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Abstract—In this paper we address the problem of protein classification starting from a multi-view 2D snapshots of proteins. Using JMol, a 

well-known protein visualization software, a set of multi-view 2D representations including 13 different types of protein visualizations are 

rendered. The 13 visualization types are used to emphasize specific properties of protein structure (e.g. a backbone visualization that displays the 

backbone structure of the protein as a trace of the Cα atom); while different points of view in the 3D space are used to visualize the protein shapes.  

Given this set of 2D snapshots for each protein, deep learning is used to perform protein classification starting from 2D images. Each type of 

representation is used to train a different Convolutional Neural Network (CNN), and the fusion of these CNNs is shown to be able to exploit the 

diversity of different types of representations to improve classification performance. The multi-view projections, obtained by uniformly rotating 

the protein structure around its central X, Y, and Z viewing axes, are used as a kind of data augmentation during the training and the testing 

phases. The resulting approach, named iProStruct2D, is different from most of existing methods in the literature, which are based on protein 

alignment or on measuring the distance between 3D representation of the protein. Experimental evaluation of the proposed approach on two 

datasets demonstrates the strength of iProStruct2D with respect to the other state-of-the-art approaches. The MATLAB code used in this paper 

is available at https://github.com/LorisNanni. 

 

 
Index Terms—Protein classification; protein visualization; deep learning; convolutional neural networks.  

 

I. INTRODUCTION 

Protein Structure Comparison (PSC) is an essential task in structural biology and drug discovery; it allows researchers, for instance, 

to infer protein evolution (to understand better the relationship between protein structure and function) and to transfer knowledge 

about known proteins to a novel protein (Schenkel, Holm, Rosenström, & Kääriäinen, 2008). Some of the main applications of 

PSC include establishing structural, evolutionary, and functional relationships between proteins; assigning functional annotations 

to proteins (Mills, Beuning, & Ondrechen, 2015); drug repositioning (Haupt, Daminelli, & Schroeder, 2013); and identification of 

proteins with similar binding sites as potential targets for the same ligand (Duran-Frigola et al., 2017).  

In general PSC methods try to provide a measure of structural similarity between proteins that can be used to identify 

evolutionarily related proteins and similar folds. The first step in many such measures includes an alignment process that is based 

on the definition of residues having structurally equivalent roles in the proteins being compared (structure alignment is considered 

more reliable than sequence alignment since during evolution the conservation of protein structure is stronger). The second step 

after alignment is the search for geometrical transformations that minimize the distance between residues (Bourne & Shindyalov, 

2005). The evolution of proteins includes insertions, deletions, and mutations of single residues, exon shuffling, and gene fusion 

and duplication (Russell et al., 1997). In general, such changes mainly affect the surface regions of the proteins, while the functional 

sites tend to be maintained if the protein retains the same molecular function. The last step defines a distance measure that ideally 

quantifies the structural differences among proteins. An ideal measure should produce a single number in a fixed range [e.g. 0-1], 

be able to distinguish between related and nonrelated structural pairs, be able to capture the nature of protein folding or protein 

interaction determinants, and be robust against minor changes in structures (Kufareva & Abagyan, 2012).  

In the literature, several structural alignment methods and structural distance measures have been proposed. Classical methods 

in protein structural class prediction include (Chou, 1995; C. T. Zhang & Chou, 1994; G. P. Zhou, 1998) and their variants (i.e. 

the autocovariance approach (Zeng et al., 2009) which is a sequence-based variant of Chou's pseudo amino acid composition). 

