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Abstract: Electro-osmotic flow, that is, the motion of a polar fluid in microducts induced by an
external electric field, is one micro-effect which allows fluid circulation without the use of mechanical
pumping. This is of interest in the thermal management of electronic devices, as microchannels with
cross sections of almost arbitrary shape can easily be integrated on the chips. It is therefore important
to assess how the geometry of the channel influences the heat transfer performance. In this paper, the
thermal entry region and the fully developed electro-osmotic flow in a microchannel of rectangular
cross section with smoothed corners is investigated for uniform wall temperature. For the fully
developed region, correlations for the Poiseuille and Nusselt numbers considering the aspect ratio
and nondimensional smoothing radius are given, which can be used for practical design purposes.
For thermally developing flow, it is highlighted how smoothing the corners increases the value of
the local Nusselt number, with increases up to 18% over sharp corners, but that it also shortens the
thermal entry length. It is also found that Joule heating in the fluid may cause a reversal of the heat
flux, and that the thermal entry length has a linear dependence on the Reynolds number and the
hydraulic diameter and on the logarithm of the nondimensional Joule heating.

Keywords: electro-osmosis; microchannel; thermal entry length; convective heat transfer; laminar flow

1. Introduction

Fundamental research on microchannels has given rise to a vast body of studies ever
since the seminal work by Tuckerman and Pease almost four decades ago [1]. Knowledge
acquired over the years allowed microchannels to establish themselves as the building
blocks of so-called micro-flow devices (MFDs), as can be realized by comparing older
reviews on the subject [2,3], to more recent ones [4–6], a fact also recognized by the
Tuckerman and Pease themselves in a retrospective article published in 2012 [7].

Currently, there is still an amount of research addressing fundamental subjects [8–16],
but MFDs have now found applications in several fields [17], e.g., micro heat exchangers
(MHXs) are employed in air conditioning systems [18] and heat pumping equipment [19].
The use of microjets and two-phase flow as cooling means has been investigated and
applied too [20–22]. Microchannel heat sinks, a subset of MHXs, have great applicative
potential where removal of high heat fluxes is in demand. This makes them particularly
interesting for the thermal management of electronic devices, which are steadily growing
in compactness and, as a consequence, in power density. Pressure drop across such devices,
however, may be significant, especially when liquids are employed as coolants, with the
reduction in hydraulic diameter of the ducts quickly leading to viscous heating of the fluid
circulated [23] which reverses the direction of the heat flow.
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At small scales, however, flow devices can exploit micro-effects such as electro-osmosis,
which allows the motion of a liquid relative to a charged surface, induced by an applied
external potential gradient across a microchannel [24,25]. If a polar fluid is used in com-
bination with channel walls possessing a net electrical charge, an inhomogeneous charge
distribution develops in the liquid, which can be moved by applying electric field over the
length of the channel, which acts on the layer of mobile ions close to the walls: the flow
which originates is called electro-osmotic (EOF). EOF devices have several advantages: they
do not have moving parts, are therefore free of noise and vibrations and no lubrication is
needed. Furthermore, liquid reservoirs require tiny volumes, making them ideal for direct
connection to the chips. EOFs have been reported to yield experimental Nusselt numbers
about 10% larger than pressure-driven flow (PDF) for the same geometry, although Joule
heating may become significant when applied voltage between the electrodes increases be-
yond a certain threshold [26]. Voltage signals sent to electrodes make implementation of EOF
devices easier than manufacturing and controlling a micro mechanical pump. Among the
drawbacks, the chemical composition at the interface can significantly alter the velocity pro-
files, which are markedly different from those exhibited by pressure-driven flows, and Joule
heating in the fluid may partly or completely offset its cooling action [24]. Electro-osmotic
flows in microchannels have been the subject of several fundamental investigations, for a
variety of cross sections, ranging from the common circular ducts and parallel plates [27,28],
to unusual geometries such as polygonal, elliptical and triangular ducts [29–31], as has been
the use of electro-osmotic pumps (EOPs) [26,32,33], sometimes with the specific purpose of
electronics cooling [26,34,35]. The use of non-Newtonian fluids [36,37] and nanofluids [38]
is also a recent field of investigation.

The brief overview above reveals how research on electro-osmotic flow in microchan-
nels has been very active in the recent past, touching on a variety of subjects such as the
fluids employed, the electric field magnitude, the presence of the pressure gradient, and the
shape of cross section, which can take several forms (circular, trapezoidal, rectangular,
etc.) thanks to the current development of micro-fabrication technologies. Optimization
of the cross section can lead to improved performance in terms of increased heat transfer
and decreased pressure drop and entropy production, and this can be achieved through
smoothing of its corners, as demonstrated in [39,40]. Investigation has been extended
to pressure-driven flows in microchannels with and without viscous dissipation [41–43],
and to electro-osmotic flows in the fully developed and constant heat flux and perimeter
temperature case [44,45], employing the results to carry out a first-law analysis based on
performance evaluation criteria (PEC) [46].

To the best of the Authors’ knowledge, no attempt has been made so far to analyze EOFs
in the thermal entry region (the so-called Graetz problem) of a microchannel of rectangular
cross section with smoothed corners; therefore, this work aims at filling this gap for the
case of uniform temperature of the channel walls, so-called T boundary condition [47].
The fully developed case is also studied in order to provide correlations of practical use
for the Poiseuille and Nusselt numbers as a function of both the aspect ratio β and the
nondimensional radius of curvature, γ.

The influence of β and γ on the nondimensional thermal entry length is also inves-
tigated, as is the dependence of the latter on quantities such as Joule heating, hydraulic
diameter, and Reynolds and Peclet numbers. The aim is both to deepen the fundamental
understanding of the phenomenon and to gain insights of practical applicability to such
devices as heat sinks and micropumps.

The results are also useful for the purpose of conducting optimization studies, e.g., us-
ing PEC-type approaches.

2. Mathematical Model

This section reports the nondimensional forms of the governing equations for the
electric potential, velocity, and temperature fields and the boundary conditions which are
used to solve the problem; the dimensional forms and the normalizing quantities used
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to obtain them are reported in Appendix A. The equations are written for a Cartesian
coordinate system, which has x as the axial coordinate (flow direction), while y and z are
the coordinates of the cross section (orthogonal to flow direction), as illustrated in Figure 1.

(a)

r

b

ay

z

(b)

L

x

Figure 1. Channel cross section geometry (a), channel axis (b), and reference Cartesian coordinate sys-
tem (a,b).

2.1. Electric Potential Field

The nondimensional formulation of the equation governing the electric potential
distribution is shown below,

∂2Ψ
∂Y2 +

∂2Ψ
∂Z2 = (kD Dh)

2 sinh Ψ (1)

where kD is the Debye–Hückel parameter (m−1):

kD =

√
2 e2 c0 zi

2

ε kB T
(2)

The value of the potential at the Stern plane ζ is used as a boundary condition over
the channel wall:

Ψ|∂Ω =
zi e

kB T
ζ = Ψ0 (3)

As T-boundary conditions are applied to the temperature field, the nondimensional
electric potential Ψ, the Debye–Hückel parameter kD, and the nondimensional Stern po-
tential Ψ0, Equations (2) and (3) are defined with respect to the imposed wall temperature
Tw, which is chosen as the characteristic temperature. Accordingly, variations of Tw and,
subsequently, of the inlet temperature of the fluid, Ti, when the temperature drop Tw − Ti
is fixed, determine the range of values taken by the Debye–Hückel parameter in this work.

