
Symbolic Knowledge Extraction from Opaque Machine Learning Predictors:
GridREx & PEDRO

Federico Sabbatini1 , Roberta Calegari2
1Dipartimento di Scienze Pure e Applicate (DiSPeA),

Università degli Studi di Urbino “Carlo Bo”, Italy
2Alma AI—Alma Mater Research Institute for Human-Centered Artificial Intelligence,

ALMA MATER STUDIORUM–Università di Bologna, Italy
f.sabbatini1@campus.uniurb.it, roberta.calegari@unibo.it

Abstract

Procedures aimed at explaining outcomes and behaviour of
opaque predictors are becoming more and more essential as
machine learning (ML) black-box (BB) models pervade a
wide variety of fields and, in particular, critical ones – e.g.,
medical or financial –, where it is not possible to make deci-
sions on the basis of a blind automatic prediction. A grow-
ing number of methods designed to overcome this BB limi-
tation is present in the literature, however some ML tasks are
nearly or completely neglected—e.g., regression and cluster-
ing. Furthermore, existing techniques may be not applicable
in complex real-world scenarios or they can affect the output
predictions with undesired artefacts.
In this paper we present the design and the implementation
of GridREx, a pedagogical algorithm to extract knowledge
from black-box regressors, along with PEDRO, an optimi-
sation procedure to automate the GridREx hyper-parameter
tuning phase with better results than manual tuning. We also
report the results of our experiments involving the application
of GridREx and PEDRO in real case scenarios, including
GridREx performance assessment by using as benchmarks
other similar state-of-the-art techniques. GridREx proved to
be able to give more concise explanations with higher fidelity
and predictive capabilities.

1 Introduction & Motivation
Nowadays machine learning (ML) techniques – e.g., ar-
tificial neural networks (ANNs) – are among the most
widespread tools to face almost any kind of task (Rocha,
Papa, and Meira 2012). The learning process consists of
the model internal parameter tuning in order to maximise its
predictive capability w.r.t. the domain data. Despite the im-
pressive predictive power of ML algorithms even in complex
scenarios, the major drawback in the application of these
techniques is their opacity, intended as their inability to pro-
vide any intelligible representation of the acquired knowl-
edge. Opaque models are commonly named black boxes
(BBs), because they can only represent knowledge in a sub-
symbolic way. Since there exist critical fields where it is not
possible to accept BB predictions or recommendations – for
instance, healthcare, finance and law domains as well as ar-
eas where decision making may affect human lives in terms
of health, wealth and freedom – it is of paramount impor-
tance to rely on explainable predictions to let humans retain

accountability and liability over the decisions they make.
According to Guidotti et al. (2018), different strategies

can be exploited to pursue the purpose of explainability.
For instance, it is possible to obtain explainable data-driven
solutions only by using interpretable algorithms (Rudin
2019)—such as generalised linear models, decision trees,
etc. However, in general this can have repercussions on
the predictive performance, as the most effective algorithms
are excluded—e.g., ANNs. Another strategy consists of
deriving post-hoc explanations (Kenny et al. 2021), aimed
at reverse-engineering the BB inner operation to make it
explicit. In this way data scientists are allowed to adopt
prediction-effective (but opaque) algorithms without sac-
rificing human readability. The extraction algorithm pre-
sented in this paper belongs to the latter strategy.

Symbolic knowledge extraction (SKE) is among the most
promising means to derive post-hoc explanations from sub-
symbolic BBs. Its main idea is to build a symbolic – and
thus interpretable – model that mimics the behaviour (a.k.a.,
output predictions) of the original BB. Symbols may con-
sist of intelligible knowledge—e.g., lists or trees of rules
that can be exploited to either derive predictions or to bet-
ter understand the BB behaviour. SKE has been applied,
for instance, to credit-risk evaluation (Baesens et al. 2003;
Baesens et al. 2001; Steiner et al. 2006), healthcare (Bologna
and Pellegrini 1997; Hayashi, Setiono, and Yoshida 2000),
credit card screening (Setiono, Baesens, and Mues 2011),
intrusion detection systems (Hofmann, Schmitz, and Sick
2003), and keyword extraction (Azcarraga, Liu, and Setiono
2012).

Despite the large amount of SKE techniques existing
in the literature, only few of them are explicitly designed
for regression—for instance ITER (Huysmans, Baesens,
and Vanthienen 2006), REFANN (Setiono, Leow, and Zu-
rada 2002) and GridEx (Sabbatini, Ciatto, and Omicini
2021). Furthermore, they present several limitations in
their applications. REFANN is a decompositional (Andrews,
Diederich, and Tickle 1995) extraction procedure only appli-
cable to 3-layer ANNs and it requires a prior minimisation
(not always feasible without loss of predictive performance)
of the number of hidden neurons to simplify the extraction
process. It is then poorly suited for modern deep neural net-
works. Conversely, ITER and GridEx are pedagogical (An-

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Applications and Systems

554

drews, Diederich, and Tickle 1995) approaches which can
be applied to any kind of BB regressor since they do not
make assumptions on the type and structure of the underly-
ing model. However, ITER predictive performance degrades
when applied to high-dimensional data sets. GridEx extends
ITER in order to overcome its major drawbacks, but both al-
gorithms produce rule lists where each rule is associated to a
constant value, so they introduce an undesired discretisation
in the output predictions.

In this work we propose GridREx, a new pedagogi-
cal knowledge-extraction procedure extending GridEx to
overcome the output discretisation issue. While doing so,
GridREx is able to produce more concise rule lists with bet-
ter predictive performances and fidelity w.r.t. the data and
the underlying model predictions, respectively. We demon-
strate the effectiveness of GridREx by reporting our ex-
periments on real-world scenarios and comparing its per-
formance with the the most exploited state-of-the-art tech-
niques – namely, ITER, GridEx and CART (Breiman et
al. 1984) – trained on the same data. Furthermore, since
GridREx – as many other SKE algorithms – has several
hyper-parameters to be configured to obtain the best out-
put and since the manual tuning of these parameters can
be often tedious and unsatisfactory, we also discuss PE-
DRO, an optimiser explicitly designed to automate the se-
lection of the best GridREx hyper-parameter values. PE-
DRO is designed according to the hyper-parameters optimi-
sation methodology widely discussed in the literature (Yang
and Shami 2020; Feurer and Hutter 2019; Hutter, Kotthoff,
and Vanschoren 2019) targeting progressive automation of
ML, based on principles from optimization and machine
learning itself.