Some popular approaches for protein alignment that are available to the structural biologist on the protein databank (PDB) website 

include (Novotny, Madsen, & Kleywegt, 2004): DALI (Distance matrix ALIgnment) (Holm & Sander, 1993), CE (Combinatorial 

Extension) (Shindyalov & Bourne, 1998) and FATCAT (Ye & Godzik, 2003). These methods compare the geometry of the 

Cα backbone atoms based on different algorithms and work best when the sequence identity of the protein is high, but they often 

have difficulties when protein structures are very dissimilar. This difficulty is based on determining a single optimal alignment of 

functional similarity and/or tertiary structure similarity and is magnified whenever the sequence identity of the protein is less than 

20%, the point at which structural differences become very large (Chothia & Lesk, 1986). Another strategy for protein alignment 

https://github.com/LorisNanni
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takes into account not only the backbone geometry but also the physicochemical environment of each residue: for example 

MATRAS (Kawabata, 2003) performs a first alignment by matching secondary structure elements, and then by considering 

environmental properties and Cα distances to refine the solution. 

As far as the distance measure is concerned, the most commonly used quantitative measure of similarity between protein 

structures is the Root Mean Square Deviation (RMSD) (Kufareva & Abagyan, 2012), which is calculated between the 

superimposed Cα chains. RMSD suffers from amplitudes of errors, however, mainly in cases when two structures cannot be 

effectively superimposed or when the length of the alignment is large (Ye & Godzik, 2003). Several different measures have been 

proposed to overcome this lack of refinement. The weighted RMSD (wRMSD) (Kufareva & Abagyan, 2012), for example, gives 

different weights to selected atomic subsets which softens the unstructured regions. The Global Distance Test (GDT) and Longest 

Continuous Segment (LCS) measures (Kufareva & Abagyan, 2012) are based on the selection of the largest set of the model 

residues that can be superimposed with the corresponding set in the reference structure, and the TM-score (Y. Zhang & Skolnick, 

2005) applies a weight-based measure on the length of the aligned structure, thus avoiding dependence of the obtained score on 

the target size.  

Another class of approaches is based on a global 3D representation of the protein: the main idea here is to base similarity between 

structures (and not on alignment, as with local approaches) by comparing descriptors extracted from the 3D geometrical structures 

(or their 2D projections) (Harder, Borg, Boomsma, Røgen, & Hamelryck, 2012; Mirceva, Cingovska, Dimov, & Davcev, 2012; 

Sael et al., 2008; X. Zhou, Chou, & Wong, 2006). Some noteworthy global approaches include the work in (Mirceva et al., 2012) 

where wavelet-based protein descriptors are proposed, the work in (Sael et al., 2008) where the 3D geometrical surface of the 

protein structures are represented by 3D Zernike descriptors, and the approaches proposed in (Harder et al., 2012) where Gauss 

integral vectors are extracted from protein structures represented as open curves and the work (Nanni & Lumini, 2006) where 

feature extraction is performed from the primary sequence of a protein.  

 

The third class of methods recently proposed by (Suryanto, Saigo, & Fukui, 2015) aims at overcoming the difficulty related to 

the alignment process and the instability of measurements inherent in both local-alignment and global-representation methods by 

representing a protein as a set of 2D multi-views of its 3D molecular structure. By using a protein visualization software package, 

it is possible to inspect the protein structures from multiple viewpoints and according to different types of representations. The 

basic idea behind the 2D view-based approaches is to use projections onto the 2D plane of the computer screen obtained by 

analyzing a 3D structure from different points of view obtained by performing several 3D rotations of the structure. The approach 

in (Suryanto et al., 2015), named GDA in the following, uses texture descriptors to define different protein subspaces via a measure 

of similarity known as the Mutual Subspace Method (MSM) (Maeda, 2010) for evaluating the similarity between protein structures. 

It is then possible to combine this type of representation with several state-of-the-art image descriptors and general-purpose 

classifiers (Nanni, Lumini, & Brahnam, 2014).  

Even though 2D representations do not provide any real knowledge regarding the “binding pockets” of proteins with their 

ligands, knowledge which is useful, for instance, for designing therapeutic drugs (Chou, Tomasselli, & Heinrikson, 2000), we 

recognize that using 2D views of a protein, similar to those proposed in (Suryanto et al., 2015), can be yet another valuable way 

for solving the protein classification problem using Deep Learning (DL). The main difference among the approach in (Suryanto et 

al., 2015) and the one proposed in this work is related to the use of DL instead of a classical handcrafted feature extraction for 

representing proteins. To the best of our knowledge this is the first approach using DL for this problem. DL is exceptionally 

effective when applied to image classification tasks. The most studied DL architecture for image classification is the Convolutional 

Neural Network (CNN) (Gua et al., 2018), a multi-layered neural network inspired by the natural visual perception mechanism of 

the human being.  