2.2. Velocity Field

A steady, hydrodynamically developed laminar flow of a Newtonian, incompressible
fluid with uniform thermophysical properties through a microchannel of uniform cross
section with rigid, non-porous wall is considered.

Starting from the governing equation and introducing suitable normalising quantities,
as reported in Appendix A.2, the component along x axis of Equation (A5) can be written
in nondimensional form:

∂2U
∂Y2 +

∂2U
∂Z2 = Ẽ sinh Ψ (4)
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The no-slip boundary condition is imposed through the solid wall, U|∂Ω = 0. The only
velocity component in the case of fully-developed flow is along the X direction; therefore,
equations for the other two velocity components are not shown.

Once the velocity field U(Y, Z) is computed, the corresponding Poiseuille number can
be estimated, details are given in Appendix A.2.

2.3. Temperature Field

The nondimensional temperature distribution Θ(X, Y, Z) is obtained from the solution
of the nondimensional energy equation below,

Re Pr
U
Ub

∂Θ
∂X

=
∂2Θ
∂Y2 +

∂2Θ
∂Z2 + Q (5)

where Pr is the Prandtl number of the fluid, while Ub and Re are the nondimensional bulk
velocity and the Reynolds number,

Re =
ρ ub Dh

µ
(6)

with ub = u0 Ub the dimensional bulk velocity.
The temperature Tw is imposed (T-boundary conditions) through the channel wall,

and a uniform temperature profile is chosen over the inlet section X0 = 0 of the channel:

Θ|∂Ω = 0, Θ(Y, Z)|X0
= 1 (7)

The choice of the boundary conditions imposed to the temperature field through the inlet
section will be discussed further in Section 3.

Once the temperature field Θ(X, Y, Z) is computed, the average Nusselt number along
channel axis can be estimated, as explained in Appendix A.3.

3. Materials and Methods
3.1. Numerical Modeling

The numerical solution of the governing equations—Equations (1), (4) and (5)—was
obtained using the open source software GNU Octave. Additional libraries, provided by
Octave Forge, were used: the msh package, which relies on the open source software
gmsh, allows to generate triangular and tetrahedral unstructured meshes for Finite Element
Method (FEM) or Finite Volume Method (FVM) solvers, and the bim package, which imple-
ments both the Finite Volume Scharfetter–Gummel (FVSG) method and the Finite Element
Method (FEM), allows to solve Diffusion Advection Reaction (DAV) partial differential
equations. The functions bim2a_laplacian, bim2a_reaction, and bim2a_rhs belonging
to bim library allow to assemble the finite element discretised operators for solving partial
differential equations of the form

−∇ · (C1∇φ) + C2φ = C3 (8)

on a two-dimensional (2D) unstructured, triangular mesh.
The 2D computational domain, consisting of the channel cross section geometry,

is discretized through gmsh software, using a triangular mesh with increased accuracy
imposed close to the cross section perimeter, where higher gradients for both the electric
potential and the velocity fields are expected. Equation (1) is numerically solved first
over the 2D mesh of the channel cross section to compute the electric potential Ψ(Y, Z).
In order to reduce Equation (1) to the same form of Equation (8), linearization of the
reaction term, (kD Dh)

2 sinh Ψ, is carried out using a first-order Taylor polynomial and the
numerical solution of Equation (1) is iterated until convergence of the electric potential field
is obtained. Then, the numerical solution of Equation (4), which requires the knowledge
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of Ψ, is computed and the developed velocity field U(Y, Z) is solved over the channel
cross section.

As the energy equation, Equation (5), has the form of a parabolic partial differential
equation, the three-dimensional physical problem can be reduced to a 2D mathematical prob-
lem. Implementing the θ−weighted scheme for marching over channel axis, Equation (5) is
discretized as

Re Pr
U
Ub

[
Θ

∆X

]n+1
− θ

[
∂2Θ
∂Y2 +

∂2Θ
∂Z2

]n+1

= Re Pr
U
Ub

[
Θ

∆X

]n
+ (1− θ)

[
∂2Θ
∂Y2 +

∂2Θ
∂Z2

]n

+ Q (9)

where n denotes the integration step along the channel axis. At each step n, Equation (9),
which has the same form as Equation (8), is numerically solved over the 2D mesh of the
channel cross section through bim library functions.

3.2. Problem Setup

The electro-osmotic flow over a channel of length L with constant cross section is
investigated. The geometrical configuration, defined by a rectangular cross section with
rounded corners as shown in Figure 1, is characterized by the aspect ratio β = b/a ∈ [0, 1]
and the nondimensional smoothing radius γ = 2 r/b ∈ [0, 1]. The corresponding hydraulic
diameter can be calculated as a function of the length of the longer side, a, and of the
nondimensional parameters β and γ:

Dh = 2 a
β− (β γ)2(4− π)

(1 + β)− (β γ)(4− π)
(10)

Taking advantage of the problem symmetry, only one-quarter of the whole channel sec-
tion is investigated, in order to reduce the computational cost of simulations, and symmetry
conditions are imposed through the lines Y = 0 and Z = 0,

∇Ψ · n̂ = 0, ∇U · n̂ = 0, ∇Θ · n̂ = 0 (11)

Dirichlet boundary conditions are imposed along the heated perimeter Γ,

Ψ|Γ =
zi e

kB Tw
= Ψ0, U|Γ = 0, Θ|Γ = 0 (12)

which correspond to imposed Stern potential, no-slip condition, and prescribed wall
temperature respectively. In addition, an inlet temperature profile must be imposed in
order to solve the energy equation, Equation (5). As pointed out in [48,49], when a heat
source is present, an adiabatic preparation of the fluid (at least over the hydrodynamically
developing region) should be provided in order to ensure physical consistency of the
boundary conditions at X = 0. Yet, under certain flow conditions the increase in the
bulk temperature ∆T0 due to Joule heating over the adiabatic section can be neglected if
compared to the prescribed temperature difference between wall and inlet. This makes
the uniform inlet temperature profile a still consistent approximation. In fact, writing the
macroscopic energy balance over the adiabatic section,

∆T0 =
q′′′ Dh

2

λ

L0

Dh
(Re Pr)−1 (13)

and assuming that L0 equals the hydrodynamically developing length, Lhy = 0.05 Re Dh,
the increment ∆T0 reduces to

∆T0 =
1

20
q′′′ Dh

2

λ
Pr−1 ⇒ ∆Θ0 =

Q
20 Pr

(14)
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If water at ambient temperature Tamb = 20 ◦C is considered, i.e., Pr ≈ 7, ∆Θ0 < 7.2%
is ensured for Q ≤ 10, which corresponds to the maximum value of the heat source
investigated in this paper.

The Graetz problem for an electro-osmotic flow, which consists of the numerical
solution of Equations (1), (4) and (5) with the prescribed boundary conditions, is defined
by the following parameters:

• aspect ratio β of the channel cross section;
• nondimensional smoothing radius γ;
• nondimensional Stern potential Ψ0;
• nondimensional parameter kD Dh, defined by Equation (2), which affects the electric

potential field;
• nondimensional electric field Ẽ = E Dh/ζ, which causes fluid motion;
• nondimensional heat source Q due to Joule heating; and
• reference Peclet number,

Pe =
(
ρ u0 cp

) (
Dh λ−1

)
= 2 Pr

ρ c0 e ζ Dh
2

µ2 (15)

where u0 is the reference velocity, calculated through Equation (A6).

Note that the reference Peclet number is not fully representative of the flow character-
istics. The effective value of the Peclet number,

Pe =
(
ρ ub cp

) (
Lth λ−1

)
(16)

is verified a posteriori to vary in the range 2 × 101 < Pe < 4 × 102; this makes the
assumption of negligible axial conduction a consistent approximation.

