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Summary. Numerical integration methods for Hamiltonian systems are of importance across many disciplines, including musical
acoustics, where many systems of interest are very nearly lossless. Of particular interest are methods possessing a conserved pseu-
doenergy. Though most such methods have an implicit character, an explicit method was proposed recently by Marazzato et al. The
proposed method relies on a continuous integration which must be performed exactly in order for the conservation property to hold—as
a result, it holds only approximately under numerical quadrature. Here, we show an explicit scheme for Hamiltonian integration, with
a different choice of pseudoenergy, which is exactly conserved. Most importantly, a fast implementation is possible through the use of
structured matrix inversion, and in particular Sherman Morrison inversion of the rank 1 perturbation of a matrix. Applications to the
cases of fully nonlinear string vibration, and to the Föppl-von Kármán system describing large amplitude plate vibration are illustrated.
Computation times are on par with the simplest non-conservative methods, such as Störmer integration.

Introduction

Numerical integration methods that preserve an invariant energy-like quantity (or pseudoenergy) form part of the larger
family of geometric numerical integration methods [1]. In a recent article [2], an explicit method for Hamiltonian integra-
tion was presented, incorporating a conserved pseudo-energy. The method relies, however, on a continuous integration,
meaning that pseudoenergy is only preserved approximately due to discretisation error.

New methods, relying on potential energy quadratisation are suitable for systems under more restrictive conditions (non-
negativity of the potential energy) [3]. In this paper, it will be shown that such methods can be made fully explicit through
structured matrix inversion techniques, and in particular, Sherman Morrison inversion for matrices under a rank-1 pertur-
bation. This allows for extremely efficient numerical solution, while maintaining pseudo-energy conservation to machine
accuracy. In particular, no full linear system solutions are required to advance the solution, in contrast with what has
been presented for other methods based on quadratization [3]. Numerical stability is ensured, through the enforced non-
negativity of the numerical energy.

Two examples, that of fully nonlinear string vibration, and the nonlinear vibration of a thin plate according to the Föppl-
von Kármán system are presented, illustrating good numerical behaviour, and acceleration relative to other energy con-
serving designs. In a companion paper [4], the realistic case of piano string vibration will be broached in detail, as well as
the very important topic of the possibility of the shift in the potential energy of the system in order to improve convergence
rates.

Hamiltonian Systems and Quadratisation

Consider a Hamiltonian H(p,q) of the form:

H (p,q) = 1
2p

TM−1p + V (q) (1)

Here, p (t) and q (t) are N × 1 vectors and functions of time t ≥ 0. M > 0 is a constant symmetric N ×N mass matrix
(for simplicity constrained here to be diagonal). p and q have the interpretation of generalized momentum and position,
respectively. Hamilton’s equations [5] follow as

Mq̇− p = 0 ṗ +∇V = 0 (2)

Here,∇ is the gradient with respect to q, and dots indicate time differentiation. Equations (2) require initialisation through
p(0) = p0 and q(0) = q0.

Under the constraint that V ≥ 0, one may write, using ψ =
√

2V ,

H (p,q) = 1
2p

TM−1p + 1
2ψ

2 (3)

Now, Hamilton’s equations may be written as

Mq̇− p = 0 ṗ + ψg = 0 ψ̇ = gT q̇ (4)

where the intermediate variable g , ∇ψ has been introduced. Such a quadratisation of the potential energy has appeared
recently in the context of port-Hamiltonian methods [6, 7], and in finite difference schemes modeling collisions [8] and
for string vibration under nonlinear conditions [9], and in other areas such as the modeling of binary fluids [10].
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Notice that the form of the Hamiltonian in (1) is not the most general available, and thus some restrictions are placed on
the range of applications in this paper. First, the energy is quadratic in the momentum p, and thus the resulting dynamics
are linear in p—a very common choice across many application areas in structural vibration. Second, the potential energy
V is constrained to be non-negative—a condition also common in structural vibration, but violated in other systems, such
as the N -body problem under a gravitational potential. The numerical stability property of the methods presented in this
paper hinges on these two restrictions.