Some researchers have also designed CNN models to classify 3D shapes directly from 3D representations (Wu et al., 2015), but 

other studies, such as the ensemble proposed in (Su, Maji, Kalogerakis, & Learned-Miller, 2015), have shown that building 

classifiers of 3D shapes from 2D image renderings makes for a more feasible solution. A multi-view CNN architecture is trained 

to recognize objects from their rendered 2D views. The ensemble in (Su et al., 2015), for instance, which differs from the one 

proposed in this work, has a different network for each 2D view.  

In this work, we try to show that it is possible to use DL to perform protein classification starting from 2D snapshots taken from 

3D structures of proteins rendered using protein simulation/drawing software, such as Jmol (Murzin, Brenner, Hubbard, & Chothia, 

1995). Differently from most of existing methods in the literature, the proposed iProStruct approach is not based on protein 

alignment or on measuring the distance between 3D representation of the protein and does not require a 3 steps procedure to 

perform classification. Our system is based on deep learning trained to classify proteins in a single step, starting from their rendered 

2D views. Our approach takes pretrained CNN models and fine-tunes them on a set of multi-view 2D images of 3D protein 

structures. Different protein representations are used to train distinct CNN models, while a selection of 2D-snapshots is treated as 

a form of data augmentation for the input data. Unlike (Suryanto et al., 2015) which considers only four protein representations, 

in this work we evaluate 13 protein representations. We then select those that performed best to train different CNNs that are finally 

fused together.   

The main objective in this work is to show that treating the different views of a protein as a type of data augmentation improves 
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the performance of a CNN classifier, and the choice of different representations increases classifier diversity. Ensembles of 

networks trained using these different types of representations are tested on two benchmark datasets (Suryanto et al., 2015), and 

their performance is compared with state-of-the-art methods published in the literature. Experimental results demonstrate the 

strength of our proposed system iProStruct2D with respect to existing approaches based on protein alignment or 3D distance 

measures. 

The remainder of this document is organized as follows. In section II, we outline our proposed method for developing 

iProStruct2D. This section briefly describes the pretrained CNN models used to build our best ensemble, the protein visualization 

software Jmol used to generate different types of visualizations/images for representing a protein, and the proposed set of 2D multi-

views extracted from Jmol. In section III, we present the experimental results used to derive iProStruct2D. To evaluate the 

effectiveness of iProStruct2D, we compare its classification performance, along with the state-of-the-art, on the two datasets used 

in (Suryanto et al., 2015): Fold95 and Class700. We also report the training and testing time for the CNN models on a Titan Xp 

NVIDIA GPU. In section IV, we conclude the paper with a summary and suggestions for future research. 

II. PROPOSED METHOD 

As noted in the introduction, we utilize many types of visualization to fine-tune pretrained CNNs for the problem of classifying 

protein structures. In this section, we outline our proposed method for developing iProStruct2D. We begin in section A by 

reviewing the basics of CNN and the pretrained CNN models used in this paper. Then, in section B, we discuss the use of protein 

visualization software to generate different types of visualizations/images for representing a protein.In section C, we propose a set 

of 2D multi-views of a given protein as a form of data augmentation for improving the fine-tuning of CNN. Finally in section D 

we detail the proposed methodology by giving a pseudo code description of both training and testing phases of iProStruct2D. 

The final method is a combination of data visualization, data augmentation and deep learning and it is schematized in Fig. 1. 

iProStruct2D takes the input protein in PDB format, uses a 3D molecular graphics program to rendered the PDB into 13 different 

representations and for each representation, a different CNN is fine-tuned taking 125 2D views as the input (other values are 

examined in the experimental section). In the testing phase, the classification results obtained by the different representations and 

views are averaged to produce the classification score.  

