridge and Zaitchik (2018) combined Robust Decision Making with 
a Bayesian statistical model. They first conducted a standard Robust 
Decision Making analysis to identify which subspaces in the model input 
space were critical. Next, they developed a Bayesian statistical model 
relying on projections from Global Climate Models (GCMs) to estimate 
the posterior probability of these subspaces. Taner et al. (2019) intro-
duced a framework that integrates Decision Scaling with Bayesian Belief 
Networks, namely Bayesian Networks Decision Scaling. They proposed 
to build a Bayesian Belief Network to estimate the posterior joint 
probability distribution of the critical future scenarios identified 
through Decision Scaling. Reis and Shortridge (2020) carried out four 
Robust Decision Making analyses using four different probability den-
sities for the input variables. Next, they showed that the parameters 
identified as critical, and their ranges, change according to the chosen 
distribution. 

Shortridge and Zaitchik (2018), Taner et al. (2019), and Reis and 
Shortridge (2020) successfully integrated probabilistic information into 
scenario-neutral approaches. However, they do so either by resorting to 
additional modeling efforts (as done by Shortridge and Zaitchik (2018) 
or Taner et al. (2019)) or by re-running the same analysis multiple times 
(as done by Reis and Shortridge (2020)). This implies that either addi-
tional modeling efforts and expertise or high computational costs are 
required. Either undermines the practical feasibility and wider adoption 
of these approaches. To address this issue, we introduce the 
Belief-Informed Robust Decision Making (BIRDM) framework which 
allows incorporating probabilistic information into Robust Decision 
Making (RDM) without requiring any further modeling nor demanding 
additional computational costs. This is achieved by following the 
weighing method proposed by Beckman and McKay (1987), which al-
lows exploring the influence of various choices about the distribution of 
inputs on the output statistics at virtually no cost compared to 
re-running the computer models for all desired distributions. We 

showcase BIRDM on a flood management problem along the Lower Po 
River in Northern Italy with the goal of exploring the effects of relaxing 
the assumption of scenario neutrality on decision robustness and the final 
ranking of measures. 

The paper is structured as follows: section 2 describes the method, 
section 3 describes the case study and the simulation model, section 4 
describes the analysis, section 5 reports results and discusses them, 
section 6 provides conclusions. 

2. Belief-Informed Robust Decision Making 

The Belief-Informed Robust Decision Making (BIRDM) framework 
builds on the Robust Decision Making (RDM) framework proposed by 
Lempert et al. (2006). Robust Decision Making aims at finding intrinsic 
system vulnerabilities which do not depend on the likelihood of the 
input factors revealing them. Yet, an a posteriori exploration of how 
likely these input factors might be is of high relevance for 
decision-making, even more so when different assumptions about these 
likelihoods might change decision robustness and the final ranking of 
measures. BIRDM expands RDM to account for this aspect. 

BIRDM is presented in Fig. 1. In the figure, the standard RDM steps 
are contained in the dotted box, while BIRDM is represented by the full 
scheme. Basically, BIRDM adds an additional Belief Analysis step to RDM. 
Each step is described in detail in the following subsections. 

2.1. Problem formulation 

This step requires formulating the policy problem, specifying the 
scope, decision objectives, and possible measures. A suitable scheme to 
formulate a policy problem is the XLRM scheme proposed by Lempert 
et al. (2003). The XLRM scheme allows the analyst to clearly specify the 
uncertain factors (X), the policy levers (L), the system relationships, 
namely the system model, (R), and the performance metrics (M). In the 
present paper, we refer to levers (i.e., L) as measures, and to perfor-
mance metrics (i.e., M) as outcomes. 

2.2. Uncertainty analysis 

This step involves generating scenarios and evaluating model out-
comes for these scenarios. Typically, this step is conducted using a 
sampling strategy that maximizes the coverage of the input space, such 
as Latin Hypercube or low-discrepancy sequences like the Sobol 

Fig. 1. Step-by-step representation of the Belief-Informed Robust Decision Making (BIRDM) framework. BIRDM builds on Robust Decision Making (RDM) (Lempert 
et al., 2006), whose original scheme is reported within the dotted box. 
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sequence (Sobol 1967). Compared to pseudo-random sequences, these 
sampling techniques more evenly distribute the sampled points over the 
domain of the input factors. Following the idea of scenario neutrality, the 
sampling of deeply uncertain factors is carried out assuming indepen-
dence and a uniform distribution over the full range of physically 
plausible values. The outcome of this analysis is a database of model 
outputs which is investigated further through scenario discovery. 