It is worth mentioning that the experiments reported in
Section 5 – aimed at producing logic rules as for output –
are grouped into two sections. In the first group we report
the results of GridREx trained by using as target values the
BB predictor outputs instead of the data set original variable.
The performance of GridREx is then compared with that of
analogous techniques. In the second group we demonstrate
how, under some particular circumstances, GridREx can be
applied directly to the initial training set as well, to obtain
an equivalent model performing rule induction (Grzymala-
Busse 2005). Although this hypothesis requires further in-
vestigation, from our first experiments it appears that it is
convenient to exploit the predictor when dealing with scat-
tered training sets. More precisely, a sparse data set can be
increased by creating a certain number of new random sam-
ples and by using the BB predictor as an oracle to obtain
corresponding output values. In this way it is possible to
augment the data set and thus produce fewer and more pre-
cise rules.

2 Related Works

To ease the reader, in the following we provide a brief de-
scription of the knowledge-extraction techniques adopted in
the experiments presented in Section 5.

ITER ITER is a pedagogical technique based on the itera-
tive creation and expansion of hypercubes in the input fea-
ture space. The algorithm terminates if one of the follow-
ing conditions holds: (i) the input space is entirely covered;
(ii) it is not possible to expand/add further cubes; (iii) the
maximum number of iterations is reached. Output rules are
produced by creating a certain amount of random samples
into each cube, then by using the underlying BB to predict
the corresponding output values and finally by averaging the
predictions to obtain the mean cube output. Thus, each cube
corresponds to a human-comprehensible rule and each rule
is associated with a constant output.

GridEx GridEx extends the core concepts of ITER to
avoid issues concerning computational time, exhaustivity
and fidelity. As a consequence, GridEx can be applied un-
der the same circumstances as ITER, but it returns better re-
sults in terms of output rule amount and predictive accuracy.
GridEx follows a completely different strategy to create the
hypercubes associated with the output rules. It iteratively
partitions the input space according to given strategies and
a sensitivity threshold parameter. As ITER, it outputs rules
associated with constant values.

CART CART is a pedagogical algorithm able to induce a
regression tree on a data set or a trained BB. The extraction
of human-readable rules is based on the conversion of each
possible path from the root to leaves into an if-then rule.
Also in this case the output value is a constant.

3 GridREx

GridREx – Grid Regressive Extractor – is a pedagogical
knowledge-extraction method designed for regression tasks.
Consequently, it can be applied to any kind of machine
learning predictor if the output variable is numeric. GridREx
also requires the input attributes to be numeric, so it cannot
be applied if the problem domain is described by relevant
categorical variables. The algorithm is designed only for
univariate regression, but it is possible to split a multivariate
regression task into several univariate tasks and then apply
the extractor to each one.

The basic idea behind GridREx is to partition the input
feature space into hypercubes, by observing the input in-
stances of the data set and the output predictions of the un-
derlying BB. The algorithm leverages on the assumption ac-
cording to which close input samples should exhibit similar
outputs, or at least output values following a similar regres-
sion law w.r.t. the input variables. After having identified
these hypercubic clusters of similar data points, GridREx
creates a human-readable rule for each one. Output rules are
first-order logic rules, where the premise is a conjunction of
conditions on the input variables – i.e., each variable should
belong to a specific interval of values – and the action is a
regression rule describing the output variable in terms of a
linear combination of the input attributes.

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Applications and Systems

555

3.1 Hyper-Parameters
The behaviour of the GridREx algorithm can be controlled
through several user-defined hyper-parameters. These pa-
rameters define how to perform the input space partitioning
and thus the amount and quality of the output rules. More
precisely, the algorithm hyper-parameters are:

1. n ∈ N>0, i.e., the number of iterations to perform;
2. m ∈ N>0, i.e., the minimum number of samples to con-

sider in each hypercube;
3. θ ∈ R>0, i.e., the hypercube predictive error threshold;
4. S1, . . . , Sn, i.e., the splitting strategy to adopt at each al-

gorithm iteration i, i = 1, . . . , n.
The notion of hypercube predictive error refers to the

mean absolute error between the output value provided by
GridREx and that of the underlying BB for all the training
samples belonging to a hypercube. The threshold parameter
can be exploited by users to set the preferred trade-off be-
tween quality and readability of the output rules—intended
as average predictive capability of the hypercubes and num-
ber of rules, respectively. Please notice that the more the
quality increases, the more the readability decreases.

As for the splitting strategies, GridREx allows users to
select a different criterion for each iteration by choosing one
of the following:

1. a fixed strategy, parametrised with an integer value k, per-
forming k slices along each input dimension, and

2. an adaptive strategy, parametrised with an increasingly-
monotone function of the form f : [0, 1] → N>0, per-
forming f(r) slices along each input dimension with rel-
evance equal to r.
For feature relevance, we intend numeric information

about how an input feature is important to determine the
output variable. GridREx assumes that this measure is nor-
malised in the [0, 1] interval, with the most relevant fea-
ture having a relevance equal to 1. Importance values
can be estimated in several ways—e.g., (Zien et al. 2009;
Zhuang et al. 2019; Altmann et al. 2010). Since we have im-
plemented our algorithm in Python, we exploited a simple
feature selection method available within the SciKit-Learn
Python library: feature selection.f regression1.

