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

Abstract—The frequency shifting and filtering (FSF) algorithm, 

a variant of DFT, has the merit of high efficiency for frequency 

analysis thanks to its simple implementation in the time domain. 

However, the inevitable white noise injected by various factors 

leads to inaccurate frequency estimation in practical 

measurement. This paper investigates the influence of a stationary 

white noise on FSF-based frequency estimation of the power 

system. The variance expression of the frequency estimator is 

derived theoretically and compared to its unbiased Cramer-Rao 

Lower Bound (CRLB). The obtained results are validated by 

several computer simulations. 

Index Terms—Variance analysis, Frequency shifting, Filtering, 

Signal to noise ratio, Cramer-Rao Lower Bound. 

I. INTRODUCTION

The frequency is a significant indicator for the monitoring, 

control, and protection of the power system. Accurate 

frequency estimation can better reflect the status of the power 

system and provide a reliable basis for the operation of the grid 

[1, 2]. As the ever-increasing demand for renewable power, the 

power quality of the power system continues to deteriorate 

because of the large number of power electronics used in 

connections of the new power. Thus, a fast and accurate 

frequency estimation method is required strongly for the safety, 

stability, and efficiency of the power system [3]. 

In recent decades, various digital signal processing 

techniques, such as Discrete-Fourier-transform (DFT), 

DFT-based methods, Phase-locked loop, Notch filter, Prony’s 

method, zero-crossing method, wavelet transform, 

least-squared technique, Kalman filter, Taylor method, 

Newton’s method and Artificial neural network, have been 

published in scientific literature to provide methods for 

estimating frequency [4-8]. However, the difficulty of 
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guaranteeing the synchronous sampling prevents the classical 

algorithms from being a good selection for accurate frequency 

estimation. In addition, a lot of effort has been paid to raise the 

performance of these classical methods under asynchronous 

sampling. Among them, the windowed interpolation Fast 

Fourier Transform (WIFFT), one variant of DFT, is widely 

used because it well addresses the spectrum leakage and picket 

fence effect caused by asynchronous sampling through time 

domain windowing and frequency domain interpolation [9] 

[10]. Furthermore, diverse window functions and interpolation 

method are proposed to enhance the performance of WIFFT. 

However, the tradeoff between the length of window and 

accuracy makes it hardly fulfill the accuracy requirement of 

frequency estimation when few samples can be collected. 

To improve the performance of DFT, an effective method 

named Frequency Shifting and Filtering (FSF) algorithm is 

proposed to estimate the frequency [11]. The FSF only employs 

two main steps, by starting from the raw data: frequency 

shifting by the reference signal (similar to the heterodyne action 

of WIFFT) and iterative filtering (similar to the windowing 

action of WIFFT) based on the averaging filter, to process the 

raw data. Thus, the FSF can be seen as a conventional DFT with 

a filter/window consisting of a cascade of L rectangular 

windows, each with an equal and fixed number of samples, 

equivalent to one period at nominal system frequency. With 

frequency shifting and filtering implemented only in the 

time-domain, a satisfactory frequency estimation can be 

obtained, while the conventional WIFFT method needs an 

interpolation process in frequency domain to lower the inherent 

defect picket fence effect. Thus, the benefits of an FSF 

implementation consist of higher efficiency and accuracy on 

estimating the frequency (in asynchronous sampling) compared 

with the widely-used WIFFT [12]. 

It is worth noting that the accuracy of frequency estimation is 

not only affected by the used algorithm but also by the white 

noise contained in the sampled signal. When the contribution of 

white noise becomes significant, the performance of the 

algorithm under noisy condition must be re-evaluated and 

tested. On the contrary, if the signal-to-noise ratio (SNR) is 

higher enough, which means that the influence of the noise on 

frequency estimation is negligible, the attention is moved to the 

evaluation of the measurement error produced by the algorithm 
itself [13, 14]. 

As for the noise, among the grid, a Low Voltage (LV) 

distribution system typically contains more noise than the High 
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Voltage (HV) one. According to [15, 16], the background noise 

of LV distribution system can be considered as white noise. 