2.3. Scenario discovery 

In this step, factor mapping techniques are used to identify regions in 
the input space corresponding to certain output values. Scenario dis-
covery is typically used to identify regions in the input space that have a 
high concentration of failure scenarios, namely those under which sys-
tem performances, y, are below a performance threshold, y*, deemed 
critical for the functioning of the system. 

Finding failure scenarios is instrumental to the identification of 
robust measures. In Robust Decision Making, robust measures are 
defined as those that improve system performances, y, under the failure 
scenarios and which therefore increase chances of meeting the critical 
performance threshold, y*. It follows that in Robust Decision Making, 
robustness relies on the concept of satisficing performances (Lempert 
et al., 2006), namely on meeting certain performance requirements 
under the widest range of possible scenarios. 

2.4. Belief analysis 

This step explores how alternative assumptions regarding the like-
lihood of the failure scenarios affect the robustness of measures. We here 
refer to these alternative assumptions as beliefs that analysts, experts and 
decision makers may have about the likelihood of the failure scenarios. 
We do so by employing the weighting method proposed by Beckman and 
McKay (1987). The weighting method consists of replacing the original 
sampling distribution by an alternative one and then assessing – through 
reweighting – the output statistics as if the original probability distri-
bution were used. 

More formally, assuming a simulation model with input variables x 
and output variable y, and assuming that x has a multivariate distribu-
tion function F but it is sampled using an alternative distribution H, then 
the probability of y exceeding a threshold value y* can be defined as 
(Diermanse et al., 2015): 

P[y> y*] =
1
n

∑n

i=1
1[yi>y* ]ci (1)  

where n is the number of simulations, 1[…] is an indicator function which 
is equal to 1 if yi > y* and 0 otherwise and ci is a correction factor 
(weight) defined as follows: 

ci =
f (xi)

h(xi)
(2)  

with f and h being the density functions of F and H, which are called the 
original and surrogate distributions, respectively. In the method, the 
original distribution f is unknown, and one samples from a known sur-
rogate distribution h to quantify output statistics had f been used. It is 
worth highlighting that the method is equivalent to the well-known 
Importance Sampling variance reduction technique (Tokdar and Kass 
2010) but its intent is different as it reverses the use of the original and 
surrogate distributions. In Importance Sampling, the sampling distri-
bution f is known, and one aims to find an unknown surrogate sampling 
distribution h such that more samples are drawn from important regions 
in the input space. 

The weighting method of Beckman and McKay (1987) has been 
employed by different authors and for various purposes. Sparkman et al. 
(2016) used it to calculate global sensitivity indices from an existing 

sample of simulations and introduced the Importance Sampling-based 
Kernel Estimator to calculate the moments of the conditional distribu-
tions in the calculation of the sensitivity indices. Zhang and Shields 
(2018) used the method to deal with the epistemic uncertainties stem-
ming from the inability to reliably specify a unique probability density 
function due to data scarcity. In such cases, they suggest to first identify 
an arbitrary large set of candidate probability densities through 
Bayesian inference. From the derived large set of densities, a single 
optimal density is selected which is representative of all candidate 
probability densities. This optimal density is the one used in the Monte 
Carlo analysis, and then the uncertainty in the selection of the distri-
bution is explored by applying the weighting scheme as if any of the 
candidates were used. Zhang et al. (2021) expanded this framework 
within the context of global sensitivity analysis and derived imprecise 
Sobol indices (Sobol’, 2001). 

Following these applications, BIRDM applies the weighting method 
assuming a uniform surrogate distribution, h – in line with RDM and 
other scenario neutral frameworks – and evaluate robustness of all 
identified measures under alternative assumptions of the original dis-
tribution of deep uncertainties, f. The resulting outcome consists of as 
many robustness estimates for each measure as the number of alterna-
tive distributions being explored. The Belief Analysis step requires 
virtually no additional efforts irrespectively of the number of alternative 
distributions being explored, as no new Monte Carlo experiments are 
run. 