3.3. Grid Independence Analysis

A grid independence analysis (GDA) was also conducted before running several para-
metric computations. Excluding simulations involving model verification and comparison
with literature results, the values of the Debye–Hückel parameter and the nondimensional
Stern potential were set to kD Dh ≤ 9.77 and Ψ0 ≤ 3.89 respectively for most of the para-
metric computations. As mentioned at the end of Section 2.1, these are determined by
the choice of the wall and fluid inlet temperatures; the remaining quantities which com-
pose the Debye–Hückel parameter and the Stern potential have the values of deionized,
ultra-filtered water, and are often adopted in the literature [28,30–33,44,45,50]. The highest
values were considered for the GDA, while the channel cross section aspect ratio and the
smoothing radius were set to β = 3/4 and γ = 1/2.

Equations (3), (4) and (A15) were numerically solved for increasing mesh accuracy,
which is defined by the imposed grid spacing parameter lc. Both the Poiseuille and Nusselt
numbers of the fully developed flow were computed through Equations (A7) and (A14).
Results are listed in Table 1, where the corresponding numbers of mesh nodes and triangular
elements are also reported, and are plotted in Figure 2. As a discrepancy of less than 0.35h
was observed for Po reducing lc from 5× 10−3 to 2.5× 10−3, a value of lc = 5× 10−3 was
chosen for all the numerical computations. Figure 2 also shows the triangular mesh, gener-
ated through the gmsh software, for lc = 4× 10−2: it can be noticed that mesh refinement
occurs along the heated perimeter, where higher gradients of the electric potential Ψ(Y, Z),
velocity U(Y, Z) and developed temperature Θ∞(Y, Z) fields are expected.

When the Graetz problem is solved, the discretization step ∆X over the channel axis
direction is imposed in order to ensure at least 200 iterations before thermally developed
condition is reached,

Lth :
∣∣∣∣1− Nu(Lth)

Nu∞

∣∣∣∣ ≤ 0.05 (17)

where Nu(X) and Nu∞ are computed via Equations (A12) and (A14).
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Table 1. Computed Poiseuille number and Nusselt number for different values of mesh accuracy,
number of nodes Np, and number of triangular elements Nt. β = 3/4, γ = 1/2, kD Dh = 9.77,
Ψ0 = 3.89.

lc Np Nt Po Nu

8× 10−2 192 338 50.4520 6.635831
4× 10−2 621 1157 48.2496 6.653541
2× 10−2 2205 4248 47.4922 6.659893
1× 10−2 8309 16303 47.2633 6.661907
5× 10−3 32598 64571 47.2007 6.662473

2.5× 10−3 128655 256067 47.1843 6.662622

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

0.5

y/Dh

z/
D

h

(a)

103 104 105
47

48

49

50

Np

P
o

(b)

103 104 105

6.64

6.65

6.66

N
uPo

Nu

Figure 2. Triangular mesh for lc = 4× 10−2 (a). Computed Poiseuille number and Nusselt number
for increasing mesh accuracy (b). β = 3/4, γ = 1/2, kD Dh = 9.77, Ψ0 = 3.89.

4. Results and Discussion
4.1. Model Validation

Comparison with numerical results in the literature was first conducted in order to
check the numerical solution of both the Poisson–Boltzmann equation and the momentum
equation, Equations (1) and (4), which were both numerically solved in [45] by means
of COMSOL Multiphysics®. Considering the same test case as in [45], kD Dh = 9.85
and Ψ0 = 7.92, several geometrical configurations were simulated and the corresponding
Poiseuille number computed. As high gradients∇Ψ · n̂, due to the high Stern potential, were
expected close to the channel wall, the grid spacing parameter was set to lc = 2.5× 10−3,
leading to meshes with more than 105 nodes. A good agreement with the numerical results
of [45] can be observed in Table 2, with differences below 1% on the computed Poiseuille
number always obtained.

Table 2. Literature vs. computed values of Poiseuille number for different cross-sectional geometries.
kD Dh = 9.85, Ψ0 = 7.92.

β γ Po [45] Po

1 0 161.78 162.60 (+0.51%)
1/2 0 162.63 163.43 (+0.49%)
1/4 0 164.65 165.25 (+0.36%)

1 1 162.15 163.55 (+0.86%)
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The electric potential field was also qualitatively verified with the analytical solution,
which is available in the limiting case of a cylindrical duct for Stern potential approach-
ing zero. Solving the axisymmetric Poisson–Boltzmann equation under Debye–Hückel
linearization, i.e., lim

Ψ→0
(sinh Ψ)→ Ψ, gives [51],

Ψ(R) = C1 I0(kDDh R) + C2 K0(kDDh R) (18)

where R ∈ [0, 1/2] is the nondimensional radial coordinate; I0 and K0 are the first and
second kind of modified Bessel functions; and C1 and C2 are constants defined by the
boundary conditions imposed.

As a fully developed flow subject to H-boundary condition was investigated in [45],
comparison was not possible. However, the developed temperature field under T-boundary
condition was quantitatively verified with the analytical solution available for a cylindrical
duct. Solving the axisymmetric energy equation for a fully developed flow under T-boundary
conditions gives the analytical temperature profile,

Θ(R) =
Q
4

(
1
4
− R2

)
(19)

where R is the nondimensional radial coordinate.
Both normalized, numerical electric potential profiles for different values of the im-

posed Stern potential Ψ0 and normalized, analytical electric potential, valid in the limit of
Ψ0 approaching zero, are plotted in Figure 3 over the cylindrical cross section: note that the
numerical profile approaches the analytical one when low values of Ψ0 are imposed. The
numerical velocity profiles for different values of Ψ0 are shown in Figure 3: as mentioned,
the higher the value of the Stern potential, the higher the velocity gradient close to the
channel wall, resulting in a flow pattern similar to plug flow. The developed temperature
profile, which is also shown in Figure 3 and does not depend on the velocity profile, was
computed both via the numerical solution of Equation (A15) and as the asymptotic behav-
ior for X → ∞ from the solution of Equation (5). Thus, the numerical temperature profile
was quantitatively verified with the analytical solution, Equation (19), computing the mean
squared error (MSE) at mesh nodes,

MSE =
1

Np

Np

∑
n=1

[
Θn −

Q
4

(
1
4
−
√

Yn
2 + Zn

2
)]2

= 9.4895× 10−9, Np = 109190 (20)

showing perfect agreement.
The numerical model was also validated with experimental results from the litera-

ture. First, the test case of [52] is replicated. Thus, the bulk flow velocity of an EOF is
numerically computed and compared with experimental data of [52], where the Authors
used nanoparticle image velocimetry technique to measure the mean EOF velocity over
4.9–24.7 µm thick channels. The physical properties of a dilute aqueous solution of sodium
tetraborate (borax) were chosen according to the method in [52]. The ζ potential required
for the boundary condition on the potential field is derived from the experimental values
of the mobility factor µeo via the Helmholtz–Smoluchowski formula:

µeo =
ub
Ex

=
ε ζ

µ
(21)

In Figure 4a, numerical results are compared with the experimental data in [52], showing a
good agreement for all the concentrations investigated. A small discrepancy is observed
at higher values of the electric field, since a linear relationship between bulk velocity and
electric field is predicted by the numerical model. However, a linear relationship was also
reported according to [26].
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Figure 3. Computed electric potential for different values of the nondimensional Stern potential Ψ0 and analytical electric
potential for Ψ0 approaching zero (a); numerical velocity profile computed for different values of the Ψ0 (b); numerical
temperature profile (c). β = 1, γ = 1, kD Dh = 9.77, Q = 1.43× 10−1.
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Figure 4. Numerical bulk velocity (continuous line) versus experimental measurements (markers) of [52] for different
borax concentrations and imposed electric fields (a). Numerical versus experimental [26] bulk temperature as a function of
heating power at both the middle section and the outlet section of the microchannel (computed, outlet temperature profile
for heating power equal to 2.1 W is also shown) (b). Dilute aqueous solution of sodium tetraborate (borax) investigated.