A Pseudo-energy Conserving Explicit Fast Algorithm

Consider now a time-interleaved scheme for the dynamical system in (4):

qn+1 = qn+kM−1pn+
1
2 pn+

1
2 = pn− 1

2−k
2

(
ψn+

1
2 + ψn− 1

2

)
gn ψn+

1
2 = ψn− 1

2 + 1
2 (gn)

T (
qn+1 − qn−1

)
(5)

It is defined for discrete time sequences qn, pn+
1
2 and ψn+

1
2 , for integer n, representing approximations at times t = nk

to q(t) and at times t =
(
n+ 1

2

)
k to p(t) and ψ(t). Here, k is the time step. gn may be calculated explicitly by

evaluating the analytic gradient of ψ at qn. The scheme (5) conserves the following pseudoenergy:

Hn+
1
2 = 1

2

(
pn+

1
2

)T

M−1pn+
1
2 + 1

2

(
ψn+

1
2

)2

= constant (6)

and thus Hn+
1
2 = H is a constant for all n. It is non-negative, implying unconditional stability, as well as bounds on

pn+
1
2 for all n. In particular, (6) above implies that

‖pn+
1
2 ‖ ≤

√
2H

λmax(M)
(7)

where λmax(M) is the maximum eigenvalue of M, and ‖pn+
1
2 ‖ is the L2 norm of pn+

1
2 .

Fast Update
At first glance, the updates (5) appear to be implicit, thus requiring an iterative solver at each time step. This is not the

case, however. Given qn, qn−1 and ψn− 1
2 (as well as gn, determined directly from qn), they may be consolidated into

an update of the form

Anqn+1 = bn An = M +
k2

4
gn (gn)

T
bn = 2Mqn − k2gnψn− 1

2 −
(
M− k2

4
gn (gn)

T

)
qn−1 (8)

This update, which does not require iterative solvers, can be simplified by exploiting the structure of An, which is a rank
one perturbation of a matrix with an easily computed explicit inverse (M). Using the Sherman-Morrison formula [11],

(An)
−1

= M−1 − k2

4

M−1gn (gn)
T
M−1

1 + k2

4 (gn)
T
M−1gn

(9)

For diagonal M a linear system solution requires O(N) operations (and for full M, a linear system involving M−1 must
be solved, which is the same as in the case of other algorithms presented [2]).

Example: Nonlinear String Vibration

As a nontrivial example of interest in musical acoustics, consider the case of fully nonlinear string vibration including
longitudinal/transverse coupling [12]. This system has been dealt with by various authors, leading to energy-conserving
methods relying on nonlinear iterative solvers [13], quadratised methods requiring full linear system solution [9] as well
as in the recent article by Marazzato et al. [2]. It may be written as the following (nondimensional) coupled system of
PDEs:

∂2
t u = ∂x (∂V/∂wu) ∂2

t v = ∂x (∂V/∂wv) wu = ∂xu wv = ∂xv (10)

Here, u(x, t) and v(x, t) are the longitudinal and transverse displacement of a string, defined for x ∈ [0, 1], and t ≥ 0. ∂t
and ∂x represent partial differentiation with respect to x and t, respectively.

The potential energy density V is defined by

V(wu, wv) = 1
2

(
w2

u + w2
v

)
− α

(√
(1 + wu)2 + w2

v − 1− wu

)
(11)
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The complete Hamiltonian for the system is

H =

∫ L

0

1
2 (∂tu)

2
+ 1

2 (∂tv)
2

+ Vdx (12)

After semidiscretisation (using, e.g., basic finite difference operators to approximate spatial differentiation), a Hamiltonian
ODE system of the form of (1) results. Simulation results are presented in Figure 1, under initial conditions of increasing
amplitude, and illustrating pseudo-energy conservation to machine accuracy. Calculation time is comparable to that of
basic explicit methods (such as, e.g., Störmer). For more details regarding the particular application to the problem of
nonlinear string vibration, the reader is referred to the companion paper [4]. A key aspect not discussed here is the
possibility of adding an offset, or gauge to the potential energy, which can have a significant ameliorating effect on
convergence rates in the resulting numerical implementation. See [4].

Figure 1: Wave propagation for a pseudo-energy conserving scheme for the nonlinear string system, as defined in (10), with
α = 0.8, and k = 10−4. The string is initialised with zero initial velocity conditions, and with u = 0, and with v set to
raised cosine distributions of increasing amplitude (top: 0.01, middle: 0.1, bottom; 0.3). At right, the relative energy variation
Hn

e =
(
Hn+1/2 −Hn−1/2

)
/H1/2 is plotted as a function of time step n, showing energy conservation to machine accuracy (ap-

proximately 10−15).