Experimental results showed that fixed strategies are a
good choice when dealing with data sets described by in-
put attributes having comparable relevance. When this con-
dition does not hold, it is possible to reduce the number
of partitions along the less relevant dimensions in order to
have fewer output rules without noticeable degradation of
their quality. It is worthwhile to notice that the number of
partitions greatly impacts on the GridREx performances, in
terms of efficiency as well as predictive capabilities and out-
put rules readability. In other words, a large number of par-
titions implies the same amount of rules, so – despite being
more accurate – these rules cover smaller input space regions
w.r.t. those produced with fewer partitions. As concerns hu-
man readability, the output rule set readability decreases as

1cf. https://scikit-learn.org/stable/modules/generated/sklearn.
feature selection.f regression.html

its dimension grows. Accordingly – considering also that
the output variable can depend more on some variables and
almost not depend at all on others – we develop adaptive
strategies allowing GridREx to create more slices on rele-
vant dimensions and fewer partitions on the others, without
losses in the extracted rules’ quality. In the following, we re-
fer to the term grid to identify an object incapsulating both
the maximum number of GridREx iterations and the strategy
to adopt at each iteration.

3.2 Algorithm
The GridREx algorithm, reported in Algorithm 1, requires a
data set of training samples – e.g., the one adopted to train
the underlying model – and a BB regressor to be used as
an oracle. This basic version of GridREx can be modified
to perform rule induction from data instead of BB explana-
tion. It is sufficient to use the original output of the data
set instances as target during the training phase. Conversely,
when adopted as knowledge extractor, GridREx firstly sub-
stitutes the output values of the training data set with the
corresponding underlying BB model predictions.

The main idea behind GridREx is to partition the sur-
rounding hypercube – i.e., the minimal region including all
the input instances – in a number of (hyper)cubic regions
such that the output values of all the samples in each parti-
tion can be described with the same linear combination of
the input variables. At the end of the partitioning, each hy-
percube is converted into an if-then logical rule.

GridREx adopts a top-down recursive partitioning, start-
ing from a single region equal to the surrounding hypercube.
At each iteration, all the eligible regions are split as speci-
fied in the user-defined list of strategies. A region is eligible
if it contains input samples and its error is above the user-
defined threshold. Otherwise, regions can be negligible if
they contain no input samples or permanent if their error
is smaller than the threshold. The former are discarded, so
there will be no rules associated with them, whereas the lat-
ter will be no further partitioned. If a partition contains not
enough training instances to provide accurate predictions,
GridREx generates random samples, using the underlying
BB as an oracle to predict the corresponding output values.
The minimum number of samples to be present in each hy-
percube is one of the hyper-parameters described in the pre-
vious section. Obviously, this augmentation phase cannot be
performed when GridREx is applied for rule induction.

After every splitting iteration a merging phase is per-
formed to reduce the number of eligible regions. GridREx
attempts to pair-wise merge adjacent hypercubes contain-
ing samples having similar behaviours, on the basis of the
threshold parameter. Specifically, two adjacent hypercubes
are joined only if the merged cube predictive error does not
exceed the threshold, in order not to hinder the resulting rule
quality.

GridREx stopping criteria are the absence of eligible re-
gions to split and the reaching of the user-defined maximum
number of iterations. If at least one of these two conditions
holds, the algorithm terminates.

To calculate the predictive error corresponding to the
identified regions as well as to associate a rule to each one of

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Applications and Systems

556

https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.f_regression.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.f_regression.html

Algorithm 1 GridREx pseudocode
Require: grid G, predictive error threshold θ, minimum number of samples per hypercube m to be provided

1: function GRIDREX(R, D)
2: H0 ← SURROUNDINGCUBE(D)
3: return SPLIT(1, H0, R, D)

4: function SURROUNDINGCUBE(D)
5: return the minimal hypercube including all the samples of D

6: function SPLIT(i, H , R, D)
7: d← depth of G, Π← ∅, Π′ ← ∅
8: if i > d then
9: return {H}

10: for all H ′ ∈ PARTITIONS(H , i) s.t. H ′ ∩D 6= ∅ do
11: D ← D ∪ GENERATESAMPLESIN(H ′, D)
12: if PREDICTIVEERROR(H ′, R, D) ≤ θ then
13: Π← Π ∪ {H ′}
14: else
15: Π′ ← Π′ ∪ {H ′}
16: Π′′ ← MERGE(Π, R,D)
17: for all H ′ ∈ Π′ do
18: Π′′ ← Π′′ ∪ SPLIT(i+ 1, H ′, R,D) . Recursive step
19: return Π′′

20: function PARTITIONS(H , i)
21: return { all the partitions of H according to the i-th level of the grid G }

22: function GENERATESAMPLESIN(H , D)
23: c← |H ∩D|
24: if c < m then
25: return { (m− c) random points in H }
26: else
27: return ∅

28: function PREDICTIVEERROR(H , R, D)
29: return the predictive error of R w.r.t. the samples of D included in H

30: function MERGE(Π, R,D)
31: C ← ADJACENTCUBES(Π)
32: while (|C| > 0) do
33: (H∗1 , H

∗
2)← arg min

(H1,H2)∈C
{ PREDICTIVEERROR(H1 ∪H2, R,D) }

34: H ← H∗1 ∪H∗2
35: if PREDICTIVEERROR(H , R, D) ≤ θ then
36: Π← Π \ {H∗1 , H∗2} ∪ {H}
37: C ← ADJACENTCUBES(Π)
38: else
39: return Π
40: return Π

41: function ADJACENTCUBES(Π)
42: return { (H1, H2) | H1, H2 ∈ Π ∧H1 6= H2 ∧ (H1 and H2 are adjacent) }

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Applications and Systems

557

0.0 0.2 0.4 0.6 0.8 1.0

x

0.0

0.2

0.4

0.6

0.8

1.0

y

z
−4

−2

0

2

4

6

8

(a) Surrounding cube.