In order to validate the temperature field solution, the experimental setup in [26] was
also simulated. In [26], the Authors manufactured and tested a micro-heat sink with the
cooling fluid serving both as a heat exchanger and an integrated pump. Twenty parallel
0.3× 0.1× 30 mm3 microchannels were etched on a silicon substrate and covered by a
low thermal conductivity PDMS plate. A heater was attached to the bottom. The borax
concentration was set to 0.4 mol/m3, different values of the voltage driving the EOF were
imposed and heating powers up to 4 W were investigated in [26]. Equations (1), (4) and (5)
were therefore numerically solved and the resulting bulk temperature at both the middle
section (x = 1.5 cm) and the outlet section (x = 3 cm) compared with the experimental data
of [26], for different values of the imposed heating power. The required wall potential
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was again estimated through Equation (21). Adiabatic conditions were imposed at the
channel wall facing the PDMS cover, whilst H1 thermal boundary conditions were applied
to the heated perimeter. The required heat flux per unit length was derived from the data
supplied in [26]. The electric field was set to 1.33× 104 V/m. As shown by Figure 4b,
numerical temperatures are in good agreement with experimental measurements over
the whole heating power range, with a perfect matching observed when the heater is
switched off (temperature rise along the channel due solely to Joule heating). The resulting
temperature profile through the outlet section is also provided by Figure 4b.

4.2. Fully Developed Flow Solution

After validation, parametric computations were run, in order to investigate the effect
of the cross section geometry on the thermal-hydraulic performances of the microchannel.
The case of fully developed electro-osmotic flow, defined by Equations (1), (4) and (A15),
was first studied. Several values of both the aspect ratio (β = 1/10, 1/5, 3/10, 2/5, 1/2,
3/5, 7/10, 3/4, 4/5, 9/10, 1) and the smoothing radius (γ = 0, 1/10, 1/5, 3/10, 2/5,
1/2, 3/5, 7/10, 3/4, 4/5, 9/10, 1) were investigated, while the nondimensional Debye–
Hückel parameter was set to kD Dh = 9.77 according to [45,50], and the nondimensional
Stern potential to Ψ0 = 3.89, which is roughly half the value analyzed in [45]. Note that
the magnitude of both the electric field Ẽ and the heat heat source Q do not affect the
Poiseuille number and the developed Nusselt number. This is because the velocity and the
temperature fields are scaled by changing kD Dh and Ẽ, but retain the same shape.

The electric potential field Ψ, the developed velocity field U and the developed
temperature field Θ∞ resulting from a single computation are shown in Figure 5. As pointed
out for the cylindrical duct case, significant gradients of both the electric potential and the
velocity can be observed close to the cross section wall. The magnitude of both U and Θ
linearly depends on the imposed values of Ẽ and Q. The local Nusselt number was also
numerically estimated as

Nu = − ∇Θ|Γ · n̂
Θb

(22)

over the heated perimeter of the cross section, Γ. As demonstrated by Figure 6, the highest
temperature gradient occurs at the midpoint of the longer side of the rectangular section,
whereas smoother slopes are observed close to the rounded corners. Averaging the local
Nusselt number along the heated perimeter leads to the mean Nusselt number Nu = 6.662,
which can be computed through Equation (A14).

Figure 5. Electric potential field (a). Developed velocity field (b). Developed temperature field (c). β = 3/4, γ = 1/2,
kD Dh = 9.77, Ψ0 = 3.89, Ẽ = 30, Q = 1.43× 10−1.
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Figure 6. Cross section geometry (a). Local Nusselt number of the fully developed flow along the
heated perimeter Γ (b). β = 3/4, γ = 1/2, kD Dh = 9.77, Ψ0 = 3.89.

The results from 110 computations are shown in Figure 7, where the computed Poiseuille
and Nusselt numbers are plotted as a function of the channel section geometry, defined by β
and γ. The highest values for both Po and Nu were found at β = 1/10 and γ = 1, whilst the
minimum Po, corresponding to highest efficiency of the micropump, was found for β = 1
and γ = 0. Following the approach in [45], the trends of Po and Nu can be approximated,
for a given aspect ratio, via a polynomial correlation as a function of the smoothing radius.
However, a single, 3rd-order polynomial correlation taking into account the influence of both
β and γ is provided here for Po and Nu:

Po = a00 +
3

∑
n=1

an0 βn +
3

∑
n=1

a0n γn + a11 a11 β γ + a12 β γ2 + a21 β2 γ (23)

Nu = b00 +
3

∑
n=1

bn0 βn +
3

∑
n=1

b0n γn + b11 b11 β γ + b12 β γ2 + b21 β2 γ (24)

The corresponding fitting coefficients are listed in Table 3. The Root Mean Square Error,
also listed in Table 3, demonstrates that an accurate estimate of both Po and Nu is ensured.
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Figure 7. Poiseuille number as a function of the cross-sectional geometry (a). Nusselt number as a
function of the cross-sectional geometry (b). kD Dh = 9.77, Ψ0 = 3.89.
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Table 3. Fitting coefficients of Equations (23) and (24) for the estimation of the Nusselt and Poiseuille
numbers of a fully developed flow and Root Mean Square Error from 110 numerical points.

Poiseuille Number Nusselt Number
Equation (23) Equation (24)

a00 +50.8162 b00 +10.1790
a10 −14.0158 b10 −12.4539
a20 +14.6258 b20 +12.3036
a30 −5.19479 b30 −4.11363
a01 +3.59595 b01 +1.03360
a02 −6.58458 b02 −1.25171
a03 +3.66162 b03 +0.500750
a11 +2.01872 b11 +1.87850
a12 −1.29980 b12 −0.751240
a21 −0.761764 b21 −0.672452

RMSE 6.53× 10−2 RMSE 1.68× 10−2

4.3. Graetz Problem Solution

Finally, the Graetz problem, defined by Equations (1), (4) and (5), was solved, in order
to determine the thermal entry length under different operating conditions. The aspect ratio
was fixed to β = 3/4 and four different, nondimensional radii of curvature, namely, γ = 0,
1/4, 1/2, 1 were investigated. The Debye–Hückel parameter and the nondimensional
Stern potential were set to kD Dh = 8.45 and Ψ0 = 2.92 respectively. The nondimensional
electric field and the reference Peclet number were Ẽ = 3× 102 and Pe = 1.15. The effect
of changing the heat source due to Joule heating, Q, was investigated: several values
ranging between 10−3 and 10 were simulated and the influence on the thermal entry length
assessed. Note that a variation of the heat source Q at fixed kDDh, Ψ0, Ẽ and Pe, which
are the other model input parameters, can be physically obtained varying the reference
temperature difference Tw − Ti and the electric conductivity σ (so that Pe is unaffected).