 

 
 

Fig. 1. Schematic of iProStruct2D: given an input PDB, 125 2D views are extracted from 13 types of representation. In the training phase, the images are used to 

fine-tune two pretrained CNNs. In the testing phase, the scores from the CNNs are averaged to perform classification.  

 

A. Fine-tuning convolutional neural networks 

CNN (Gua et al., 2018) is a multi-layered neural network that incorporates spatial context and weight sharing between pixels to 

learn the optimal image descriptors and weights for a given image classification task.  

A CNN is a feed-forward network built with repeated combinations of different types of layers: convolutional layers, aimed at 

convolving input to filters, activation layers, used to introduce nonlinearity to the system, pool layers, which perform 

downsampling, fully-connected layers, which simulate neural connections, and classification layers, which perform the final 

classification. CNNs are trained using backpropagation: given a first, possibly random, initialization, a forward propagation step 
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is performed to find the classification errors, then backpropagation is used to calculate the gradients of the error with respect to all 

the weights in the network. Due to the large number of parameters, the training phase of CNN is quite time-consuming and requires 

a large dataset to avoid overfitting. In applications where the training set is not large enough to train from scratch, transfer learning 

(Yosinski, Clune, Bengio, & Lipson, 2014) has proven useful.  

 

Several different CNN models have been proposed that have been pretrained on enormous image datasets and shared with the 

research community: AlexNet (Krizhevsky, Sutskever, & Hinton, 2012), VGGNet (Simonyan & Zisserman, 2014), GoogleNet 

(Szegedy et al., 2015) and ResNet (He, Zhang, Ren, & Sun, 2016) being some of the most famous. In this work, we perform fine-

tuning on three pretrained models: AlexNet, GoogleNet, and ResNet50.  

 To perform fine-tuning, we alter the last fully connected and classification layers so that they match the number of classes, 

without freezing the weights of the previous layers.  

B. Protein visualization 

Nowadays, there are many 3D molecular graphics programs (O'Donoghue et al., 2010) that allow users to visualize the structure 

of proteins. In this paper, we focus on the 3D visualization of a protein’s PDB code. This approach highlights in an accurate and 

immediate way a protein’s structure and principal characteristics. For this study, Jmol (Murzin et al., 1995) was used for producing 

the 3D representations of the protein’s PDB code. Jmol is a free, open-source Java viewer for molecular visualization that provides 

different classes of visualization: Display Format, used for choosing how to visualize atoms and bonds; Display Structure, used to 

show the structure of the protein in different ways; Display Color, used for highlighting specific characteristics of the molecule, 

and Display Thickness, used to fix the thickness of the structure.  

A summary of the different visualizations offered by each class (see Fig. 2) are as follows: 

1) Display Format: 

• BALL&STICK: the default display format option, where atoms are represented by spheres connected by bars that represent 

the bonds and where the color of every sphere points out the corresponding chemical element (the colors of the spheres 

follow the CPK scheme). 

• SPACEFILL: where every atom is represented by a sphere whose radius is proportional to the radius of the atom; Atoms 

of different chemical elements are represented by spheres of different colors. 

• WIREFRAME: where bonds among the atoms are represented as cylindrical sticks with a fixed diameter, while the 

extremities of the cylindrical sticks point out the position of the atoms. 

2) Display Structure: 

• BACKBONE: an option that illustrates the secondary structures inside a molecule with a zigzag line that is drawn so that 

it connects the main atoms in the backbone alpha carbons in a protein and phosphorus atoms in a nucleic acid. 

• CARTOON: where molecules are represented as ribbons in stretches in which the alpha helixes or beta sheets are present; 

each stretch ends with an arrowhead. 

• RIBBONS: an option like BACKBONE except that it displays the line that connects the main atoms in the backbone (alfa 

carbons in a protein and phosphorus atoms in a nucleic acid) as a solid flat ribbon. 