Split Forms and Numerical Methods

In some cases, it can be useful to split the potential energy V (q) as

V (q) = V0(q) + V ′(q) where V0(q) = 1
2q

TKq and V ′(q) ≥ 0 (13)

for some positive definite matrix K > 0. While the underlying dynamics are unchanged under such a splitting, it becomes
possible to apply different numerical integration techniques to different parts of the problem. In particular, V0, a quadratic
form, may encapsulate the underlying linear dynamics of a particular system, and V ′ additional effects due to a nonlinear
mechanism.

Under the constraint that V ′ ≥ 0, one may write, using ψ =
√

2V ′,

H (p,q) = 1
2p

TM−1p + 1
2q

TKq + 1
2ψ

2 (14)

Hamilton’s equations may be written as

Mq̇− p = 0 ṗ + Kq + ψg = 0 ψ̇ = gT q̇ (15)

where g = ∇ψ as before.

Numerical Scheme
Consider the following time-interleaved scheme:

qn+1 = qn+kM−1pn+
1
2 pn+

1
2 = pn− 1

2−kKqn−k
2

(
ψn+

1
2 + ψn− 1

2

)
gn ψn+

1
2 = ψn− 1

2 + 1
2 (gn)

T (
qn+1 − qn−1

)
(16)
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The update follows, from the extension of (8), as

Anqn+1 = bn An = M +
k2

4
gn (gn)

T
bn = (2M− k2K)qn − k2gnψn− 1

2 −
(
M− k2

4
gn (gn)

T

)
qn−1

(17)
and again, a fast implementation is possible using Sherman Morrison, through the explicit inversion of An.

This scheme now possesses the conserved numerical energy:

Hn+
1
2 = 1

2

(
pn+

1
2

)T

M−1pn+
1
2 + 1

2 (qn+1)TKqn + 1
2

(
ψn+

1
2

)2

= constant (18)

This expression, though conserved, is of indefinite sign, due to the second term. However, this term may be bounded as

1
2 (qn+1)TKqn ≥ − 1

8 (qn+1 − qn)TK(qn+1 − qn) = −k2

8

(
pn+

1
2

)T

M−1KM−1pn+
1
2 (19)

and thus

Hn+
1
2 ≥ 1

2

(
pn+

1
2

)T

(M−1 − k2

4 M−1KM−1)pn+
1
2 + 1

2

(
ψn+

1
2

)2

(20)

A condition for non-negativity then follows as

k ≤ 2

λmax

(
M−

1
2KM−

1
2

) (21)

where M
1
2 is the positive matrix square root of the diagonal matrix M. (If M is not diagonal, but still positive definite,

then the condition above may be generalized to include the unique trangular factors of M.) This serves as a numerical
stability condition for scheme (16). Notice that the scheme is now conditionally stable, but the stability condition depends
only on the linear dynamics, and is independent of the nonlinearity. This scheme is distinct from (5), which is uncon-
ditionally stable. Indeed, beyond these two choices a family of conservative conditionally stable methods is available,
depending on how the splitting of the potential energy V is carried out.

Example: The Föppl-von Kármán Equations

Consider a flat, thin plate, of thickness ξ in m, and of material characterised by Young’s modulus E, in Pa, density ρ,
in kg· m−3, and Poisson’s ratio ν. The plate is assumed defined over a region (x, y) ∈ D ∈ R2, and has displacement
u(x, y, t). High amplitude vibration of the plate is described by the The Föppl-von Kármán equations:

ρξ∆∂2
t u = −D∆∆u+ L(u, F )

2

Eξ
∆∆F = −L(u, u) (22)

Here, D = Eξ3/12(1 − ν2) is the flexural rigidity for the plate, and F (x, y, t) is the Airy stress function, ∆ is the two-
dimensional Laplacian operator ∆ = ∂2

x + ∂2
y , where ∂x and ∂y represent partial differentiation with respect to x and y,

respectively. ∆∆ is the biharmonic operator. The special bilinear operator L is defined by

L(f, g) = ∂2
xf∂

2
yg + ∂2

yf∂
2
xg − 2∂x∂yf∂x∂yg (23)

Two initial conditions, u(x, y, 0) and ∂tu|x,y,t=0 are required; in this paper, boundary conditions are chosen to be simply
supported over the boundary ∂D of D [14].