3. The case study and the simulation model 

With the aim of testing BIRDM, we apply it to support flood man-
agement planning along the lower reach of the Po River in Northern 
Italy (see Fig. 2). The goal is to find robust flood damage reduction 
measures and to assess the effect of alternative distributions regarding 
deep uncertainties on the ranking of measures. The considered river 
stretch ranges from the stream gauges of Borgoforte (upstream) to 
Pontelagoscuro (downstream), spanning across a total length of about 
115 km and including the confluences of two main tributaries: the 
Secchia and Panaro rivers. The case study includes 17 levee-protected 
floodplains (purple areas in Fig. 2, also referred to as compartments) 
which are protected from the 0.5% annual probability flood event. 
Subsection 3.1 provides some background information regarding the 
choice of the case study and subsection 3.2 introduces the simulation 
model. 

3.1. Rationale 

The choice of the case study is driven by recent calls from the flood 
risk modeling and management community urging for decision support 
studies on systemic, large-scale, flood risk management planning (Vor-
ogushyn et al., 2017). This systemic perspective was shown to lead to 
more accurate flood frequency analyses (Apel et al. 2009) and risk es-
timates (Courage et al., 2013; de Bruijn et al., 2016), and to ultimately 
widen the spectrum of flood risk management measures, potentially 
increasing optimality and fairness in the design of the system (Ciullo 
et al., 2019a; Ciullo et al., 2019b). 

The BIRDM framework is used to explore beliefs about key epistemic 
uncertainties in dealing with embanked large-scale flood risk systems: 
the probability of levee failure as a function of hydraulic loads (Beven 
et al., 2018). This uncertainty is typically characterized by the so-called 
fragility curves (Bachmann et al., 2013; Curran et al., 2019). The gen-
eration of such curves, however, requires extensive knowledge of the 
geotechnical properties of the flood defenses which, in case of 
large-scale systems, may not be available or accurate at all locations of 
interest. Furthermore, even when assuming that fragility curves can be 
reliably derived, unexpected breaching can still occur and this is one of 
the main causes of disastrous river floods (Merz et al., 2021). In January 
2014, for example, a levee failure occurred during a minor flood event 
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along the Secchia River, Italy. The breach was unforeseen and it was 
caused by animal burrows and not by one of the failure mechanisms 
commonly modeled when deriving fragility curves, i.e., overtopping, 
piping or macro-instability (Orlandini et al. 2015). For these reasons, we 
treat breaching water levels, namely water levels triggering levee fail-
ures, as deeply uncertain. 

3.2. Simulation model 

The simulation model follows three steps: (1) the generation of hy-
drological events along the Po River and its main tributaries Secchia and 
Panaro, (2) the propagation of the generated events using a hydrody-
namic model, (3) the assessment of economic damage in the flooded 
compartments. The following subsections briefly introduce the 
modeling steps. More detailed information is provided in the supple-
mentary material. 

3.2.1. Generation of hydrological events 
We focus on the generation of alternative 0.2% annual probability 

flood events at the upstream Po River’s cross-section of Borgoforte. 
These events are expected to cause flooding in the compartments, as the 
levee system is designed to withstand the 0.5% annual probability flood 
events. 

The 0.2% annual probability events along the Po River at Borgoforte 
are generated based on the Flood-Duration-Frequency (FDF) curve 
derived by Maione et al. (2003) and the historical flood hydrographs of 
the Po at Borgoforte reported in Tanda et al. (2001). The aim is to 
generate 0.2% annual probability events of decreasing peak flow for 
increasing duration such that the FDF curve is always met. 

After the 0.2% annual probability events are generated for the Po 
River, a Gaussian copula is used to capture the dependence between the 
generated events in the Po River and in its main tributaries Secchia and 

Panaro, similarly to what is done by Curran et al. (2020). The correlation 
between events in the Po River and those in the tributaries is modeled 
using data from the Hypeweb platform of the Swedish Meteorological 
and Hydrological Institute (SMHI). These data consist of 29 years of 
simulated daily mean discharges for the three rivers and are used to 
generate a Gaussian copula between volumes and discharges of the Po, 
Secchia and Panaro rivers. After generating the 0.2% annual probability 
flood event for the Po River as described above, events of the tributaries 
are found by conditional sampling of the Gaussian copula. 