• ROCKETS: an option that assigns cylinders in stretches in which the alpha helixes and planks for beta stretches are present; 

both end with an arrowhead. 

• STRANDS: an option like RIBBONS and CARTOONS that displays the backbones as a series of thin lines so that the 

molecular structure is represented by parallel longitudinal threads. 

• TRACE: an option that is analogous to BACKBONE, except that it draws a smooth curve passing through the middle 

points between successive atoms in the alpha carbons of a peptide chain or the phosphorus atoms of nucleic acids. 

3) Display color: 

• AMINO: an option that assigns to each of the 20 standard amino acids a fixed color depending on its chemical properties: 

bright colors for those that are polar and dark colors for those that are hydrophobic. 

• CHAIN: an option that assigns a different color to every chain of the structure in the case where a PDB file is composed 

of more than one chain. This option is beneficial in the analysis of protein structure. 

• CHARGE: an option that assigns a color to every atom depending on its charge, using a gradient of color from red (negative 

charge) to white (zero charge) to blue (positive charge). 

• CPK: the default color option, where a color is assigned to each element according to the following scheme: Carbon is 

gray, Hydrogen is white, Oxygen is red, Nitrogen is blue. and Sulfur is yellow. 

• STRUCTURE: an option that underlines each secondary structure of a protein in a different way: the alpha-helixes are 

colored fuchsia, the beta sheets yellow, and all the others are white. DNA and RNA are shown in purple and red. This 

format is very useful when combined with a Display Format visualization that makes evident the secondary structure of 

the molecule in the examination as BACKBONE or CARTOON. 
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4) Display Thickness:  

• Jmol can vary the thickness of the Display Format and Display Structure (measured in Angstrom units or RasMol units).  

 

In this work we obtained 13 different types of visualizations (see Fig. 2) by combining the different types of display parameters 

described above: SPACEFILL, WIREFRAME, and BALL&STICK are obtained using the respective display formats; AMINO, 

CHAIN, CHARGE and STRUCTURE are variations of the BALL&STICK format that change colors (from the default, CPK); and 

BACKBONE to TRACE are the display structures described above. All images are obtained by fixing the display thickness as 

SPACEFILL (200), WIREFRAME (60), BACKBONE (150), STANDS (300), and TRACE (300). 

C. 2D multi-view generation 

The 2D multi-view protein images can be obtained by uniformly rotating each of the 3D protein structures around their central X, 

Y, and Z axes. In our system, we generate uniform rotation angles with steps of 45° from 0° to 180° in each axis; therefore, the 

total number of 2D projections from each type of visualization is 125.  

All the generated poses are used both for data augmentation in the training phase and for “testing time augmentation,” which 

means that to classify an unknown structure all 125 poses are generated and then predictions are calculated for all these images, 

taking the average score as the final prediction. 

 

 
SPACEFILL WIREFRAME BALL&STICK  AMINO STRUCTURE CHAIN CHARGE 

 
BACKBONE CARTOONS RIBBONS ROCKETS STRANDS TRACE  

 

 
 

Fig. 2. Visualization of different types of protein representations generated using JMol on the PDB 1akh (color available with e-publication).  

 

D. iProStruct2D: algorithm details  

 

In Fig. 3 the training and a testing phases of iProStruct2D are detailed in pseudo-code. The input of the training phase is a set of 

labelled proteins in PDB format: each PDB is rendered according to different representations using JMOL and the resulting images 

are used to fine tuning a CNN. Different CNN architectures are used in our experiments as reported in section III. During the 

testing phase an unknown PDB is rendered as in the training phase using JMOL and the resulting images are classified using the 

related CNNs. The final score is obtained as the fusion of the 13×125 scores from the rendered images.  
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Fig. 3. Pseudocode for the training and testing phases  

 

 
 

 

III. EXPERIMENTAL RESULTS 

To evaluate the effectiveness of iProStruct2D, we evaluate its classification performance on the two datasets used  

in (Suryanto et al., 2015) (available at http://doi.ieeecomputersociety.org/10.1109/TCBB.2016.2603987). 