The resulting temperature profile over the channel sections corresponding to Y = 0,
Z = 0 and X ∈ [0, 2] is shown in Figure 8 for a computation at very high heat generation
(Q = 8.04) and low electric field (Ẽ = 2.25 × 10−2). Even if the fully developed tempera-
ture profile is reached shortly after the channel entrance because of the high value of Q,
important considerations can be made:

• close to the entry section, the contribution of Joule heating is still negligible and the
heat transfer process is mainly driven by conduction and convection, which is the
most profitable operating condition for a microchannel heat sink;

• looking at the mean Nusselt number along the channel axis in Figure 8, a vertical
asymptote at X ' 0.535 is observed, corresponding to the change in sign of the fluid
bulk temperature;

• for X > 0.535, the heat generation due to Joule heating drives the heat transfer process
and the microchannel heat sink is no longer able to dissipate heat from the walls; and

• the thermal entry length Lth is reached at X = 1.37.

Assessing the existence of a change in the direction of heat transfer is obviously impor-
tant in practical applications, but knowledge of the extension of the thermal entry length
is also useful. In fact, if Lth occupies a significant portion of the channel, correlations for
the Nusselt number that assume fully developed flow cannot be recommended. Therefore,
the rest of the section is devoted to the investigation of Lth.
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Figure 8. Temperature field over X = L/Dh, Y = 0, and Z = 0 sections of the channel and average
Nusselt number along the channel axis. β = 3/4, γ = 1/2, kD Dh = 9.77, Ψ0 = 3.89, Ẽ = 2.25× 102,
Pe = 1.15, Q = 8.04.

Results from parametric computations are shown in Figure 9, where the thermal entry
length is plotted as a function of the nondimensional source term Q and the smoothing
radius γ. It can be pointed out that Lth decreases for increasing Joule heating following a
logarithmic behavior, when the other model input parameters (namely, kDDh, Ψ0, Ẽ, Pe)
are fixed:

Lth
Dh

∝ log10

(
1
Q

)
(25)

The mean Nusselt number along channel axis is also plotted in Figure 9 for different γ and
fixed Q = 1, showing that

• smoothing the corners shortens the thermal entry length, and, as a consequence,
the efficacious channel length (i.e., useful to remove heat from the walls) at high Joule
heating, that is for high values of Q;

• heat transfer performance decreases when sharp corners are considered, since lower
temperature gradients are observed close to them, meaning that lower Nusselt num-
bers over the entry region are reached. As an example, in Figure 9 for x/Dh = 0.9 Nu
goes from 3.95 for γ = 1 (maximum smoothing) to 3.38 for γ = 0 (sharp corners);

• small changes in Nu(x) correspond to significant variations of Lth at different values
of the smoothing radius γ.

In order to extend the study to a wider range of practical applications, the analysis is
expanded to different hydraulic diameters of the channel cross section. Thus, the nondimen-
sional input parameters of the model are scaled with the hydraulic diameter according to
their definitions:
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kD =

√
2 e2 c0 zi
ε kB Tw

∝ Dh
0, Ψ0 =

zi e
kB Tw

ζ ∝ Dh
0, Ẽ =

Ex Dh
ζ

∝ Dh,

Q =
σ(Dh Ex)

2

λ(Tw − Ti)
∝ Dh

2, Pe = 2 Pr
ρ c0 e ζ Dh

2

µ2 ∝ Dh
2

(26)

Starting from the set of input parameters investigated and fixing the cross section geometry
to β = 3/4 and γ = 1/2, computations are run at increasing hydraulic diameters. Thus,
beginning at D0 = 3 µm, the hydraulic diameter is progressively increased up to 15 µm,
which corresponds to an increase of the nondimensional Debye–Hückel parameter kD Dh
from 8.45 to 42.25. Three different values of the nondimensional heat source, Q = 10−1,
10−2, and 10−3, are chosen. Both the thermal entry length and the Reynolds number,
the latter resulting from velocity field solution and depending on the imposed hydraulic
diameter as well, are computed. Results are plotted in Figure 10.
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Figure 9. Thermal entry length as a function of nondimensional heat source, due to Joule heating,
and smoothing radius (a); mean Nusselt number along channel axis for different smoothing radii
(legend same as subfigure (a) above), Q = 1 (b). β = 3/4, kD Dh = 8.45, Ψ0 = 2.92, Ẽ = 3× 102,
Pe = 1.15.

The nondimensional thermal entry length linearly depends on the hydraulic diameter,
with values up to Lth = 40 Dh observed when Dh/D0 approaches 5. This trend can be easily
explained looking at Equation (5): the advection term is proportional to Re and Pr, both
acting as a scaling parameter for the temperature field evolution along the channel axis,
as long as Q is kept constant. On the other hand, this means that Lth/Dh weakly depends on
the shape of the normalized velocity profile U/Ub, which tends to plug flow for increasing
Dh but does not modify the linear correlation between Lth/Dh and Re. As discussed earlier
for Figure 9, the lower the magnitude of heat source term Q, the longer the nondimensional
thermal entry region Lth/Dh. The dependence of the Reynolds number on Dh/D0 is
also reported in Figure 10, and is clearly linear. As the magnitude of the dimensional
bulk velocity ub mainly depends on the imposed electric field and the Stern potential
but weakly on the hydraulic diameter, as long as kD Dh � 1, the product of the Prandtl
number, which depends on fluid properties, times the Reynolds number Re = ρ ub Dh/µ
is simply proportional to the hydraulic diameter. As a consequence, it can be stated that
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the nondimensional length of the thermal entry region Lth/Dh linearly depends on the
normalized hydraulic diameter Dh/D0 too.
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Figure 10. Thermal entry length as a function of the normalized hydraulic diameter (a); hydraulic
diameter versus Reynolds number (b). β = 3/4, γ = 1/2, Ψ0 = 2.92, Ẽ ∈ [3, 12]× 102, kD Dh ∈
[8.45, 42.25], Pe ∈ [1, 29].

The influence of wall temperature, which was chosen as the characteristic fluid tem-
perature, was also investigated. Therefore, Tw was varied between 20 and 100 ◦C and three
different values were again considered for the nondimensional heating source, Q = 10−1,
10−2, and 10−3. The channel section geometry, the wall potential and the nondimensional
electric field were set to β = 3/4, γ = 1/2, Ψ0 = 2.92, and Ẽ = 3× 102. As the fluid
properties depend on temperature, both the Prandtl number and the Reynolds number
depend on the imposed Tw, as demonstrated by Figure 11b. On the other hand, a change
in the absolute fluid temperature also influences the Debye–Hückel parameter. In fact,
in the range investigated, 20–100 ◦C, a deviation of about 13% from the reference value of
kD Dh = 8.45 is observed.
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Figure 11. Thermal entry length as a function of wall temperature (a); variation of Prandtl and
Reynolds numbers with the imposed wall temperature (b). β = 3/4, γ = 1/2, Ψ0 = 2.92, Ẽ = 3× 102.

Figure 11a shows the dependence of the nondimensional thermal entry length on the
imposed wall temperature. In accordance with Re Pr, Lth/Dh increases slightly nonlinearly
with the imposed temperature Tw: this is readily explained if one considers that the
kinematic viscosity in the expressions of the Prandtl and Reynolds numbers cancel out.



Fluids 2021, 6, 22 16 of 21

5. Conclusions

Although not the main focus of the paper, the fully developed EOF under uniform
wall temperature was first investigated for channels with sharp and smoothed corners
and rectangular cross sections, after validation with two different experimental works
and verification with analytical and numerical cases. The numerical findings highlighted
that smoothing increases both the Poiseuille and Nusselt numbers, i.e., friction and heat
transfer, respectively. Two correlations which capture simultaneously the influence of the
nondimensional aspect ratio β and radius of curvature γ on Po and Nu were obtained.
These are recommended for design purposes, when the flow can be considered as fully
developed for most of the channel length. It was also highlighted that neither the magnitude
of Ẽ (nondimensional electric field) nor Q (nondimensional Joule heating) influence the
form of the velocity and temperature profiles. Similar results have not been previously
reported in the literature, to the best of the Authors’ knowledge.