[17] points that the SNR of distribution level grid signals 
is about 60-70dB. Although the acquired samples will be 
filtered first, the noise level can still be high enough to pollute 
the frequency estimation. In addition, the transducers and 
acquisition circuit used in the measurement equipment, e.g., 
Phasor Measurement Unit (PMU), power quality analyzer, will 
also introduce the noise which affects the accuracy of 
frequency estimation. [18] gives the principle of how the 
analog instrumentation and quantization effects introduce 
the white noise. Therefore, the inherent and introduced noise 
existed in the sampled signal of the power system can be treated 
as the Additive White Gaussian Noise (AWGN). Thereby 
performance of the frequency estimators adopted in the power 
system needs to be evaluated under AWGN pollution [19].

Moving to other well-known methods and approaches, a 

zero-crossing-based method for the estimation of the frequency 

of a single sinusoid in white noise is presented in [20]. The 

performance of an extended Kalman filter approach for the 

frequency measurement of noisy power system signals has 

been evaluated and presented in [21]. With regard to the famous 

DFT, there are a lot of noise-related researches in the existing 

literature. The effect of window functions on the uncertainty of 

the DFT-based frequency estimator under noisy condition is 

investigated in [22] and [23]. The noise effect on the power 

system frequency measurement is analyzed in [24] and [17]. 

The difference is that, [24] uses the triangular self-convolution 

window based double line interpolation DFT, while [17] adopts 

the triple-line interpolation DFT with combined cosine 

windows. In [25], the effects of noise on the detection and 

estimation of weak sine waves caused by analog-to-digital 

conversion and windowing is tackled. [26] applies three digital 

filters with second-degree integrators to reduce the noise effect 

for frequency estimation based on DFT method. [18] analyzes 

the effect of white noise onto frequency estimation based on the 

filtered heterodyned measurement which is basically the same 

as the so-called FSF in this paper. Based on its conclusion, a 

cascade of two roughly equal length boxcar filters is suggested 

for frequency measurement. However, to the authors’ 

knowledge, the expression about the effect of white noise on 

frequency estimation based on FSF with a varying 

measurement interval has not been given in [18] nor the 

published literature. 

In this paper, the influence of white noise on measurement 

errors of FSF-based frequency is firstly examined theoretically; 

then, the frequency variance expression is derived in two cases 

according to the interval between two adopted measuring 

samples. The correctness of variance expression is finally 

verified by several designed simulations on Matlab software. 

The paper is structured as follows: Section II recalls the 

procedure of FSF on the power system frequency estimation. 

Section III analyzes the frequency variance based on FSF, and 

the variance expression is given with respect to SNR. Moreover, 

it contains the comparison between frequency variance and the 

unbiased Cramer-Rao Lower Bound (CRLB). Section IV 

provides the simulation tests and results which can verify the 

proposed expressions. Finally Section V discusses the 

conclusion. 

II. FREQUENCY ESTIMATION BASED ON FSF

Applying FSF to estimate the power system frequency as 

shown in [11] requires the following 6 steps. 

STEP 1, acquiring the power system signal distorted by 

harmonic content with sampling frequency fs as: 

 
1

ssin 2π( ) / +h h

H

h
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

 (1) 

where H is the highest order of harmonic; Ah, θh, and fh 

represent the amplitude, phase, and frequency of the hth 

harmonic, respectively. In particular, A1, θ1, and f1 are the 

corresponding parameters of the signal fundamental component; 

fs=Dfr, where D is an integer number, fr is the nominal 

frequency of the power system, i.e., 50 Hz or 60 Hz. 

n=0,1,2,3,…,N-1, where N is the number of acquired samples. 

By considering an In-field signal, there will be a deviation Δf 

between fr and f1 actually, i.e., Δf=fr-f1, and Δf<< f1 usually. 

STEP 2, generating a reference signal r(n) with frequency fr 

expressed as (2) for the power frequency f1 estimation. 
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where j is the imaginary unit. 

STEP 3, frequency shifting x(n) using r(n) as: 
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where s(n) is called the frequency shifted signal.

According to (3), it is clear that after frequency shifting, 

fr–f1=Δf is the only component which can be approximately 

0Hz. Thus, if Δf is known with a low uncertainty, f1 can be 

obtained with high accuracy.  