Fold95: this dataset for protein fold classification includes 95 protein structures that have no more than 10% sequence identity. 

The proteins are divided into five classes according to their fold similarity: (1) f.1 toxins' membrane translocation domains (9 

proteins); (2) f.17 transmembrane helix hairpin (9 proteins); (3) f.21 heme-binding four-helical bundle (9 proteins); (4) f.23 single 

transmembrane helix (50 proteins); and (5) f.4 transmembrane beta-barrels (18 proteins). Due to the imbalance of classes (each 

class includes from 9 to 50 proteins), stratified random sampling is used (Suryanto et al., 2015) to feed the data into 10-fold cross-

validations. 

Class700: this is a dataset for protein class classification. It contains 700 proteins with at most 20% sequence identity. Images 

are equally distributed among the seven classes (100 proteins from each class) of the SCOP protein classification scheme (Murzin 

et al., 1995): (1) α-proteins (containing mainly α-helices); (2) β-proteins (containing mainly β-sheets); (3) α/β-proteins (containing 

both α and β structures where the β-sheets are parallel); (4) α+β-proteins (containing both α and β structures where the β-sheets 

are anti-parallel); (5) multi-domain proteins that have multi-functions; (6) membrane and cell surface proteins; and (7) small 

proteins. A 10-fold cross-validation protocol is used that maintains the distribution among classes. 

  

 
TABLE I 

AUC OF DIFFERENT CNN IN FOLD95 AND CLASS700 DATASETS. 

 

 
Fold95 Class700 

AlexNet GoogleNet ResNet AlexNet GoogleNet ResNet 

BALL&STICKS 95.6 97.7 --- 85.4 --- --- 

AMINO 95.5 98.1 --- 85.0 --- --- 

CHAIN 90.6 91.3 --- 79.5 --- --- 

CHARGE 92.3 94.7 --- 82.4 --- --- 

STRUCTURE 84.9 96.2 --- 90.8 --- --- 

SPACEFILL 64.5 96.2 --- 82.4 --- --- 

WIREFRAME 96.7 96.5 --- 87.1 --- --- 

BACKBONE 94.8 96.3 --- 93.5 --- --- 

TRAINING PHASE 

 

01: Collect a set T of labeled samples in PDB format 

02: For each type of visualizations (13 types): 

03:   For each training sample: 

04:     Generate 125 2D multi-view protein images 

05:  End 

06:   Fine-tune a CNN model using the whole set of 2D multi-view protein images 

07: End 

 

TESTING PHASE 

 

01: Given an unknown sample S 

02: For each type of visualizations (13 types): 

03:   Generate 125 2D multi-view protein images 

04:   Calculate a classification for each image using the pre-trained CNN for such representation  

05: End 

06: Compute the finale score for S by the fusion of 13×125 scores 
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CARTOON 98.7 97.8 --- 93.9 --- --- 

RIBBONS 98.3 97.5 97.3 94.2 94.7 95.4 

ROCKETS 94.7 96.7 96.1 93.7 94.6 95.5 

STRANDS 98.0 97.7 97.5 94.3 94.3 95.5 

TRACE 85.3 97.0 --- 92.3 --- --- 

TOP2 98.4 97.9 97.5 94.8 94.8 95.7 

TOP3 98.5 98.6 97.9 94.8 95.2 95.8 

TOP3b 98.5 --- ---- 94.8 --- --- 

TOP4 98.5 --- ---- 94.9 --- ---- 

ORACLE 99.2 99.5 99.0 96.8 97.5 97.7 

 

For internal evaluation, we use the area under the ROC curve (AUC) as the performance indicator (Fawcett, 2004). To compare 

results with the literature in those cases where AUC is not reported, we used Accuracy.  