3.2.2. Hydrodynamic model 
Flood hazard is simulated with a quasi-2D model implemented 

through the HEC-RAS software (Domeneghetti et al., 2015). In the 
model, the main river is represented through cross-sections retrieved 
from a LiDAR digital elevation model with a 2 m spatial resolution. The 
levee-protected floodplain is subdivided into 17 compartments, which 
are modeled as storage areas connected to each other and/or to the main 
channel by means of lateral structures or connections that reproduce 
existing levees. The hydrostatic behavior of each storage area is repre-
sented through volume-level curves. Thus, in case of flooding, water 
levels can be estimated from the water volumes exchanged with the 
main channel and/or adjacent storage areas. These curves are built using 
a 10 m resolution DEM available for all Italy (TINITALY, see Tarquini 
et al., 2012). 

3.2.3. Economic impact assessment 
Floods are often devastating events and the impact they cause in-

cludes loss of life, damage to buildings, infrastructures, and the deteri-
oration of ecosystems. Moreover, flood impacts are larger for 
communities which are more socially and economically vulnerable. 
However, since the focus of this study is primarily methodological, for 
practical reasons we model flood impact only as economic damage to 

Fig. 2. The case study area. The thick grey lines delimit the flood-protected areas (i.e., compartments) and the purple lines depict the levee stretches where structural 
measures can be implemented. 
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residential buildings. To do so, we use the Hypsometric Vulnerability 
Curves approach proposed by Domeneghetti et al. (2015) and the 
damage function developed by Carisi et al. (2018). 

Typically, the hypsometric curve of an area provides the percentage 
of the total area below a certain elevation. The Hypsometric Vulnera-
bility Curve combines this information with the land-use of the area, 
thus providing the percentage of a land use class below a given eleva-
tion. Therefore, if combined with damage functions, the hypsometric 
vulnerability curve is a useful simplified graphical tool to quantify 
aggregated flood damage of large areas. 

We calculate Hypsometric Vulnerability Curves relative to urban 
areas in all compartments. To do so, we use data of residential buildings 
available from the geodata web-platforms of the three Italian regions 
involved in the case study, namely Emilia-Romagna, Lombardia and 
Veneto. Data about asset values of buildings are retrieved from the 
Italian Revenue Agency. Asset value data are provided in terms of euros 
per square meter (€/m2) for different types of buildings and all Italian 
municipalities every six months. We define an asset value per 
compartment as the weighted average of all asset values where weights 
are given by the extent of urban area of the municipalities in that 
compartment. 

For deriving the depth-damage curve, we used the square root 
regression model developed by Carisi et al. (2018) using loss data 
collected after the Secchia River 2014 flood. We account for the un-
certainty in this relationship by using alternative regression models 
generated from the distribution of the fitting parameter. 

4. Description of the analysis 

The analysis aims at applying the BIRDM framework introduced in 
section 2. The goal is to explore, for each compartment, how alternative 
assumptions regarding the distribution of deep uncertainties affect the 
robustness of damage reduction measures and their ranking. The 
description follows the steps introduced in section 2. 

4.1. Problem framing 

The adopted XLRM framework is shown in Table 1. Exogeneous 

uncertainties (X) relate to various hydrological features of the Po River 
and its tributaries, the damage function and the breaching water levels 
at each of the 52 levee stretches identified in the study area. The 
considered structural measures (L) correspond to either doing nothing 
(hereafter status quo), levees raising (hereafter raising) or levees 
strengthening (hereafter strengthening). The simulation model (R) is the 
one introduced in subsection 3.2. The outcomes of interest (M) are the 
flood damages from the 0.2% annual probability events in each 
compartment. 

4.2. Uncertainty analysis 

Uncertainty analysis is conducted performing 4500 runs of the 
simulation model using a Sobol sampling sequence (Sobol 1967). This is 
also known as quasi-Monte Carlo analysis. Table 2 reports the selected 
sampling distribution for each uncertainty. 