STEP 4, filtering out the undesired components in s(n) using 

the averaging-filter-based Equivalent Weighting Filter (EWF) 

as: 
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where ωh-Pos=2π(fr+fh)/fs and ωh-Neg=2π(fr-fh)/fs are the sampling 

angle differences of the positive and negative frequency 

components of the hth harmonic, respectively. L is the times of 

iterative filtering, G(ω) is the magnitude response of the 

averaging filter. weq(n) is the EWF shown as (5) and 

K=L(D-1)+1 is the order of EWF. 

       eq

L

w n w w wn n n    (5) 



TABLE I  THE MEANINGS OF THE ADOPTED NOTATIONS 

Notation Meaning Notation Meaning 

fr 
Nominal frequency of the 

power system 
N Number of samples 

D 
An integer related to 
sampling frequency 

M Measurement interval 

L Iteration times of FSF n1 The first measuring point 

K Order of the EWK n2 
The second measuring 

point 

where ‘*’ means convolution operation, w(n) is the Dth order 

averaging filter. 

After the filter application, only the component ω1-Neg 

remains, while all the other components of s(n) are suppressed 

to 0 roughly. Thus, sL(n) shown in (4) is simplified as: 
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STEP 5, calculating the sampling angle difference ω1-Neg of 

two samples in sL(n) with interval M using the following 

equation. 

   2 1
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M
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
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where arg( ) represents the angle of a complex number, 

M=n2-n1, is the measurement interval.

STEP 6, estimating the power system frequency f1 by: 
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III. ANALYSIS OF WHITE NOISE ON THE POWER FREQUENCY 

ESTIMATION 

In this section, the influence of the AWGN on power 

frequency estimation provided by FSF [11] is investigated. The 

variance expression of the power frequency estimation based 

on FSF is analyzed and derived theoretically. In addition, the 

ratio between the theoretical variance and its CRLB is 

analyzed. 

Let us define y(n) as a pure sinusoidal signal corrupted by 

AWGN z(n) with zero mean and variance σ2: 

     y n x n z n  (9) 

where x(n) is the pure sine wave with frequency f1, amplitude 

A1 and phase angle θ1. 

After being frequency shifted by r(n) of frequency fr, the 

frequency shifted signal s(n) is expressed as: 

        s n x n z n r n   (10) 

Then s(n) is filtered by EWF weq(n) using (4). For the sake of 

simplicity, sL(n) is expressed by a complex vector as: 

       S 1-Neg 1-Pos= zn n nn  V V V V (11) 

where VS(n) is the complex vector of sL(n); V1-Neg(n) and 

V1-Pos(n) are the negative and the positive components while 

VZ(n) is the filtered AWGN. All can be presented as follows: 
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where φN(n), φP(n) and φZ(n) represent the angle of V1-Neg(n), 

V1-Pos(n) and VZ(n), respectively, and B is the module of VZ(n). 

According to the characteristics of the AWGN adopted, it 

results that the expectation and variance of VZ(n) are: 
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where NNPG is the Normalized Noise Power Gain defined as: 

 
2

eq
1

1 K

n

NNPG w n
K 

    (17) 

Due to the frequency response of the adopted iterative 

filtering process, V1-Pos(n) is negligible compared with V1-Neg(n), 

thereby VS(n) can be written as: 
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Moreover, VS(n) can be represented as: 

     S Sn A n n V (19) 

where AS(n) and η(n) are the module and the angle of VS(n), 

respectively, which can be expressed as: 
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Under the assumption of SNR>>1, it results that B/AN<<1, 

hence, η(n) can be simplified as: 
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It is known that φN(n) is fixed while φZ(n) is a random value 

in the range [0, 2π]. Thus, the variance of η(n) is expressed, 

according to the uncertainty propagation law, as: 
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In light of the equation Im(VZ(n))=BsinφZ(n), the following 

expression can be obtained: 
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By considering the definition of the Equivalent Noise 

BandWidth (ENBW) of the EWF: 
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The variance of η(n) can be expressed under the assumption 

that Δf<<f1, ω1-Neg(n)≈0, as: 
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A. Influence of White Noise on Frequency Estimation

Based on (7) and (8), the variance of the estimated frequency

can be represented by the variance of Δf as: 
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where Cov{ } represents the covariance. Moreover, the values 

of Var{η(n1)} and Var{η(n2)} can be obtained according to the 

statistical characteristics of the AWGN approximately as: 
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Due to that K is linearly proportional to both D and L, thus, 

according to (28), it results that Var{η(n1)} and Var{η(n2)} are 

inversely proportional to both D and L. 

Then, the variance of the frequency is determined by the 

result of Cov{η(n2), η(n1)}. Its result depends, according to the 

definition of covariance, on the overlap between n1 and n2, 

which can be described by two cases, M≥K and M<K. 