0.0 0.2 0.4 0.6 0.8 1.0

x

0.0

0.2

0.4

0.6

0.8

1.0

y

e = 0.93

e = 1.48

e = 0.53

z
−4

−2

0

2

4

6

8

(b) Iteration 1.

0.0 0.2 0.4 0.6 0.8 1.0

x

0.0

0.2

0.4

0.6

0.8

1.0

y

e = 0.79

e = 1.36e = 0.46

z
−4

−2

0

2

4

6

8

(c) Iteration 2.

Figure 1: Example of GridREx partitioning (without merging step) performed with fixed strategies (k = 2) and threshold equal to 1.

them, a different linear model is trained for each hypercube.
As for the evaluation of the feature importance, we relied
on a simple model available within the SciKit-Learn Python
library: linear model.LinearRegression2. The predic-
tions of these linear models are compared with the training
target values (the underlying BB predictions or the data set
output values) to calculate the error of each region, while
output rules are created by reading the estimated coefficients
of the linear models. To make predictions, GridREx accepts
input data belonging to the surrounding hypercube and out-
puts the response of the linear models corresponding to the
hypercubes including the provided data.

In Figure 1 is reported an example of partitioning per-
formed by GridREx on a 2-dimensional data set by using
for each iteration a fixed strategy with k = 2. The Fig-
ure shows the first 2 iterations and the threshold parameter
value is set to 1. Figure 1a represents the surrounding hy-
percube with the data set samples. The first iteration (see
Figure 1b) produces 4 hypercubes. One is negligible (white
background) since it contains no training samples. Inside
the other three regions different linear models are trained
and the corresponding predictive errors are calculated on the
training samples and reported on the top right corner of each
hyper-cube. By comparing these errors with the threshold it
can be noticed that the bottom cubes are permanent, so they
will not be further partitioned during successive iterations.
Conversely, the top right region error exceeds the threshold,
so it is partitioned into 4 smaller cubes (see Figure 1c) in a
recursive fashion.

4 PEDRO
The tuning of GridREx hyper-parameters may be quite chal-
lenging if performed manually. For such a reason we devel-
oped PEDRO, a Proficient and Easy Direct Reliable Opti-
miser that helps users to find the best values for the critical
hyper-parameters.

Among all the GridREx parameters, the minimum num-
ber of examples to consider in each hypercube is the only

2cf. https://scikit-learn.org/stable/modules/generated/sklearn.
linear model.LinearRegression.html

one with negligible impact on the algorithm performance,
so PEDRO does not focus on this one. The main idea be-
hind the optimiser is to compare GridREx executions dif-
fering only for one hyper-parameter, according to some ad
hoc defined metrics evaluating both the rule quality enhance-
ments and the readability losses. A (small) worsening in the
final rule set readability is acceptable only when it is bal-
anced by a (large enough) enhancement in the average pre-
dictive performance (details in the next subsection). This is
achieved by iteratively exploring the hyper-parameter space
in several directions until the trade-off between the two met-
rics is no more favourable. Then, after having selected a set
of candidate optimal solutions, different scoring metrics are
adopted to select the best values for the GridREx parameters
in terms of best readability, best predictive performance and
best trade-off between the two requirements.

PEDRO is based on the following general assumptions
about the behaviour of GridREx:

1. a small (large) threshold produces a large (small) number
of small (large) partitions with small (large) predictive er-
ror, thus hindering readability in favour of rule quality;

2. analogously, an extra iteration produces (a possibly very
high number of) smaller regions with smaller average er-
ror;

3. the optimisation desideratum is the minimisation of both
the number of rules and the corresponding predictive er-
ror, so an adequate scoring function should be multiplica-
tive w.r.t. both quantities conveniently weighted.

These assumptions are encoded in the following equations—
please notice that it is desirable to have large values for
the improvement indices. The improvement between two
GridREx executions (G1, G2) having growing thresholds
(θ1 < θ2; Item 1) is calculated as:

thresholdImprovement = 1− r2
r1

+
E1

E2
, (1)

being ri and Ei the number of extracted rules and the pre-
dictive error, respectively, associated to the i-th GridREx
execution Gi. Differently, the improvement between two

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Applications and Systems

558

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html

GridREx executions (G1, G2) having growing maximum it-
eration values (n1 < n2; Item 2) is calculated as:

depthImprovement =
1(

1− E2

E1

)0.1
· dr2·RTOe
dr1·RTOe

, (2)

where ri and Ei have the same meaning as before and RTO
is the readability trade-off parameter. Finally, the scoring
function of each GridREx execution (Item 3) is calculated
as:

score = E · d2 · r ·RTOe . (3)
A good execution has a small score.

4.1 Hyper-Parameters
To exploit PEDRO the following parameters have to be pro-
vided to the algorithm:

1. a threshold to stop the iterative research when the predic-
tive error worsens too much;

2. analogously, a threshold to identify when the gain in the
model readability is not large enough;

3. a patience parameter to relax the threshold-based stopping
criteria, in order to avoid optimal solutions that are only
local for a limited parameter space region;

4. a trade-off parameter to define the importance of readabil-
ity w.r.t. the predictive performance;

5. the maximum number of GridREx iterations to perform
for each hyper-parameter combination;

6. the focus of the optimisation—i.e., maximise the fidelity
of GridREx w.r.t. the underlying BB predictions or the
predictive accuracy w.r.t. the data.

Tuning these parameters is not a hard task, since the maxi-
mum number of GridREx iterations is cut off by the thresh-
olding mechanism in the majority of cases and the default
threshold values are usually adequate. The patience and
trade-off parameters affect the parameter space research and
thus the total computational time of the optimisation pro-
cess. Small (large) patience values imply the premature (de-
layed) algorithm termination. Small (large) trade-off values
tend to disadvantage (privilege) the role of the readability
w.r.t. that of the predictive performance when calculating the
score of GridREx outputs. The optimisation focus should
concern the BB if the goal of the extraction process is to
explain the model behaviour or on the data if the goal is
to obtain an interpretable and accurate predictor to be used
in substitution of the underlying BB. However, with well-
performing BBs there is not an appreciable difference be-
tween the two choices.