The first experiment is related to the classification of proteins using the CNN models described in section II, fine-tuned using 

the different representation types. The performance is obtained using the following tuning parameters: number of epochs is set to 

20, mini-batch size to 30, and we use a fixed learning rate of 0.001. In Table I the classification results are reported, along with the 

performance of some fusion approaches. Due to computational issues, GoogleNet and ResNet are tuned only for the most 

performing representations. 

In the rows labeled TOP𝑥, we report the performance obtained by the sum rule fusion of the following representations, which 

obtained the best stand-alone performance: 

• TOP2: the fusion by sum rule of RIBBONS and STRANDS; 

• TOP3: the fusion by sum rule of RIBBONS, ROCKETS, and STRANDS; 

• TOP3b: the fusion by sum rule of RIBBONS, CARTOON, and STRANDS; 

• TOP4: the fusion by sum rule of RIBBONS, ROCKETS, CARTOON, and STRANDS. 

In the last line of Table I, we report the results obtained by an ORACLE ensemble. The Oracle concept (Kuncheva, 2002) is a 

hypothetical dynamic selection approach that always selects the classifier that correctly classifies the test sample, if such a classifier 

exists. The comparison against the ORACLE performance is useful for validating the composition of the ensemble.  

In both datasets the highest performance is obtained by TOP3. As can be seen in Table I, combining different visualizations 

clearly improves performance, and different visualizations emphasize different characteristics of the protein. 

In Table II we compare our best ensembles with some of the most effective approaches proposed in the literature (reporting both 

AUC and accuracy): 

AC: the autocovariance (AC) approach (Zeng et al., 2009) is a sequence-based variant of Chou's PseAAC.  

QRC: Quasi Residue Couple (QRC) (Nanni & Lumini, 2006) is a feature extraction method for the primary sequence of a 

protein. The QRC descriptor is calculated by selecting a physicochemical property and combining its values with each nonzero 

entry in the residue couple.  

TXT: is based on handcrafted descriptors extracted from PSSM (Position Specific Scoring Matrix) and DM matrix 

representations of the protein, see (Nanni et al., 2014).  

FATCAT (Ye & Godzik, 2003) is a method for structural alignment of proteins based on optimizing the alignment and 

minimizing the number of rigid-body movements (twists) around pivot points (hinges) introduced in the reference protein.  

CE (Shindyalov & Bourne, 1998) is an alignment algorithm which involves a combinatorial extension (CE) of an alignment 

path defined by aligned fragment pairs (AFP).  

TM (Y. Zhang & Skolnick, 2005): TM-align is an algorithm for protein structure comparisons based on optimized residue-to-

residue alignment.  

GDA (Suryanto et al., 2015) is an approach based on multi-view 2D images of 3D protein structures.  

iProStruct2D is the combination by sum rule of our two best ensembles (TOP3-GoogleNet+TOP3-ResNet). 

 

 
TABLE II 

COMPARISON WITH THE LITERATURE IN FOLD95 AND CLASS700 DATASETS: BOTH AUC AND ACCURACY ARE USED AS PERFORMANCE INDICATORS. 
 

 Fold95 Class700 

Accuracy AUC Accuracy AUC 

TOP3 - AlexNet 0.922 98.5 0.739 94.8 

TOP3 - GoogleNet 0.878 98.6 0.754 95.2 

TOP3 - ResNet 0.911 97.9 0.769 95.8 
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iProStruct2D 0.900 98.5 0.771 95.6 

AC (Zeng et al., 2009) 0.711 84.00 0.471 80.83 

QRC (Nanni & Lumini, 2006) 0.677 82.37 0.432 78.05 

TXT (Nanni et al., 2014) 0.822 93.60 0.628 88.39 

FATCAT (Ye & Godzik, 2003) - - 0.531 - 

CE (Shindyalov & Bourne, 1998) - - 0.491 - 

TM (Y. Zhang & Skolnick, 2005) 0.863 - 0.640 - 

GDA (Suryanto et al., 2015) 0.884 - 0.694 - 

ORACLE 0.967  0.870  

  

 
Fig. 3. Confusion matrices of iProStruct2D in Fold95 (left) and Class700 (right). 