We stress that, for the reasons outlined in subsection 3.1, un-
certainties related to breaching water levels are considered as deeply 
uncertain. It follows from the scenario neutral assumption that these are 
uniformly distributed, with the range of physically plausible breaching 
water levels going from the levee crest height (upper limit) to the lowest 
level at which a breach can physically be triggered (lower limit). This 
latter is given by the highest point between the floodplain’s height and 
the height of the levee-protected area such that the necessary hydraulic 
gradient required for a breach to plausibly develop is guaranteed. In the 
case study, this is estimated to be approximately 2 m below the initial 
crest level for all levee stretches. This yields a fragility curve as 
expressed by the thick blue line in Fig. 3. 

As indicated in Fig. 1, this step and scenario discovery are iterated. 
Therefore, the uncertainty analysis is first carried out for the status quo. 
Next, system vulnerabilities are identified through scenario discovery 
and measures that limit such vulnerabilities are defined. Finally, un-
certainty analysis is again performed assuming measures are imple-
mented. Convergence plots are shown in the supplementary material as 
mean damage against number of simulations. 

Fig. 3. The deeply uncertain fragility curve (thick blue line) and the 15 considered alternative fragility curves (grey lines) spanning the considered range (blue 
shaded area). All 15 alternative fragility curves follow a normal distribution with standard deviation of 0.3 but mean values spanning from 0.6 m to 1.3 m below the 
height of the levee crest, with a step of 5 cm. 
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4.3. Scenario discovery 

Scenario discovery is performed using the Patient Rule Induction 
Method (PRIM) algorithm (Friedman and Fisher 1999). Scenario dis-
covery is used to explore the uncertainty space generated by sampling 
uncertainties as reported in Table 2, except for the first three listed 
uncertainties, namely duration, shape class and shape of the Po River’s 
upstream hydrograph which are used to generate flood waves. Instead, 
for the sake of interpretability, scenario discovery is run on the peak 
discharges and volumes of the generated flood waves. This implies the 
exploration of 59 variables: the peak discharge and hydrographs vol-
umes of the 3 rivers, the breaching water levels at the 52 levees stretches 
and the damage model parameter. Scenario discovery is used to identify 
cases where flood damage in each compartment is larger than the 3rd 
damage quartile under status quo, which is the assumed critical perfor-
mance threshold. 

Scenario discovery provides an indication, for each compartment, of 
what levee stretches, when failing, are likely to lead to damages above 
the critical threshold. Based on scenario discovery results and a broader 
consideration of the geometry of the levee system, we identify critical 
levee stretches and define structural measures. After these measures are 
identified, their performance is re-assessed through uncertainty analysis 
(step 4.2). 

4.4. Belief analysis 

This step allows exploring how the ranking of structural measures 
changes under various alternative assumptions about the shape of the 
fragility curves. Structural measures are evaluated based on their 
robustness in providing satisficing performances. This is defined as the 
probability of not exceeding the critical performance threshold, which 
we define for each compartment as the flood damage equal to the 3rd 
damage quartile under status quo (see Section 4.3). This probability can 
be assessed, for each measure, via the method described in section 2.4. 
Obviously, the most robust measure is the one with the highest non- 
exceedance probability of the performance threshold. 

Different hypotheses regarding the fragility curve may lead to 
different robustness values, and thus result into a different ranking of 
measures. In practice, the choice of the alternative fragility curves 
should be derived through expert elicitations and reflect the uncertainty 
around levee breaching for the levee stretch of interest. For simplicity, 
we assume all fragility curves follow a normal distribution with the same 
standard deviation of 0.3 but different mean values. These range from 
0.6 m (upper curve) to 1.3 m (lower curve) below the height of the levee 
crest, with steps of 5 cm each, for a total of 15 fragility curves. The range 
(number of steps) could be made larger (finer) according to the appli-
cation, as the computational cost of exploring a large number of 

alternative beliefs is very low. All considered fragility curves are shown 
in Fig. 3. 

5. Results and discussion 

This section reports the results of the analysis described in section 4. 
This section reports results from the Uncertainty Analysis and Scenario 
Discovery steps in subsection 5.1 and those from the Belief Analysis step 
in subsection 5.2. 