Firstly, if M≥K, there is no overlap between the raw samples 

of n1 and n2, thereby Cov{η(n2), η(n1)}=0 due to the 

characteristics of AWGN, and the variance of the frequency 

can be expressed as: 
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Secondly, if M<K, there will be K-M samples overlapping in 

the raw data between the two measuring points n1 and n2. For 

L=1, it is simple to obtain the relationship between K-M and 

Cov{η(n2), η(n1)} due to the equality of the filter’s weights. 

However, it becomes very complicated when L≥2, because the 

weights of the EWF are different one from each other. To solve 

this issue, an index named Overlap Correlation (OC) is 

introduced. This is to simplify the complex cases into a simple 

situation, as the relationship between the overlap samples and 

the value of Cov{η(n2), η(n1)} when L=1. The OC index is 

defined as [27]: 
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where δ is the overlap coefficient, δ=(K-M)/K. Therefore, the 

value of OC is constrained in 0≤OC≤1. 

Consequently, the Cov{η(n2), η(n1)} when M<K can be 

approximately as: 

      2 1Cov ,
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n n OC
K SNR

  


(31) 

Thus, the variance of the estimated frequency when M<K can 

be expressed as: 
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And (29) can be seen as the result of (32) when OC is 0 

(which corresponds to the case M≥K). Therefore, (32) can be 

considered as the frequency variance of FSF regardless of the 

overlap. 

The ENBW and OC results of the EWF with different L, D 

and M are listed in Table II. 

As can be seen from the Table, for a fixed D, the increment 

of the number of iterations L results in an increase in the ENBW 

and the OC. And for a fixed L and D, OC decreases when M 

increases. However, D has a very weak impact on the ENBW of 

EWF. 

B. Comparison of Frequency Estimation to CRLB

For a frequency estimator, it is necessary to compare its

variance with its CRLB which expresses a lower bound on the 

variance of unbiased estimators of a deterministic parameter. 

To fulfill the requirement of unbiased estimation when using 

FSF, the measurement interval M is set to K. Moreover, for a 

sufficiently large D, K≈LD. Thus, the variance of the frequency 

can be simplified by starting from (29) as: 
TABLE II  THE ENBW AND OC OF EQUIVALENT WEIGHTING FILTER 

Number 
of 

Iterations 

ENBW OC 

D=50 D=100 
D=50, 

M=15 

D=50, 

M=25 

D=50, 

M=35 

D=50, 

M=45 

L=1 1.0000 1.0000 0.7000 0.5000 0.3000 0.1000 

L=2 1.3203 1.3267 0.8852 0.7187 0.5221 0.3311 

L=3 1.6283 1.6391 0.9215 0.7963 0.6381 0.4723 

L=4 1.8890 1.9032 0.9392 0.8398 0.7092 0.5648 

L=5 2.1181 2.1350 0.9504 0.8680 0.7571 0.6302 

L=6 2.3246 2.3440 0.9581 0.8877 0.7914 0.6786 

L=7 2.5142 2.5358 0.9637 0.9023 0.8173 0.7159 

L=8 2.6905 2.7141 0.9680 0.9136 0.8375 0.7455 



(a) 

(b) 

Fig. 1. The effect of OC on the overlap of two filters, (a) the number of 

overlapping samples is K-M when filtered by EWF, (b) by applying OC, 
the overlap in (a) can be equivalent to OC(K-M) samples overlapped 

under an equivalent averaging filter. 
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It is significant that ENBW/L3D can influence the variance of 

the frequency, but also that the ENBW is closely related to the 

number of iterations L, which means that L is the key parameter 

for the frequency variance computation based on FSF. 

According to [28] and concerning sinusoidal signals, the 

CRLB of the variance of an unbiased frequency estimation is 

given as: 

 

   

2

r

2 2

12 1

2π 1

Df
CRLB

SNRN N
 


(34) 

where N is the number of samples used, and it can be roughly 

assumed that N=2LD when M=K. Hence, by replacing the 

expression of N, the CRLB of Var{f1} can be obtained as:  
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As it emerges from (35), for unbiased frequency estimation 

of FSF, the ratio between the variance and its CRLB is equal to 

4ENBW/3. Thus, we know that as L increases, the variance of 

the frequency estimation will move away from its CRLB 

because the ENBW increases as L increases. 