The Hamiltonian for this system is given by

H =

∫∫
D

ρξ

2
(∂tξ)

2 +
D

2
(∆u)2 +

1

2Eξ
(∆F )2dσ (24)

(Note that this particular form of the Hamiltonian is not the most general, but holds under simply supported conditions. It
must be augmented by an additional term in the case of, e.g., free edge conditions.)

Semidiscretization
Consider the simple case of a square plate defined over (x, y) ∈ [0, L]2, for some plate side length L. Assume also that
the displacement u(x, y, t) is approximated over a grid with a grid function ul,m(t) such that

ul,m(t) u u(x = lh, y = mh, t) l,m = 1, . . . ,M − 1 (25)



ENOC 2020+2, July 17-22, 2022, Lyon, France

Here, h is the grid spacing, and is chosen such that h = L/M , for some integer M . Simply supprted conditions are
assumed here, so that ul,m(t) = 0 for l,m = 0,M .

There are many approaches to spatial discretization; the simplest is to make use of basic difference operators of the form:

δx±ul,m = ± 1
h (ul±1,m − ul,m) δy±ul,m = ± 1

h (u1,m±1 − ul,m) (26)

which are forward and backward approximations to the spatial derivatives ∂x and ∂y , respectively. (Note that the time
dependence of ul,m has been suppressed above.) Approximations to the Laplacian and biharmonic operator follow as

δ∆ = δx+δx− + δy+δy− δ∆∆ = δ∆δ∆ (27)

A discrete approximation ` to the bilinear operator L may be written, for two grid functions fl,m, gl,m, as

`(f, g) = δx+δx−fδy+δy−g + δy+δy−fδx+δx−g (28)
− 1

2δx+δy+fδx+δy+g − 1
2δx+δy−fδx+δy−g − 1

2δx−δy+fδx−δy+g − 1
2δx−δy−fδx−δy−g

A centered second order accurate approximation to (22) follows as

ρξül,m = −Dδ∆∆ul,m + `(u, F ) = 0
2

Eξ
δ∆∆Fl,m = −`(u, u) (29)

It is useful, at this stage, to introduce consolidated vector representations u(t) and F(t) of ul,m(t)) and Fl,m(t); both are
(M − 1)2 × 1 column vectors (grid points at the plate edges have been removed here, due to the use of simply supported
boundary conditions). All of the difference operators δ above may be replaced by matrix equivalents D. In particular,
Dx−, Dy− are of dimensions M(M − 1)× (M − 1)2, Dx+, Dy+ are of dimensions (M − 1)2 ×M(M − 1), and D∆

and D∆∆ are of dimensions (M − 1)2 × (M − 1)2. In this case, simply supported boundary conditions have been taken
into account—all matrices are sparse, with O(M2) nonzero entries.
In this case, (29) can be rewritten as

ρξü = −DD∆∆u + `(u,F) = 0
2

Eξ
D∆∆F = −`(u,u) (30)

To arrive at a first order form (15) in terms of momentum p = Mu̇ and displacement q = u, with associated Hamiltonian
(14) and energy splitting (13), one may use

M = ρξh2I(M−1)2 K = Dh2D∆∆ V ′ =
h2

2Eξ
|D∆F|2 (31)

where here, I(M−1)2 is the identity matrix of size (M − 1)2 × (M − 1)2.

Fully Discrete Schemes
The most basic scheme for the Föppl-von Kármán system follows from a centered difference approximation to the semi-
discrete system of ODEs (30). Introducing the discrete-time vectors un and Fn, approximating u(t) and F(t) at t = nk,
for integer n and a time step k, the Störmer scheme results as

ρξ

k2

(
un+1 − 2un + un−1

)
= −DD∆∆un + `(un,Fn) = 0

2

Eξ
D∆∆Fn = −`(un,un) (32)

This scheme is simple, but stability is highly dependent on both the choice of time step and on the initial conditions—in
general, this scheme will become unstable as the size of the initial condition is increased. The first equation represents
the update, and is fully explicit. The second requires the solution of a linear system involving the matrix D∆∆. As this
is of a known form, a Cholesky factorisation may be computed prior to entering the runtime loop, greatly accelerating
calculation. This scheme will be referred to as Scheme I subsequently here.