4.2 Algorithm
PEDRO finds the optimal hyper-parameters through itera-
tive research inside the parameter space as reported in Al-
gorithm 2. It finds the optimal GridREx error threshold, the
number of iterations it should perform and the splitting strat-
egy to adopt in each iteration. The current implementation
of PEDRO assumes that every GridREx iteration adopts the
same strategy, that can be fixed or adaptive.

The parameter space exploration starts from 25 different
points, corresponding to 25 different splitting strategies (2
fixed and 23 adaptive). This choice is an optimal trade-off
between combinatorial exhaustivity and search efficiency.
Indeed, fixed strategies performing more than 3 slices per di-
mension result in an explosion of the number of output rules,
hindering readability, so as for fixed strategies testing 2 of
them (performing 2 and 3 slices, respectively) is sufficient.
On the other hand, 23 adaptive strategies were always more
than sufficient in our experiments to cover all the interesting
splitting combinations: as a matter of fact, they generally
result in duplicate strategies. Since they are chosen by de-
fault, it is common to have more than one strategy equivalent
to others, depending on the input feature importance of the
data set to analyse. When this is the case, equivalent strate-
gies are collapsed. For instance, by taking as an example a
regression task with 2 input dimensions, if we define 3 adap-
tive strategies by imposing a certain number of partitions
for features having relevance above 0.3, 0.5 and 0.8, respec-
tively, and the actual feature relevancies are 0.1 and 1, all
the strategies will perform the same partitioning, leading to
the same output. It is worth noting that strategies, especially
when dealing with high-dimensional data sets, can lead to
an explosion of the number of rules. For this reason, PE-
DRO automatically excludes all those strategies performing
a number of partitions greater than a given value. Such value
is equal to 3 times the number of partitions obtained with
a fixed strategy performing 2 slices along each dimension.
Additionally, after collapsing duplicated strategies, the av-
erage amount of partitions is calculated. This enables more
strict patience policies to be adopted for strategies having
more partitions than the average since they are supposed to
be more time-consuming (due to better readability, this de-
tail is not included in the pseudo-code).

For each strategy and for each possible number of
GridREx iterations between 1 and the maximum user-
defined value, the best threshold of the extraction procedure
parametrised with the particular strategy is selected. An
early stopping is performed if the loss in readability is no
more balanced with the gain in quality (see Equation (2)).

To find the best threshold for a strategy, given a number of
iterations, the following steps are executed. Firstly, an ini-
tial threshold t0 and update step s are set to 0.9e and 0.5e,
respectively, being e the mean absolute error of the underly-
ing BB. This choice derives from the consideration accord-
ing to which it is generally not possible to achieve a signif-
icantly better performance than the underlying BB by using
an extraction procedure that exploits the outputs of such BB
as target values. Then GridREx is performed with growing
threshold values, starting from t0 and incrementing it at each
iteration by an amount equal to s. If an iteration results in
no improvement, the step value s is augmented. It is worth
noticing that a rule amount reduction smaller than the user
defined value is not considered an improvement. The search
terminates if GridREx produces only one output rule, if the
worsening w.r.t. the error obtained with the initial threshold
t0 is beyond the user-defined value, or if there are no im-
provements even by considering the patience parameter (see
Equation (1)).

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Applications and Systems

559

Algorithm 2 PEDRO pseudocode
Require: parameters maxDepth, maxErrorIncrease, minRuleDecrease, readTradeoff , patience0 to be provided

1: function PEDRO(R, D)
2: maxPartitions← MAXPARTITIONNUMBER(D)
3: S ← INITIALIZESTRATEGIES(D,maxPartitions)
4: return SEARCH(S, R, D, maxPartitions)

5: function MAXPARTITIONNUMBER(D)
6: return an upperbound for the number of partitions calculated w.r.t. the number of input features describing D

7: function INITIALIZESTRATEGIES(D, maxPartitions)
8: S ← a set of default strategies
9: return { s | s ∈ S ∧ NPARTITIONS(D, s) < maxPartitions }

10: function NPARTITIONS(D, strategy)
11: return the number of partitions produced by strategy applied to D

12: function SEARCH(S, R, D, maxPartitions)
13: return

⋃
s∈S

DEPTHSEARCH(s,R,D,maxPartitions)

14: function DEPTHSEARCH(s, R, D, maxPartitions)
15: Π← ∅, i← 1, best′ ← undefined
16: while i < maxDepth do
17: grid← GRID(i, s)
18: Π′ ← THRESHOLDSEARCH(grid,R,D,maxPartitions)
19: best← SELECTBEST(Π′)
20: Π← Π ∪Π′

21: if (|Π| > 1) ∧ (IMPROVEMENT(best, best′, “depth”) < 1.2) then return Π

22: i← i+ 1
23: best′ = best
24: return Π

25: function SELECTBEST(Π)
26: return the best output in Π w.r.t. both predictive performance and readability according to readTradeoff

27: function IMPROVEMENT(output1, output2, criterion) . criterion is either “depth” or “threshold”
28: return a numeric evaluation of output1 w.r.t. output2 according to criterion

29: function THRESHOLDSEARCH(grid, R, D, maxPartitions)
30: θ0 ← PREDICTIVEERROR(D,R)
31: Π← ∅, θ ← 0.9 θ0, patience← patience0, step = 0.5 θ0
32: while patience > 0 do
33: E ← GRIDREX(R,D)
34: p← parameters of E
35: n← number of rules extracted by E
36: e← PREDICTIVEERROR(D,E)
37: if Π = ∅ then e0 ← e
38: else if n = 1 then return Π ∪ {(p, n, e)}
39: else if n > maxPartitions then return Π
40: else if e > e0 ·maxErrorIncrease then return Π
41: else if (IMPROVEMENT((n, e), (n′, e′), “threshold”) ≤ 1)