IV. SIMULATIONS

To verify the effectiveness of the derived variance 

expression, some simulations with the Matlab software are 

carried out. A pure sinusoidal voltage signal corrupted by 

AWGN is employed. Different settings of FSF are used to 

estimate the frequency of the contaminated signal by applying 

(8). In the simulation, the variance of the power system 

frequency has been computed as: 
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where f1-est represents the estimated frequency by FSF; T is the 

number of estimates used to calculate the variance. Without 

loss of generality, T is set to 3000, which means each 

simulation variance is based on 3000 independent runs. As for 

the theoretical variances, they are directly provided by (32). 

A. Simulation vs. SNR

TABLE III  THE ENBW, OC, K AND N UNDER DIFFERENT SETTINGS OF (L, M) 

Settings 

of (L, M) 
K ENBW OC N 

(2, 10) 99 1.3203 0.9460 109 

(2, 110) 99 1.3203 0 209 

(3, 10) 148 1.6283 0.9643 158 

(3, 160) 148 1.6283 0 258 

(4, 10) 197 1.8890 0.9725 207 

(4, 210) 197 1.8890 0 307 

Fig. 2. Variances of frequency estimates versus different SNRs, while D=50. 

To verify the correctness of the proposed variance 

expression vs. different values of SNR, a sinusoidal voltage 

signal with frequency f1=49.9 Hz, amplitude A1=220 V and 

phase angle θ1=10° is generated with zero mean white noise 

interference. For simplicity, the pure signal is marked as X. The 

SNR of white noise varies from 10 to 100 dB, with 2 dB steps. 

D and n1 of FSF are fixed to 50 and 0, respectively, while the (L, 

M) couples are selected as (2, 10), (2, 110), (3, 10), (3, 160), (4,

10) and (4, 210). The length K, ENBW and OC of EWF under

the simulation conditions, as well as the minimum number of

samples required N are tabulated in Table III.

From the table, it is worth noting that, when D is fixed, an L 

variation generates different length K of EWF and different 

values of ENBW. The minimum number of samples N, 

determined by L, D, and M, can be obtained by N=L(D-1)+1+M. 

Moreover, for different K, same M can bring different OC due 

to the different overlap K-M. Thus, the selections of the (L, M) 

couples are divided into two cases, i.e., OC>0 (M<K) and 

OC=0 (M≥K). The simulation results of frequency variance in 

these two cases are displayed in Fig. 2. Whereas the 

corresponding CRLB is given in the figure when the settings of 

FSF fulfill the requirement of the unbiased estimation. 

Fig. 2 compares the simulation and theoretical variances of 

frequency estimate versus different SNRs in the cases of M<K 

and M>K. According to Fig. 2, general conclusions can be 

summarized as follows. 1) The theoretical variances are 

consistent with the ones obtained from simulation, hence they 

confirm the correctness of the proposed frequency variance 

expression. 2) The variance of frequency estimation is 

inversely proportional to the SNR, which means the higher the 



SNR, the smaller the variance. 3) The frequency variances are 

inversely proportional to the number of iterations L under fixed 

M and D. One thing should be underlined is that the number of 

the used samples N is different when L changes. 

B. Simulation vs. Number of Iterations

According to (32), we know that the number of iterations L

can affect the variance of the estimated frequency by changing 

the ENBW, K, and OC. To examine the effect of L on Var{f1} 

instead, the pure sinusoidal signal X corrupted by AWGN of 

SNR=65 dB has been adopted. The parameters of FSF are 

D=50, n1=0, L ranges from 1 to 8, M is selected to be 25 and 

K=L(D-1)+1, which corresponds to the cases of OC>0 and 

OC=0, respectively. The number of samples N is determined by 

K+M. The simulation results are listed in Table IV. 

The comparison between the simulation and theoretical 

variance confirms again the validity of the proposed variance 

expression. More can be found in Table IV is that, regardless of 

the overlap, the increase of L leads to an increment of ENBW 

and K but a reduction of frequency variance. According to (32), 

we know that ENBW is proportional to the Var{f1} while K is 

inversely proportional to the Var{f1}. Because that the increase 

rate of K is higher than that of ENBW when L increases, the 

Var{f1} decreases. This phenomenon can also be found from 

the simulation results of {1}, {1,1}, {1,1,1}, {1,1,1,1}, and 

{1,1,1,1,1} in figure 11 of [18]. However, the increase of K 

implies more time delay and heavier computational burden. 

Thus, it is a trade-off to select a suitable L for frequency 

estimation according to the requirement of the measurement. 