5.1. Uncertainty analysis and scenario discovery 

The output of the uncertainty analysis of the current system (status 
quo, blue boxplot in Fig. 4) reveals that five compartments are flooded 
by the 0.2% annual probability flood events, and they are all located 
upstream. This happens because breaching at these compartments re-
sults in flood peak attenuation and hence in an unloading effect for the 
downstream compartments, which are consequently not flooded. 

For all the flooded compartments, failure scenarios are identified as 
those where flood damages under status quo are higher than the critical 
performance threshold. Table 3 shows the results of scenario discovery 
for these failure scenarios. 

High values of the damage model parameter are responsible for large 
flood damage in all compartments. Flood waves with large volumes 
along the Po River are responsible for large flood damages only to the 
Cross_seccB compartment, one of the most upstream. For each 
compartment, one can identify the critical locations, namely those lo-
cations where, should the levees fail, large flood damage would occur. 
Identifying these critical locations provides a crucial indication on 
where structural damage reduction measures should be applied, and 
scenario discovery supports their identification. 

In the case of strengthening, this information suffices as we simply 
assume that these stretches are strengthened in such a way that levee 
overtopping produces flooding without breaching the levee. In the case 
of raising, an additional choice needs to be made based on the height of 
the nearby levees. To make the two structural measures comparable, 
both raising and strengthening are applied to the same set of stretches. 

In compartment cross_seccB, two stretches are identified as relevant 
for investing in flood protection, namely stretches number 3 and 5. The 
levee at stretch 5 has an average crest level of 25 m a.s.l., while the levee 
at stretch 3 is higher with an average crest level of 25.65 m a.s.l., Stretch 
4, located between stretches 3 and 5, with an average levee crest level of 
25.5 m a.s.l., is also considered part of the intervention. As the lowest 
average levee height along the compartment on the other side of the Po 
River is about 25.8 m a.s.l., levees of stretches 3, 4 and 5 are raised up to 
this level. Following similar reasoning, levee raising of 1.0, 0.7, 0.5 and 

Table 1 
The adopted XLRM framework.  

Uncertainties (X) Measures (L) Model (R) Outcome (M)  

• Duration of the Po 
River’s upstream 
flood hydrograph  

• Shape of the Po 
River’s upstream 
flood hydrograph  

• Peak and volume 
of the Secchia and 
Panaro rivers’ 
flood hydrograph  

• Breaching water 
level at each of the 
52 levee stretches 
(deep uncertainty)  

• Damage model 
parameter  

• Do nothing  
• Levee 

heightening  
• Levee 

strengthening 

The flood 
impact 
modeling chain 
described in  
subsection 3.2. 

The 0.2% annual 
probability 
damage at each 
compartment  

Table 2 
Description of the considered uncertainties, distributions, and parametrizations.  

Uncertainties (X) Distribution type Parametrization 

Hydrograph’s duration for the 
Po River 

Continuous 
Uniform 

Lower bound = 24 h 
Upper bound = 192 h 

Hydrograph’s shape class for 
the Po River 

Discrete 
Probability 

See Table 1 in supplementary 
material 

Hydrograph’s shape for the Po 
River 

Discrete Uniform Lower bound = 1 
Upper bound = number of 
hydrographs in the selected 
shape class 

Hydrograph’s peak discharge 
and volume for the Secchia 
and Panaro rivers 

Conditioned 
Gaussian Copula 

See Tables 3 and 4 in 
supplementary material 

Breaching water level at the 
levee stretches (WL stretch) 
– deep uncertainty 

Continuous 
Uniform 

Lower bound = 2 m below the 
levee’s height 
Upper bound = levee’s height 

Damage model parameter 
(DMRP) 

Truncated 
Normal 

Mean = 0.113 
Standard deviation = 0.131 
Min = 0 
Max = +∞  

A. Ciullo et al.                                                                                                                                                                                                                                   



Environmental Modelling and Software 159 (2023) 105560

7

0.3 m is applied to stretches in compartments cross_seccC, ogli_minC, 
ogli_minB, secc_panaA respectively. In total, the procedure leads to the 
implementation of structural interventions at 7 stretches, as shown in 
Fig. 5. 