∨
(n > dn′ ·minRuleDecreasee) then

42: patience← patience− 1
43: step← max{step, |e− θ|} /max{patience, 1}
44: Π← Π ∪ {(p, n, e)}
45: n′ ← n
46: e′ ← e
47: θ ← θ + step

return Π

48: function PREDICTIVEERROR(D, P) . Predictor P may be a BB or an extractor
49: return the predictive error of P applied to the samples of D

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Applications and Systems

560

At the end of the parameter space search PEDRO ranks
each solution according to 3 different dimensions: (i) the
number of extracted rules, a.k.a., the readability; (ii) the pre-
dictive error, a.k.a., the quality; (iii) the ad hoc scoring func-
tion explicitly designed to select the best trade-off between
readability and quality, involving the user-defined specific
parameter (see Equation (3)).

5 Comparison in PSyKE
5.1 Knowledge Extraction
In order to assess the performance of GridREx and PEDRO3

we applied our algorithms to 6 different real-world data sets
from the StairwAI4 EU project. These data sets are com-
posed uniquely of continuous input and output features. 2
data sets have 5 input attributes, whereas the others have 1
input variable. All data sets count 12 100 instances and we
adopted an 80%-20% train-test split. The test set was never
used to train the BBs or the extractors.

Our results are summarised in Table 1. We used PEDRO
to estimate the best GridREx hyper-parameters for each data
set. Other state-of-the-art extraction procedures – namely,
ITER, GridEx, and CART – applied on the same data sets are
used as benchmarks to compare with GridREx.

We performed a complete comparison by collecting the
same indicators for each extractor. For regression tasks, the
most used indicators are the mean absolute/squared error
(MAE/MSE) and the R2 score. Due to space limitations,
we report in Table 1 only the MAE (aligned to the results
of other indicators).For each data set, the number of input
variables, the MAE of the BB model applied to it and the
results of the 4 extraction procedures applied to the data sets
and the corresponding BBs are reported in Table 1. For each
extractor, the number of extracted rules (R) and the MAE
w.r.t. both the data (D) and the underlying BB are reported
as well. Since ITER can be a non-exhaustive procedure, for
this algorithm we included also the percentage of missed test
predictions (MTP), i.e., how many test samples ITER is not
able to predict w.r.t. the size of the test set.

GridREx proved to be the best extractor for all the case
studies, being able to provide the fewest number of rules
and, at the same time, achieving the highest predictive per-
formance of all the tested extractors w.r.t. both the data and
the underlying BB predictions. This is not surprising, since
all the other techniques are not able to produce actual regres-
sion rules, but only constant values assigned to defined in-
put space regions. This undesired output discretisation hin-
ders their predictive performance as well as their readabil-
ity, since they may fragment regions dominated by the same
linear relationship into a number of smaller regions having
constant outputs.

3Experiments have been run exploiting the Python imple-
mentations provided by PSyKE (Sabbatini et al. 2021), cf.
https://apice.unibo.it/xwiki/bin/view/PSyKE/ and https://github.
com/psykei/psyke-python/

4https://cordis.europa.eu/project/id/101017142; data sets will
be publicly available accordingly to the timeline of the StairwAI
EU project

Obviously, the results reported in Table 1 are not the
unique possible. The number of rules and the MAE of each
procedure may greatly vary with different algorithm param-
eters. While we used PEDRO to choose the best GridREx
and GridEx hyper-parameters, different considerations are
mandatory for the other algorithms. We selected for CART a
maximum depth equal to 2, in order to have not more than 4
output rules. This choice derives from the fact that GridREx
produces 3-5 output rules for all the data sets; in such a way
it is possible to compare the predictive performance of CART
and GridEx in terms of MAE to parity of human readability.
It is worth noticing that CART can achieve a predictive per-
formance almost as good as that of GridREx at the expense
of readability—i.e., with larger depths and, therefore, larger
rule sets. For instance, by using a maximum depth equal
to 3, resulting in 8 output rules, it is possible to have better
predictive performance. However, since CART outputs are
constant values while those of GridREx are not, the latter is
able to outperform the former in the general case.

On the other hand, ITER shows quite good results in terms
of MAE when applied to data sets with only one input fea-
ture, but it tends to have smaller readability than GridREx
and furthermore its rules are always non-exhaustive. For
ITER we report here the best results obtained after a man-
ual hyper-parameter tuning phase. As best we intend the
predictive performance w.r.t. the output model readability.

5.2 Rule Induction
In the following we describe the results of GridREx applied
to the same aforementioned data sets without the interme-
diate “interference” of the BB predictor. These results are
summarised in Table 2 as a comparison between the extrac-
tion performed by GridREx on the BB regressor and the rule
induction directly performed by GridREx on the data sets.
We describe the GridREx executions in terms of MAE and
R2 score as predictive error/performance measurement and
the number of output rules as readability index.

Our goal is to demonstrate that this procedure can be
exploited instead of ML techniques to learn relationships
from data without loss of predictive performance. Extraction
techniques from BB predictors imply prior training and tun-
ing phases regarding the BB itself, often a time-consuming
task that offers no certainty about the optimality of the se-
lected final hyper-parameters. On the other hand, rule in-
duction is not able to rely on an ML oracle to augment the
data set under study, nor can learn complex relationships as
other widespread ML algorithms do—for instance, ANNs.
For these reasons, GridREx should be exploited for this pur-
pose only when a dense data set is available, so as to have the
possibility to obtain rules corresponding to hypercubes nat-
urally including a proper amount of samples—used to con-
struct robust and accurate output rules.