C. Simulation Performed Varying the Measurement Interval

It is interesting that, under the same measurement conditions,

frequency variance of FSF depends on the variation of 

measurement interval M since the frequency is estimated by the 

angle difference of two samples with measurement interval M. 

Thus, to evaluate the FSF-based frequency variance with 

different M is significant. For this purpose, signal X is 

generated and then measured under the condition of M varying 

from 1 to 301, with steps of 4. The SNR of the superimposed 

white noise is 65 dB and 85 dB, while the number of iterations 

L is set to 2, 3 and 4, respectively. The other parameters of FSF 

are n1=0, D=50. The results of all the combination obtained are 

shown in Fig. 3. 

In the picture, the theoretical and simulation variance results 

of different M values show good agreement. It is worth noting 

that in Fig. 3, the theoretical variances of frequency are 

obtained in two cases, 1≤M<K and M≥K, the specific value of K 

corresponding to different L can be found in Table III. 

Furthermore, it can be seen from Fig. 3 that, for a specific L, the 

Var{f1} decreases as M increases due to the inverse relationship 

between Var{f1} and M. For a specific SNR, the differences 

between the variances of different L to each other are larger 

when M is relatively small. When M increases, the differences 

between the variances are gradually reduced. That is because, 

the dominator of Var{f1} changes from (1-OC)ENBW/K to 

ENBW/M2 when M increases. In addition, higher SNR can 

reduce the frequency variance. 

TABLE IV  INFLUENCE OF L ON FREQUENCY ESTIMATION WITH AWGN 

L 
Simulation, 

M=25 

Theoretical, 

M=25 
ENBW K 

1 1.59E-06 1.60E-06 1.0000 50 

2 6.77E-07 6.01E-07 1.3203 99 

3 3.59E-07 3.59E-07 1.6283 148 

4 2.49E-07 2.46E-07 1.8890 197 

5 1.87E-07 1.82E-07 2.1181 246 

6 1.42E-07 1.42E-07 2.3246 295 

7 1.15E-07 1.14E-07 2.5142 344 

8 9.89E-08 9.48E-08 2.6905 393 

Simulation, 

M=K 

Theoretical, 

M=K 
ENBW K 

1 8.05E-07 8.01E-07 1.0000 50 

2 1.42E-07 1.36E-07 1.3203 99 

3 4.96E-08 5.03E-08 1.6283 148 

4 2.45E-08 2.47E-08 1.8890 197 

5 1.47E-08 1.42E-08 2.1181 246 

6 9.00E-09 9.07E-09 2.3246 295 

7 6.13E-09 6.18E-09 2.5142 344 

8 4.40E-09 4.44E-09 2.6905 393 

Fig. 3. Variances of frequency estimates versus different measurement 

interval M and SNRs, while D is fixed to 50. 

Fig. 4. Variances of frequency estimates versus different number of samples 

in one period D and SNRs, while M is fixed to 75. 

D. Simulations Performed Varying the Samples Number

The number of samples in one period D produces a

significant effect on the frequency estimation under noisy 

condition because both K and ENBW are D dependent. Thus, it 



is of importance to test the influence of D on the FSF-based 

frequency variance under the pollution of white noise. To this 

end, X has been adopted to perform simulations when D varies 

linearly from 20 to 120 with steps of 2. The SNR of AWGN is 

set to 65 dB and 85 dB. The L values employed are 2, 3 and 4. 

The other parameters are set as n1=0 and M=75. Fig. 4 depicts 

the variances of frequency versus variation of D, obtained from 

the simulation. 

Also from Fig. 4 results, the theoretical and simulation 

variances still agree with each other, and lower SNR produces 

higher frequency variance. From the figure, it can be found that, 

in the case where SNR, M, and L are unchanged, the frequency 

variance first increases faster when D increases, and then 

slowly decreases. The explanation of the phenomenon can be 

that, with fixed SNR, M and L, the main determinant of 

frequency variance is roughly D(1-OC) according to (32). 

Notice that, the variation of D(1-OC) only depends on D when 

M≥K since OC is 0 in this case. While M<K, the effect of D on 

OC should be considered, thereby the value of D(1-OC) is a 

coaction result of variations of D and the OC. 