The performance of both raising and strengthening is assessed by 
performing two uncertainty analyses and results are shown in Fig. 4. 
Looking at the total damage, raising and strengthening both improve the 

current situation, as they result in lower damage than status quo. In the 
case of strengthening this benefit is much more significant. Similar results 
are found for cros_seccB, the compartment where most damage occurs 
and the one where the most upstream stretches subject to intervention 
are located. Although with a less remarkable difference, strengthening is 
the best option also for compartment ogli_minB. For all other compart-
ments it is found that either raising or strengthening may deteriorate 
performance with respect to status quo, as the number of cases above the 
performance threshold increases. This is due to right-left and upstream- 
downstream hydraulic interactions due to which structural measures 
reducing damage on a given river stretch may increase damage at the 
other side of the river or downstream (Ciullo et al., 2020). For example, 
for ogli_mincB, which is located opposite to cros_seccB, raising does not 
seem to bring much damage reduction as it performs similarly to status 
quo. For the more downstream compartments, i.e., cros_seccC, ogli_-
mincC, secc_panaA and adig_poE, strengthening may significantly deteri-
orate performance with respect to status quo, to the point that it may 
cause damage at compartment adig_poE where there was none initially. 
Interventions were designed via scenario discovery with the goal of 
reducing damage above the performance threshold at each compart-
ment. To limit the effects of hydraulic interactions, the Uncertainty 
Analysis and Scenario Discovery steps would need to be run iteratively 

Table 3 
Results from scenario discovery for each compartment. Results show which parameter and what range of values lead to flood damages higher than the 3rd quartile 
under the status quo. DMRP indicates the damage model regression parameter [.], WL stretch # [m a.s.l.] indicates the water level at a given stretch and Vol. Po is the 
flood volume of the Po River [m^3].  

cross_seccB cross_seccC ogli_mincC secc_panaA ogli_mincB 

Params Range Params Range Params Range Params Range Params Range 

DMRP (0.15, 0.58) DMRP (0.12, 0.58) DMRP (0.06, 0.58) DMRP (0.06, 0.58) DMRP (0.12, 0.58) 
WL stretch 

#3 
(23.7, 25.4) WL stretch 

#15 
(21.8, 22.9) WL stretch #6 (23.3, 23.9) WL stretch #25 (20.5, 21.2) WL stretch #1 (23.8, 25.6) 

WL stretch 
#5 

(23.0, 24.6)         

Vol. Po (7.4e9, 9.2e9)          

Table 4 
Ranking of measures under the assumption of a deeply uncertain fragility curve. 
The number in parenthesis indicate the probability of non-exceeding the per-
formance threshold. Status quo, raising and strengthening are indicated as SQ, R 
and S respectively. The number in brackets indicates the probability of non- 
exceeding the performance threshold.  

Compartment/ 
Ranking 

First-ranked 
measures 

Second-ranked 
measures 

Third-ranked 
measures 

cros_seccB S (1.0) R (0.80) SQ (0.74) 
ogli_mincB S (0.81) R/SQ (0.75) R/SQ (0.75) 
cros_seccC R (0.79) SQ (0.74) S (0.69) 
ogli_mincC R (0.76) SQ (0.74) S (0.62) 
secc_panaA SQ (0.74) R (0.72) S (0.66)  

Fig. 4. Uncertainty analysis results for each compartment and the overall system. Each box shows flood damage from the 0.2% annual probability events under status 
quo (blue) and after raising (orange) and strengthening (green). The critical performance threshold (dotted line) corresponds to the 3rd quartile of the damages under 
status quo. 
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until a satisfactory set of measures is achieved for the entire system. A 
comprehensive design of the entire system requiring such an extensive 
iterative procedure of refinement of measures is beyond the scope of this 
paper. 

5.2. Belief analysis 

Following the description in Section 4.4, this section reports how 
robustness values and the ranking of measures change for each 
compartment utilizing each of the 15 alternative fragility curves re-
ported in Fig. 3. The ranking of the three measures is assessed based on 
their robustness in achieving satisfactory performances, namely the 
probability of non-exceeding the performance threshold (see Section 
4.4). The higher this probability, the higher a measure is ranked. 