From the results reported in Table 2 it is clear how
GridREx can be applied to perform rule induction obtaining
approximatively the same results as the rule extraction from
an ML BB—and, in some cases, even slightly better results.
For this reason, we suggest directly applying GridREx to the
data set when possible, in order to avoid the training and tun-
ing phases of the underlying regressor. PEDRO can be ex-

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Applications and Systems

561

https://apice.unibo.it/xwiki/bin/view/PSyKE/
https://github.com/psykei/psyke-python/
https://github.com/psykei/psyke-python/
https://cordis.europa.eu/project/id/101017142

GridREx ITER GridEx CART
Data Input BB MAE MAE MTP MAE MAE
set var. MAE R D BB R D BB (%) R D BB R D BB

#1 5 0.4 3 1.4 1.5 76 9.5 7.2 6.3 5 14.5 14.6 4 14.6 14.6
#2 1 4.3 5 5.0 3.3 20 6.3 4.3 1.7 5 15.3 14.7 4 17.8 17.5
#3 1 8.3 5 11.3 6.7 14 12.2 7.5 1.8 5 17.6 14.9 4 17.1 12.9
#4 5 1.5 4 22.1 21.9 83 23.2 21.4 9.6 5 28.4 28.3 4 26.2 26.1
#5 1 3.8 5 4.7 1.8 4 4.6 2.0 1.7 3 4.8 2.2 4 4.7 1.9
#6 1 0.8 5 1.0 0.7 15 1.6 1.3 1.9 5 3.2 3.1 4 3.9 3.8

Table 1: Results of GridREx applied to the 6 described data sets in terms of number of extracted rules (R) and MAE w.r.t. the data (D) and
the underlying BB model. Results are compared with those of ITER, GridEx and CART applied to the same data sets. For each data set the
number of input variables and the BB MAE are reported, as well as the percentage of missed test predictions (MTP) for ITER.

BB GridREx (extraction) GridREx (induction)
Data Input MAE R2 # MAE R2 MAE R2 # MAE R2

set variables (data) (data) Rules (data) (data) (BB) (BB) Rules (data) (data)

#1 5 0.4 1.00 3 1.4 1.00 1.5 1.00 3 1.5 1.00
#2 1 4.3 0.99 5 5.0 0.99 3.3 1.00 5 4.6 0.99
#3 1 8.3 0.97 5 11.3 0.92 6.7 0.97 5 11.4 0.91
#4 5 1.5 0.99 4 22.1 0.67 21.9 0.67 5 21.8 0.70
#5 1 3.8 0.28 5 4.7 0.05 1.8 0.19 5 3.91 -0.1
#6 1 0.8 1.00 5 1.0 0.99 0.7 1.00 5 1.9 0.99

Table 2: Comparison in terms of readability, predictive error and R2 score of GridREx applied to the 6 described data sets by exploiting the
underlying BB (knowledge extraction) as well as without any intermediate ML predictor (rule induction).

ploited to detect the best GridREx hyper-parameters also for
the case of rule induction. We adopted it to tune GridREx
during our rule induction experiments to obtain the results
reported in the Table 2.

5.3 Discussion on the Execution Time
Except for CART, the execution time of the compared al-
gorithms strictly depends on the number of extracted rules.
In all our experiments, CART always produces its output
within a second. The same holds for GridEx and GridREx
when less than 10 hyper-cubes are created. These two tech-
niques may require up to one minute when dealing with huge
amounts of hyper-cubes—e.g., above 500. ITER results to
be slower than the others, due to the creation and discard
of many data structures during its execution, as well as for
the repetition of the same operations several times. These
considerations can be drawn by analysing the algorithm de-
scription given by the authors of ITER. In our experiments,
ITER terminates within a second only when less than 6 rules
are extracted. The execution in the other cases may take up
to some minutes, depending on its hyper-parameters.

6 Conclusions
In this paper we present the design and application of
GridREx and PEDRO, a pedagogical knowledge-extraction
algorithm for BB regressors of any kind and an optimisa-
tion procedure applicable to it to help human users during
the hyper-parameter tuning phase of GridREx. GridREx
is able to overcome at the same time the major limitations

of similar algorithms described in the literature—i.e., the
inability to output regression rules and the application re-
stricted to specific BBs. PEDRO can provide the best hyper-
parameter values for GridREx, taking into account the read-
ability of the output rule set, the corresponding predictive
performance, or both of the two criteria, combining them
according to a user-provided trade-off threshold. PEDRO
outperforms manual tuning executed by human experts even
when launched with default parameters.

Even though GridREx proved to outperform several state-
of-the-art analogous techniques, some considerations can be
taken into account for future improvements. Two examples
are (i) the possibility to customise the relationship between
input and output inside single hypercubes – such as polyno-
mial functions instead of linear ones – and (ii) the introduc-
tion of a splitting technique disentangled from the equal-size
partitioning criterion, possibly critical when dealing with
strongly asymmetrical data sets.

In the future we also plan to enrich PEDRO, making it
more configurable by users. For example, we find it useful
to let users choose among more than one criterion to mea-
sure the predictive error – or, more generally, performance
– of a given regressor/extractor—for instance, MSE and R2

score, as well as user-defined loss functions. We also plan
to modify the search of the input parameter space to include
grids having not only one single strategy for every iteration,
but also different strategies automatically selected by PE-
DRO.

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Applications and Systems

562

Acknowledgements
This work has been partially supported by the EU ICT-48
2020 project TAILOR (No. 952215) and by the European
Union’s Horizon 2020 research and innovation programme
under G.A. no. 101017142 (StairwAI project).