A family of energy-conserving and provably numerically stable schemes has been presented in previous work [15, 14].
Though too elaborate to present in detail here, in its most general form, the update equation is of the form

Anun+1 = bn (33)

where, as in (32), un is the plate displacement in vector form. Here, An and bn are a matrix/vector pair which in general
are dependent on un and un−1; Although no iterative solvers are required, and thus existence/uniqueness are guaranteed,
the linear system to be solved must be constructed anew at each time step, in contrast with (32), and thus compute times
are much longer. This scheme will be referred to as Scheme II subsequently here.

Finally, one may employ he fast conservative scheme, as given in (16), and under the choices given in (31). This scheme
will be referred to as Scheme III subsequently here. In this case, the scheme is stable under the condition (21) which
reduces, in this case, to the following condition on the grid spacing h in terms of the time step k:

h ≥ hmin = 2
√
k (D/ρξ)

1
4 (34)
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Table 1: Timing comparison: Schemes I, II and III for the Föppl-von Kármán System. Run times for 1 s output are given, with time
steps k as indicated.

Scheme k = 10−3 k = 5× 10−4 k = 10−4 k = 5× 10−5 k = 10−5

I: Störmer-Verlet 0.032 0.142 0.344 6.04 25.24
II: Energy conserving 0.149 0.636 8.92 327.8 1742.8
III: Fast energy conserving 0.055 0.290 0.593 7.76 31.36

Numerical Results: Föppl-von Kármán Equations
As an example, consider a square plate of side length L = 0.5 m, of thickness ξ = 0.002 m, and made of steel, with
E = 2× 1011 Pa, ρ = 7850 kg· m−3, and ν = 0.3. Simply supported boundary conditions are assumed, and the plate is
assumed initialised in the lowest linear mode shape, and with zero transverse velocity, so that

u(x, y, 0) = aξ sin(πx/L) sin(πy/L) ∂tu|x,y,t=0 = 0 (35)

for some non-dimensional amplitude a. See Figure 2, illustrating plate displacement uo at the plate center as a function
of time, as well as the relative numerical energy variation He, defined as

H
n+

1
2

e =
Hn+

1
2 −H

1
2

H
1
2

(36)

The time step is chosen as k = 10−4 s. In all cases, the relative energy variation is on the order of machine accuracy in
double precision floating point arithmetic. See also figure 3, illustrating convergence of computed waveforms to trusted
high accuracy solutions generated using the standard Scheme I (Störmer) with a very small time step.

Figure 2: Top row: plate displacement at the plate center, as a function of time, for different initial condition amplitudes a = 1, a = 2
and a = 4. Bottom row: relative numerical energy variation He, as defined in (36).

In Table 1 timings per second output are given, for the plate with parameters as described above, and using different time
steps k as indicated. All computations were performed in Matlab on a Lenovo P50 laptop on a Xeon E3. Timings are
given for the basic Störmer method (Scheme I), the stable energy conserving method as given in [15] (Scheme II) and the
new stable energy conserving method presented here (Scheme III). As is clearly evident, the new method performs nearly
on par with Störmer, in cases where Störmer is stable—recall that this scheme has obscure stability properties that are
highly dependent on on the initialisation. These results were computed with initial condition (35) with a = 4; at higher
amplitudes, Störmer exhibits instability at larger time steps.

Concluding Remarks

A fully explicit method for Hamiltonian numerical integration has been presented here, with a pseudo-energy conservation
property leading to unconditional numerical stability—it is different in character from other explicit methods presented
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Figure 3: Computed waveforms at the plate center, using scheme III (in red) at different choices of time step k as indicated. Here, a
high initial condition amplitude of a = 4 is chosen. For reference, a high accuracy solution is computed using Scheme I (Störmer)
using a small time step of k = 10−6 s, and is shown in black.

recently, in that an additional update is required for the root-potential energy, which is treated as a new independent vari-
able. An extension to the case of split potential forms is also presented, useful in arriving at conditionally stable numerical
methods.

The fully explicit character of the eventual update follows from the exploitation of matrix structure, and leads to large
increases in computational speed relative to other provably stable energy conserving methods. The method on the whole
is nearly as efficient as the simplest explicit schemes for Hamiltonian integration.
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