Results of the belief analysis are reported in Fig. 6. In each panel and 
for each of the 15 alternative fragility curves, colors indicate which 
measure ranks at the position indicated by the respective column. For 
comparison, Table 4 reports results under the assumption of a deeply 
uncertain fragility curve. 

Compartment cross_seccB is the only one for which alternative beliefs 
do not affect the ranking of measures at all, as strengthening always ranks 
first, followed by raising and status quo. This is coherent with the overall 
performance under deep uncertainty. 

For compartment ogli_mincB and cross_seccC, raising is instead the 
first-ranking measure regardless beliefs. For both compartments, the 
second- and third-ranked measures differ across beliefs and can be either 
strengthening or status quo, with the latter being preferred when levees 
are believed to be weak and prone to failing at low water levels. This is 
logical, as structural measures are most effective under circumstances of 
weak levees. For ogli_mincB, results are surprising since strengthening, 
which is the best measure under deep uncertainty (see Table 4), never 
ranks as the first measure under changing beliefs. This highlights how a 
high performance of measures under the scenario neutrality assumption 

may deteriorate when beliefs are introduced. For cross_seccC, raising is 
the first-ranked measure also under deep uncertainty, followed by status 
quo and strengthening. 

For compartments ogli_mincC and secc_panaA, the first-ranked mea-
sure, likely to be the most relevant one from a practical viewpoint, is 
sensitive to changes in belief, as a shift from status quo to raising occurs 
depending on the belief about the strength of the levee. For both com-
partments, raising is preferable when the levee is believed to be weak, 
and status quo takes over when the levee is believed to be stronger. The 
opposite shift takes place as second ranked-measure, whereas the third 
ranked measure is always strengthening as this measure increases dam-
ages at these compartments due to upstream-downstream interactions 
(see previous section). 

6. Conclusions 

In the present paper we introduced the Belief-Informed Robust De-
cision Making (BIRDM) framework. BIRDM builds upon Robust Decision 
Making (RDM) and it enables the assessment of the effects of alternative 
distributions of deep uncertainties on the robustness values and ranking 
of measures. In principle, the same results provided by BIRDM could be 
achieved by running a standard RDM analysis multiple times with 
alternative assumptions regarding the distribution of deep uncertainties. 
This, however, would demand large computational power and may 
become unfeasible as soon as many alternative assumptions need to be 
explored. The proposed approach, instead, requires almost no additional 
computational costs nor any new modeling efforts compared to RDM, 
and it therefore allows the exploration of an arbitrarily large number of 
alternative distributions. As such, BIRDM extends and improves RDM as 
it allows assessing whether ambiguities, lack of knowledge or 
disagreement regarding the distribution of deep uncertainties matter in 
the first place. 

We demonstrated BIRDM by applying it to a flood management 

Fig. 5. Location of the stretches identified for the implementation of structural measures.  
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planning problem along the lower Po River, Italy. The goal was to 
identify the most robust structural measures and to assess whether, and 
to what extent, alternative assumptions about the levees’ fragility curves 
affect robustness values and the ranking of measures. We find that 
BIRDM’s results reveal changes in the ranking of measures because of 
changing assumptions about the levees’ fragility curves. Therefore, the 
ranking emerging from the standard RDM is sensitive to alternative 
assumptions regarding such uncertainties. This can be decision-relevant, 
especially when these changes affect which measure ranks first. BIRDM 
also supports the identification of which belief triggers such a change in 
the ranking, thus enabling the assessment of what beliefs lead a given 
measure to have a specific rank. This may trigger further investigations 

regarding, for example, the reliability of such rank-changing beliefs. 
Finally, BIRDM can be used in a stress-test fashion to assess under what 
assumptions a given a measure no longer performs as desired. 

Data and code availability 

Results of the full analysis and the code need to perform the Scenario 
Discovery and Belief Analysis steps can be found at https://github.com/ 
aleeciu/BIRDM_paper. 

Fig. 6. Results from the Belief Analysis step. Each column indicates a ranking position and each row indicates a compartment. For each compartment and ranking 
position, colors indicate which measure rank at the given position across all 15 fragility curves introduced in Fig. 3. Fragility curves at which a rank shift occurs are 
reported in bold. 
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