The Graetz problem under T boundary condition was then investigated, using input
parameters representative of practical applications, such as micropumps and micro heat
sinks. This subject is even less explored, owing to the experimental difficulties in obtaining
temperature distribution in the fluid and at the walls of the channels. Numerical studies
also appear to be limited to fully-developed cases and very few are concerned with channels
with smoothed corners. The investigation highlighted that high values of Q cause a reversal
in the direction of the heat flux, which renders the channel unfit for its purpose. An estimate
of the usable channel length under such circumstances was also provided via the solution
of the temperature field over the thermal entry region under different operating conditions.

It was then demonstrated that smoothing the corners shortens Lth, which may signifi-
cantly reduce the usable length of the channel as well, but the Nusselt number in the entry
region increases with the radius of curvature. It can therefore be concluded that, when Q
is sufficiently low that no heat flux reversal occurs in the channel, smoothing the corners
increases the Nusselt number (for the cases investigated an improvement up to around
18% was achieved).

Finally, the thermal entry length was analyzed for different values of the model input
parameters. The magnitude of the heat source term and of the variation in hydraulic
diameter were investigated, with a wide range of operating conditions covered, and it was
found that the nondimensional thermal entry length decreases linearly with the logarithm
of Q, while scaling linearly to Dh. The dependence of Lth on the Reynolds and Prandtl
numbers was also studied. If the Prandtl number is constant, the thermal entry length is
proportional to the Reynolds number; when both vary because of changes in the reference
temperature, Lth slightly deviates from proportionality to Re Pr because of the dependence
of thermal diffusivity on temperature, whereas the kinematic viscosity cancels out.

The results presented are crucial for the design of microchannel heat sinks working
with an electro-osmotic flow; moreover, knowledge of the Poiseuille number and Nusselt
number over the channel length under different operating conditions is required in order
to determine, e.g., the best microchannel configuration via a combined first- and second-
law-based optimization under typical PEC constraints [40,43,53,54]. In the next future the
Authors plan to investigate different geometries, defined by the aspect ratio β and the
smoothing radius γ, and the optimal configuration determined for different PECs and
different operating conditions (hydraulic diameter Dh, electric double layer thickness kD

−1,
electric potential Ex, source heat power Q, and Stern potential ζ). Moreover, the effect of
axial conduction through the fluid can eventually be accounted for in the numerical model,
in order to properly investigate electro-osmotic flows characterized by lower Reynolds
numbers and, thus, lower Peclet numbers.
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Nomenclature
cp Specific heat capacity at constant pressure J·kg−1·K−1

D0 Reference hydraulic diameter m
Dh Hydraulic diameter m
e Unit electron charge C
E Electric field component V·m−1

E Electric field V·m−1

Ẽ Nondimensional electric field -
j Current density vector A·m−2

kB Boltzmann Constant J·K−1

kD Debye–Hückel parameter m−1

lc Grid spacing parameter -
L Channel length m
Lth Thermal entry length m
L0 Adiabatic channel length m
Np Number of nodes -
Nt Number of triangular elements -
Nu Nusselt number -
Pe Peclet number -
Pr Prandtl number -
q′′′ Joule heating W·m−3

Q Quantity defined by Equation (A11) -
R Nondimensional radial coordinate -
Re Reynolds number -
T Temperature K
u Velocity component along the x-axis m·s−1

u Velocity vector m·s−1

U Nondimensional velocity -
x Axial coordinate m
X Nondimensional coordinate vector -
X Nondimensional x-coordinate -
Y Nondimensional y-coordinate -
zi Ion valence -
Z Nondimensional z-coordinate -
Greek letters
β Aspect ratio of the channel -
γ Nondimensional smoothing radius -
Γ Cross-sectional heated perimeter (nondimensional) -
∂Ω Nondimensional perimeter -
ε Absolute permittivity F·m−1

λ thermal conductivity W·m−1·K−1

µ fluid viscosity Pa·s−1

µeo Mobility factor m2·V−1·s−1

Ω Nondimensional cross-sectional area -
P Power W
ψ electric potential V
Ψ nondimensional electric potential -
Ψ0 nondimensional Stern potential -
ρ Fluid density kg·m−3
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ρe electric charge density C·m−2

σ electric conductivity S·m−1

Θ Nondimensional temperature K
ζ Stern potential V
Subscripts
b Bulk
i Inlet
th Thermal
w Wall
x Component along the x-direction
∞ Fully developed

Appendix A

This appendix reports the governing equations for the electric potential, velocity, and
temperature fields of EOF (i.e., motion of polar fluids through sub-millimeter channels
when electric fields are applied across the duct), and the quantities that are introduced to
obtain the nondimensional forms reported in Section 2. The interested reader is also referred
to the book by Kirby [24], for an extensive treatment of the phenomenon, with the books
by Tabeling and Bruus [25,55] offering a more succinct overview. For the purpose of this
work, the portion of fluid close to the wall where charge density is non-uniform is treated
with the Gouy–Chapman model, in which a net charge at the walls, due to adsorption and
ionization, balances a mobile, diffuse charge density; the two regions constitute the electric
double layer (EDL), with the potential at the separation plane, the so-called Stern potential,
ζ, used as a boundary condition, see in [45] for further details.

Appendix A.1. Electric Potential Field

The governing equation for the electric potential field can be derived from the Maxwell
equation, which relates the electric charge distribution ρe to the resulting electric field E,

∇ · E =
ρe

ε
(A1)

where ε is the absolute permittivity of the fluid. Following the work in [45], the electric
potential can be analytically obtained from its balance equation,

ρe = 2 zi e c0 sinh
(

zi e
kB T

ψ

)
(A2)

where e = 1.6021× 10−19 (C) is the unit electron charge, kB = 1.3805× 10−23 (J/K) is the
Boltzmann constant, zi is the valence of an ion, T is the thermodynamic temperature, and
ψ is the electric potential.

Thus, substituting the charge density ρe to Equation (A1) and using the definition of the
potential of an electric field, E = −∇ψ, gives the governing Poisson–Boltzmann equation,

∇2ψ =
2 zi e c0

ε
sinh

(
zi e

kB T
ψ

)
(A3)

which must be solved in order to find the unknown electric potential ψ. Introducing the
following nondimensional quantities,

X =
x

Dh
, Ψ =

zi e
kB T

ψ (A4)

and further assuming that ∂Ψ/∂X � ∂Ψ/∂Y, ∂Ψ/∂Z (i.e., electric potential does not
change along channel axis), Equation (A3) becomes Equation (1).
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Appendix A.2. Velocity Field

The velocity profile is computed for the conditions stated in Section 2.2. Further,
neglecting the pressure gradient along the flow direction and assuming that the only body
force acting on the fluid is given by the electric field along the channel axis, E = Ex î,
the momentum transport equation gives [45]

µ∇2u + ρeE = 0 (A5)

Introducing the following quantities,

u0 =
2 c0 e ζ Dh

µ
, U =

u
u0

, Ẽ =
Ex Dh

ζ
(A6)

the nondimensional form, Equation (4), is obtained.
The Poiseuille number is computed from the solution of the nondimensional velocity

field, as

Po =
1

2 Ub Ω

∫
Ω

Ẽ sinh Ψ dΩ (A7)

where Ub is the nondimensional bulk velocity:

Ub =

∫
Ω U dΩ∫

Ω dΩ
(A8)

Appendix A.3. Temperature Field

The temperature field is obtained through the solution of the energy equation. Intro-
ducing the source term q′′′ deriving from Joule heating due to the electrical current density
flux j = σ E,

q′′′ = j · E = σ Ex
2 (A9)

σ being the electric conductivity of the fluid, the energy equation gives

ρ u cp
∂T
∂x

= λ∇2T + σ Ex
2 (A10)

Neglecting axial conduction and introducing the following nondimensional quantities,

Θ =
T − Tw

Tw − Ti
, Q =

σ (Dh Ex)
2

λ (Tw − Ti)
(A11)

with Ti and Tw the prescribed inlet temperature and the wall temperature, respectively,
Equation (A10) is made nondimensional. From its solution, the Nusselt number, Nu, can
be computed as

Nu(X) = −
∫

∂Ω∇Θ|X · n̂ dΓ
Γ Θb(X)

(A12)

where Γ = ∂Ω is the cross-sectional heated perimeter, n̂ is the outward normal direction to
∂Ω, and Θb is the bulk temperature:

Θb(X) =

∫
Ω U Θ|X dΩ∫

Ω U dΩ
(A13)

After the fully developed flow condition is reached, which means Θ(X, Y, Z) ∼ Θ∞(Y, Z)
under T-boundary condition, the fully developed Nusselt number can be computed as

Nu∞ =
Q Ω

Γ Θb|X→∞
(A14)
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Note that the developed temperature field Θ∞(Y, Z) can be either estimated as Θ(X, Y, Z)|X→∞
or via the solution over the 2D channel cross section of the following partial differential equation,

∂2Θ
∂Y2 +

∂2Θ
∂Z2 + Q = 0 (A15)

which Equation (5) reduces to for X → ∞.

References
1. Tuckerman, D.; Pease, R. High-Performance Heat Sinking for VLSI. IEEE Electron. Device Lett. 1981, 2, 126–129. [CrossRef]
2. Schubert, K.; Brandner, J.; Fichtner, M.; Linder, G.; Schygulla, U.; Wenka, A. Microstructure devices for applications in thermal

and chemical process engineering. Microscale Thermophys. Eng. 2001, 5, 17–39.
3. Rostami, A.; Mujumdar, A.; Saniei, N. Flow and heat transfer for gas flowing in microchannels: A review. Heat Mass Transf.

Stoffuebertragung 2002, 38, 359–367. [CrossRef]
4. Venkatesan, S.; Jerald, J.; Asokan, P.; Prabakaran, R. A Comprehensive Review on Microfluidics Technology and its Applications.

Lect. Notes Mech. Eng. 2020, 235–245.
5. Gilmore, N.; Timchenko, V.; Menictas, C. Microchannel cooling of concentrator photovoltaics: A review. Renew. Sustain. Energy

Rev. 2018, 90, 1041–1059. [CrossRef]
6. Hossan, M.; Dutta, D.; Islam, N.; Dutta, P. Review: Electric field driven pumping in microfluidic device. Electrophoresis 2018,

39, 702–731. [CrossRef]
7. Tuckerman, D.; Pease, R.; Guo, Z.; Hu, J.; Yildirim, O.; Deane, G.; Wood, L. Microchannel heat transfer: Early history, commercial

applications, and emerging opportunities. In Proceedings of the ASME 2011 9th International Conference on Nanochannels,
Microchannels, and Minichannels, Edmonton, AB, Canada, 19–22 June 2011; Volume 2, pp. 739–756.

8. Kuznetsov, V. Fundamental Issues Related to Flow Boiling and Two-Phase Flow Patterns in Microchannels–Experimental
Challenges and Opportunities. Heat Transf. Eng. 2019, 40, 711–724. [CrossRef]

9. Morini, G.L.; Lorenzini, M.; Colin, S.; Geoffroy, S. Experimental investigation of the compressibility effects on the friction factor of
gas flows in microtubes. In Proceedings of the 4th International Conference on Nanochannels, Microchannels and Minichannels,
ICNMM2006, Limerick, Ireland, 19–21 June 2006; Volume 47608, pp. 411–418.

10. Cavazzuti, M.; Corticelli, M.; Karayiannis, T. Compressible Fanno flows in micro-channels: An enhanced quasi-2D numerical
model for laminar flows. Therm. Sci. Eng. Prog. 2019, 10, 10–26. [CrossRef]

11. Cavazzuti, M.; Corticelli, M.; Karayiannis, T. Compressible Fanno flows in micro-channels: An enhanced quasi-2D numerical
model for turbulent flows. Int. Commun. Heat Mass Transf. 2020, 111. [CrossRef]

12. Morini, G.; Yang, Y.; Lorenzini, M. Experimental analysis of gas micro-convection through commercial microtubes. Exp. Heat
Transf. 2012, 25, 151–171. [CrossRef]

13. Cavazzuti, M.; Corticelli, M. Numerical modelling of Fanno flows in micro channels: A quasi-static application to air vents for
plastic moulding. Therm. Sci. Eng. Prog. 2017, 2, 43–56. [CrossRef]

14. Yang, Y.; Chalabi, H.; Lorenzini, M.; Morini, G. The effect on the nusselt number of the nonlinear axial temperature distribution of
gas flows through microtubes. Heat Transf. Eng. 2014, 35, 159–170. [CrossRef]

15. Kockmann, N.; Holvey, C.; Roberge, D. Transitional flow and related transport phenomena in complex microchannels. In
Proceedings of the 7th International Conference on Nanochannels, Microchannels, and Minichannels 2009, ICNMM2009, Pohang,
Korea, 22–24 June 2009; Volume 43499, pp. 1301–1312.

16. Lorenzini, M.; Daprá, I.; Scarpi, G. Heat Transfer for a Giesekus Fluid in a Rotating Concentric Annulus. Appl. Therm. Eng. 2017,
122, 118–125. [CrossRef]

17. Ohadi, M.; Choo, K.; Dessiatoun, S.; Cetegen, E.E. Next Generation Microchannel Heat Exchangers; Springer Briefs in Applied
Sciences and Technology; Springer: New York, NY, USA; Berlin/Heidelberg, Germany, 2013.

18. Han, Y.; Liu, Y.; Li, M.; Huang, J. A review of development of micro-channel heat exchanger applied in air-conditioning system.
Energy Procedia 2012, 14, 148–153. [CrossRef]

19. Kew, P.; Reay, D. Compact/micro-heat exchangers - Their role in heat pumping equipment. Appl. Therm. Eng. 2011, 31, 594–601.
[CrossRef]

20. Henning, T.; Brandner, J.; Schubert, K.; Lorenzini, M.; Morini, G. Low-frequency instabilities in the operation of metallic
multi-microchannel evaporators. Heat Transf. Eng. 2007, 28, 834–841. [CrossRef]

21. Keepaiboon, C.; Dalkilic, A.; Mahian, O.; Ahn, H.; Wongwises, S.; Mondal, P.; Shadloo, M. Two-phase flow boiling in a microfluidic
channel at high mass flux. Phys. Fluids 2020, 32. [CrossRef]

22. Wei, T.W.; Oprins, H.; Fang, L.; Cherman, V.; De Wolf, I.; Beyne, E.; Baelmans, M. Nozzle scaling effects for the thermohydraulic
performance of microjet impingement cooling with distributed returns. Appl. Therm. Eng. 2020, 180. [CrossRef]