 
TABLE III 

AUC OBTAINED VARYING THE NUMBER OF IMAGES USED FOR DESCRIBING EACH PROTEIN USING ALEXNET ON STRANDS. 

 
Number of Images: 30 60 125 200 

Fold95 94.9 97.5 98.0 98.1 

Class700 90.2 93.0 94.3 94.3 

 

From the results in Table II, we can draw some interesting conclusions. The proposed representation based on multi-view 2D 

images is well suited to protein classification, as proved by the good performance of iProStruct2D and GDA (Suryanto et al., 2015) 

with respect to older representations like the amino-acid sequence (AC, QRC) or PSSM matrix (TXT) or to measures based on 

protein alignment (FATCAT, CE, TM). The use of different types of representation in the generation of multi-view 2D images 

makes our approach based on CNN stronger: iProStruct2D is an ensemble of different representational types outperforms all the 

other approaches in the literature and works well in both the classification problems. 

In Fig. 3 the confusion matrices obtained by our best ensemble in both datasets are reported. In Class700 there is not a strong 

difference in accuracy among the different classes. In Fold95 the main problems are in class (3) “f.21 heme-binding four-helical 

bundle” and class (5) “f.4 transmembrane beta-barrels” which gains an accuracy much lower than other classes. In particular 

iProStruct2D makes many errors in distinguish classes 3 and 5 from class 4: this weakness could be faced using a one-vs-all 

classifier for the class 4. 

As a further experiment intended to study the dependence of performance on the number of 2D views, we report in Table III the 

performance of AlexNet on the STRANDS representation obtained by varying the number of images built for describing each 

protein. Clearly, using 30 or 60 images decreases performance; whereas using 200 image per protein does not improve performance 

with respect to using 125 images. 

Finally, Table IV reports training and test time obtained using a Titan Xp NVIDIA for different CNN models. The training time 

is related to a single fold and representation, and the test time is given for all 125 images that represent a given protein. Clearly, a 

protein can be classified by the ensemble in a few seconds. 
 

TABLE IV 
TESTING AND TRAINING TIMES. 

 
  AlexNet GoogleNet ResNet 

Training 
time 

Fold95 26 min 14 sec 82 min 33 sec 121 min 36 sec 

Class700 199 min 48 sec 609 min 32 sec 1472 min 21 sec 

Test time  0.14 sec 0.16 sec 0.55 sec 
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IV. CONCLUSION 

The main aim of this work was to experiment the possibility of using deep learning to perform protein classification starting 

from 2D snapshots taken from 3D structures of proteins. The proposed method, named iProStruct, is an ensemble of CNNs trained 

on a set of multi-view 2D images rendered from 3D protein structures using JMOL. The advantage of the proposed approach with 

respect of most of existing methods in the literature, has been confirmed by experiments on 2 well-known datasets. Our experiments 

have shown the effectiveness of the proposed approach for protein classification: iProStruct2D obtains a performance that is higher 

than other state-of-the-art methods. A further advantage with respect to the many existing approach is that iProStruct does not 

require alignment and feature extraction to perform classification.  

We are aware that a broader evaluation is needed; therefore, we plan to test our approach with other datasets in the future. In 

this work we have tested 13 different types of representation, selecting the best 3, anyway we have yet to investigate how to select 

the most discriminative for a given classification problem. We consider this as a future work as well. Automatic selection may 

even be more critical if we consider additional types of representation by changing other parameters in the protein visualization 

software (e.g. thickness).  

We also plan on investigating pre-trained CNNs as feature extractors for generating a compact descriptor for a protein: this 

choice could allow the use of the simple Euclidean distance as the similarity measure between two proteins. Finally, we want to 

test attention-aware deep networks (Dong & Shen, 2018; Dong et al., 2018; Wang & Shen, 2018) for cropping the most essential 

part of the protein to reduce noise, which can reduce classification performance. 

Acknowledgments. We would like to acknowledge the support that NVIDIA provided us through the GPU Grant Program. We 
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