References
Altmann, A.; Toloşi, L.; Sander, O.; and Lengauer, T.
2010. Permutation importance: a corrected feature impor-
tance measure. Bioinformatics 26(10):1340–1347.
Andrews, R.; Diederich, J.; and Tickle, A. B. 1995. Sur-
vey and critique of techniques for extracting rules from
trained artificial neural networks. Knowledge-Based Systems
8(6):373–389.
Azcarraga, A.; Liu, M. D.; and Setiono, R. 2012. Keyword
extraction using backpropagation neural networks and rule
extraction. In The 2012 International Joint Conference on
Neural Networks (IJCNN 2012), 1–7. IEEE.
Baesens, B.; Setiono, R.; De Lille, V.; Viaene, S.; and Van-
thienen, J. 2001. Building credit-risk evaluation expert sys-
tems using neural network rule extraction and decision ta-
bles. In Storey, V. C.; Sarkar, S.; and DeGross, J. I., eds.,
ICIS 2001 Proceedings, 159–168. Association for Informa-
tion Systems.
Baesens, B.; Setiono, R.; Mues, C.; and Vanthienen, J. 2003.
Using neural network rule extraction and decision tables for
credit-risk evaluation. Management Science 49(3):312–329.
Bologna, G., and Pellegrini, C. 1997. Three medical ex-
amples in neural network rule extraction. Physica Medica
13:183–187.
Breiman, L.; Friedman, J.; Stone, C. J.; and Olshen, R. A.
1984. Classification and Regression Trees. CRC Press.
Feurer, M., and Hutter, F. 2019. Hyperparameter optimiza-
tion. In Automated machine learning. Springer, Cham. 3–33.
Grzymala-Busse, J. W. 2005. Rule induction. In Maimon,
O., and Rokach, L., eds., The Data Mining and Knowledge
Discovery Handbook. Springer. 277–294.
Guidotti, R.; Monreale, A.; Ruggieri, S.; Turini, F.; Gian-
notti, F.; and Pedreschi, D. 2018. A survey of methods
for explaining black box models. ACM Computing Surveys
51(5):1–42.
Hayashi, Y.; Setiono, R.; and Yoshida, K. 2000. A compar-
ison between two neural network rule extraction techniques
for the diagnosis of hepatobiliary disorders. Artificial intel-
ligence in Medicine 20(3):205–216.
Hofmann, A.; Schmitz, C.; and Sick, B. 2003. Rule extrac-
tion from neural networks for intrusion detection in com-
puter networks. In 2003 IEEE International Conference
on Systems, Man and Cybernetics, volume 2, 1259–1265.
IEEE.
Hutter, F.; Kotthoff, L.; and Vanschoren, J. 2019. Automated
machine learning: methods, systems, challenges. Springer
Nature.
Huysmans, J.; Baesens, B.; and Vanthienen, J. 2006.
ITER: An algorithm for predictive regression rule extrac-

tion. In Data Warehousing and Knowledge Discovery
(DaWaK 2006), 270–279. Springer.
Kenny, E. M.; Ford, C.; Quinn, M.; and Keane, M. T.
2021. Explaining black-box classifiers using post-hoc
explanations-by-example: The effect of explanations and
error-rates in XAI user studies. Artificial Intelligence
294:103459.
Rocha, A.; Papa, J. P.; and Meira, L. A. A. 2012. How far
do we get using machine learning black-boxes? Interna-
tional Journal of Pattern Recognition and Artificial Intelli-
gence 26(02):1261001–(1–23).
Rudin, C. 2019. Stop explaining black box machine learn-
ing models for high stakes decisions and use interpretable
models instead. Nature Machine Intelligence 1(5):206–215.
Sabbatini, F.; Ciatto, G.; Calegari, R.; and Omicini, A.
2021. On the design of PSyKE: A platform for symbolic
knowledge extraction. In Calegari, R.; Ciatto, G.; Denti, E.;
Omicini, A.; and Sartor, G., eds., WOA 2021 – 22nd Work-
shop “From Objects to Agents”, volume 2963 of CEUR
Workshop Proceedings, 29–48. Sun SITE Central Europe,
RWTH Aachen University. 22nd Workshop “From Ob-
jects to Agents” (WOA 2021), Bologna, Italy, 1–3 Septem-
ber 2021. Proceedings.
Sabbatini, F.; Ciatto, G.; and Omicini, A. 2021. GridEx:
An algorithm for knowledge extraction from black-box re-
gressors. In Calvaresi, D.; Najjar, A.; Winikoff, M.; and
Främling, K., eds., Explainable and Transparent AI and
Multi-Agent Systems. Third International Workshop, EX-
TRAAMAS 2021, Virtual Event, May 3–7, 2021, Revised Se-
lected Papers, volume 12688 of LNCS. Basel, Switzerland:
Springer Nature. 18–38.
Setiono, R.; Baesens, B.; and Mues, C. 2011. Rule extrac-
tion from minimal neural networks for credit card screening.
International Journal of Neural Systems 21(04):265–276.
Setiono, R.; Leow, W. K.; and Zurada, J. M. 2002. Ex-
traction of rules from artificial neural networks for non-
linear regression. IEEE Transactions on Neural Networks
13(3):564–577.
Steiner, M. T. A.; Steiner Neto, P. J.; Soma, N. Y.; Shimizu,
T.; and Nievola, J. C. 2006. Using neural network rule
extraction for credit-risk evaluation. International Journal
of Computer Science and Network Security 6(5A):6–16.
Yang, L., and Shami, A. 2020. On hyperparameter optimiza-
tion of machine learning algorithms: Theory and practice.
Neurocomputing 415:295–316.
Zhuang, J.; Dvornek, N. C.; Li, X.; Yang, J.; and Duncan, J.
2019. Decision explanation and feature importance for in-
vertible networks. In 2019 IEEE/CVF International Confer-
ence on Computer Vision Workshop (ICCVW), 4235–4239.
IEEE.
Zien, A.; Krämer, N.; Sonnenburg, S.; and Rätsch, G. 2009.
The feature importance ranking measure. In Joint European
Conference on Machine Learning and Knowledge Discovery
in Databases (ECML PKDD 2009), 694–709. Springer.

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Applications and Systems

563

	Introduction & Motivation
	Related Works
	GridREx
	Hyper-Parameters
	Algorithm

	PEDRO
	Hyper-Parameters
	Algorithm

	Comparison in PSyKE
	Knowledge Extraction
	Rule Induction
	Discussion on the Execution Time

	Conclusions