E. Simulation vs. Frequency Deviation and Harmonic

The power system signal always suffers from frequency

deviation and harmonics. To evaluate the performance of the 

proposed frequency variance expression under the condition of 

frequency deviation and harmonics, the pure signal shown in 

Table V is generated with AWGN of SNR=63dB. The 

simulation condition is, D=50, n1=0, M=25, L=3 and 4. The 

fundamental frequency f1 varies from 48 Hz to 52 Hz, with a 

step of 0.1 Hz. The results of the simulation and theoretical 

frequency variances are compared in Fig. 3. As a contrast, the 

simulation results of a pure sinusoidal wave of A1=220 V, 

θ1=10° are also provided. 

In Fig. 5, it can see that, when the frequency deviation 

between f1 and fr is not so large, approximately within 0.5 Hz, 

the theoretical and simulation variances match well which 

means (26) can be guaranteed when |Δf|≤0.5Hz. As for the 

harmonic, there is no evidence from Fig. 5 that it has an impact 

on FSF-based frequency variance.  

F. Simulations for Variance vs. CRLB Comparison

The CRLB expresses a lower bound on the variance of

unbiased estimators of a deterministic parameter which plays 

an important role in uncertainty analysis. In section III, part B, 

the comparison between the FSF-based variance and its CRLB 

is analyzed theoretically. To verify the theoretical conclusion, 

the following simulations are carried out. The signal v1 has 

been employed likewise. The simulation conditions are, n1=0, 

D=50, L=2, 3 and 4. As for the measurement interval M, it has 

been chosen accordingly to meet the requirement of unbiased 

estimation, i.e., for L=2, M=99, for L=3, M=148, for L=4, 

M=197. The simulation variance and the corresponding CRLB 

with different measurement conditions are listed in Table IV, 

along with the simulation ratios and the theoretical ones. It is 

worth noting that the simulation ratios are the values of 

VarS{f1}/CRLB whereas the latter ones are calculated by using 

4ENBW/3. 

TABLE V  PARAMETERS OF THE HARMONICS 

h 1 2 3 4 5 

Ah(V) 220 3 17 2 10 

θh(°) 10 20 30 40 50 

Fig. 5. Frequency variance under frequency deviation and harmonics. 

TABLE VI  COMPARISON BETWEEN THE VARIANCE AND ITS CRLB 

(L, SNR) 
Simulation 
Variance 

CRLB 
Simulation 

Ratio 
Theoretical 

Ratio 

(2, 30) 4.55E-04 2.45E-04 1.8590 1.7603 

(2, 60) 4.35E-07 2.45E-07 1.7776 1.7603 

(2, 90) 4.61E-10 2.45E-10 1.8831 1.7603 

(3, 30) 1.61E-04 7.33E-05 2.2008 2.1710 

(3, 60) 1.57E-07 7.33E-08 2.1432 2.1710 

(3, 90) 1.65E-10 7.33E-11 2.2522 2.1710 

(4, 30) 8.13E-05 3.11E-05 2.6159 2.5187 

(4, 60) 7.91E-08 3.11E-08 2.5474 2.5187 

(4, 90) 7.76E-11 3.11E-11 2.4988 2.5187 

In light of the results in Table IV, it can be stated that the 

deduced ratio is fully comparable with the actual one. This 

reflects the correctness of the proposed expression either. 

Another aspect that needs to be mentioned is that, as the 

number of iterations L increases, the ratio between the variance 

and its CRLB increases, which means that the increment of L 

leads to a higher discrepancy between the variance and its 

CRLB, viz. the effectiveness of the frequency estimator is 

reduced as the increment of L. 

V. CONCLUSION

The FSF-based frequency variance is related to the interval 

between two adopted measuring points, since the selection of 

the measurement interval determines the overlap of the raw 

samples. By introducing the Equivalent Noise Bandwidth and 

Overlap Correlation of the EWF, the influence of white noise 

on FSF-based power system frequency estimation is studied 

and presented in this paper. The expression of frequency 

variance is derived and presented theoretically with respect to 

SNR. Moreover, the ratio between the frequency variance and 

its CRLB is given. The correctness of the proposed expression 

is validated by the designed simulations. According to the 

proposed frequency variance expression, with fixed sampling 

frequency, the accuracy level of FSF-based frequency 



estimation of the noisy signal will increase by increasing the 

number of iterations and the measurement interval. However, 

the increment of measurement interval will increase the time 

delay directly while the computational burden and the time 

delay will both increase as the increment of the number of 

iterations. Thus, a suitable selection of the measurement 

interval and the number of iterations should be determined 

according to the requirement of the measurement. 
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