23. Morini, G.; Spiga, M. The role of the viscous dissipation in heated microchannels. J. Heat Transf. 2007, 129, 308–318. [CrossRef]
24. Kirby, B. Micro- and Nanoscale Fluid Mechanics; Cambridge University Press: Cambridge, UK, 2010.
25. Bruus, H. Theoretical Microfluidics; OUP: Oxford, UK, 2010.

http://doi.org/10.1109/EDL.1981.25367
http://dx.doi.org/10.1007/s002310100247
http://dx.doi.org/10.1016/j.rser.2018.04.010
http://dx.doi.org/10.1002/elps.201700375
http://dx.doi.org/10.1080/01457632.2018.1442291
http://dx.doi.org/10.1016/j.tsep.2019.01.003
http://dx.doi.org/10.1016/j.icheatmasstransfer.2019.104448
http://dx.doi.org/10.1080/08916152.2011.609960
http://dx.doi.org/10.1016/j.tsep.2017.04.004
http://dx.doi.org/10.1080/01457632.2013.812489
http://dx.doi.org/10.1016/j.applthermaleng.2017.05.013
http://dx.doi.org/10.1016/j.egypro.2011.12.910
http://dx.doi.org/10.1016/j.applthermaleng.2010.08.003
http://dx.doi.org/10.1080/01457630701378242
http://dx.doi.org/10.1063/5.0023758
http://dx.doi.org/10.1016/j.applthermaleng.2020.115767
http://dx.doi.org/10.1115/1.2430725


Fluids 2021, 6, 22 21 of 21

26. Al-Rjoub, M.F.; Roy, A.K.; Ganguli, S.; Banerjee, R.K. Assessment of an active-cooling micro-channel heat sink device, using
electro-osmotic flow. Int. J. Heat Mass Transf. 2011, 54, 4560–4569. [CrossRef]

27. Rice, C.; Whitehead, R. Electrokinetic flow in a narrow cylindrical capillary. J. Phys. Chem. 1965, 69, 4017–4024. [CrossRef]
28. Mala, G.; Li, D.; Werner, C.; Jacobasch, H.J.; Ning, Y. Flow characteristics of water through a microchannel between two parallel

plates with electrokinetic effects. Int. J. Heat Fluid Flow 1997, 18, 489–496. [CrossRef]
29. Wang, C.Y.; Chang, C.C. Electro-osmotic flow in polygonal ducts. Electrophoresis 2011, 32, 1268–1272. [CrossRef]
30. Vocale, P.; Geri, M.; Cattani, L.; Morini, G.; Spiga, M. Electro-osmotic heat transfer in elliptical microchannels under H1 boundary

condition. Int. J. Therm. Sci. 2013, 72, 92–101. [CrossRef]
31. Vocale, P.; Geri, M.; Morini, G.; Spiga, M. Electro-osmotic flows inside triangular microchannels. J. Phys. Conf. Ser. 2014, 501, 012026.

[CrossRef]
32. Geri, M.; Lorenzini, M.; Morini, G. Effects of the Channel Geometry and of the Fluid Composition on the Performance of DC

Electro-osmotic Pumps. Int. J. Therm. Sci. 2012, 55, 114–121. [CrossRef]
33. Morini, G.L.; Lorenzini, M.; Salvigni, S.; Spiga, M. Thermal performance of silicon micro heat-sinks with electrokinetically-

driven flows. In Proceedings of the 3rd International Conference on Microchannels and Minichannels, Toronto, ON, Canada,
13–15 June 2005; Volume B, pp. 231–236.

34. Al-Rjoub, M.; Roy, A.; Ganguli, S.; Banerjee, R. Enhanced electro-osmotic flow pump for micro-scale heat exchangers. In Proceedings
of the ASME 2012 3rd International Conference on Micro/Nanoscale Heat and Mass Transfer, MNHMT 2012, Atlanta, GA, USA,
3–6 March 2012; pp. 829–833.

35. Pramod, K.; Sen, A. Flow and heat transfer analysis of an electro-osmotic flow micropump for chip cooling. J. Electron. Packag.
Trans. ASME 2014, 136, 03101201–03201214. [CrossRef]

36. Shamshiri, M.; Khazaeli, R.; Ashrafizaadeh, M.; Mortazavi, S. Electroviscous and thermal effects on non-Newtonian liquid flows
through microchannels. J. Non-Newton. Fluid Mech. 2012, 173–174, 1–12. [CrossRef]

37. Shit, G.; Mondal, A.; Sinha, A.; Kundu, P. Electro-osmotic flow of power-law fluid and heat transfer in a micro-channel with
effects of Joule heating and thermal radiation. Phys. A Stat. Mech. Its Appl. 2016, 462, 1040–1057. [CrossRef]

38. Al-Rjoub, M.; Roy, A.; Ganguli, S.; Banerjee, R. Enhanced heat transfer in a micro-scale heat exchanger using nano-particle laden
electro-osmotic flow. Int. Commun. Heat Mass Transf. 2015, 68, 228–235. [CrossRef]

39. Ray, S.; Misra, D. Laminar fully developed flow through square and equilateral triangular ducts with rounded corners subjected
to H1 and H2 boundary conditions. Int. J. Therm. Sci. 2010, 49, 1763–1775. [CrossRef]

40. Chakraborty, S.; Ray, S. Performance optimisation of laminar fully developed flow through square ducts with rounded corners.
Int. J. Therm. Sci. 2011, 50, 2522–2535. [CrossRef]

41. Lorenzini, M.; Morini, G. Single-phase, Laminar Forced Convection in Microchannels with Rounded Corners. Heat Transf. Eng.
2011, 32, 1108–1116. [CrossRef]

42. Lorenzini, M. The Influence of Viscous Dissipation on Thermal Performance of Microchannels with Rounded Corners. La Houille
Blanche 2013, 64–71. [CrossRef]

43. Lorenzini, M.; Suzzi, N. The influence of geometry on the thermal performance of microchannels in laminar flow with viscous
dissipation. Heat Trans. Eng. 2016, 37, 1096–1104. [CrossRef]

44. Lorenzini, M. Electro-osmotic Flow in Rectangular Microchannels: Geometry Optimisation. J. Phys. Conf. Ser. 2017, 923, 1–8.
[CrossRef]

45. Lorenzini, M. Electro-osmotic non-isothermal flow in rectangular channels with smoothed corners. J. Therm. Sci. Eng. Appl. 2020,
19, 100617.

46. Webb, R. Principles of Enhanced Heat Transfer; Wiley: New York, NY, USA, 1984.
47. Shah, R.K.; London, A.K. Laminar Flow Forced Convection in Ducts—A Source Book for Heat Exchanger Analytical Data; Academic

Press: New York, NY, USA, 1978.
48. Barletta, A.; Magyari, E. The Graetz-Brinkman problem in a plane-parallel channel with adiabatic-to-isothermal entrance. Int.

Commun. Heat Mass 2006, 33, 677–685. [CrossRef]
49. Suzzi, N.; Lorenzini, M. Viscous heating of a laminar flow in the thermal entrance region of a rectangular channel with rounded

corners and uniform wall temperature. Int. J. Therm. Sci. 2019, 145, 106032. [CrossRef]
50. Morini, G.L.; Lorenzini, M.; Salvigni, S.; Spiga, M. Thermal performance of silicon micro heat-sinks with electrokinetically-driven

flows. Int. J. Therm. Sci. 2006, 45, 955–961. [CrossRef]
51. Jian, Y.; Yang, L.; Liu, Q. Time periodic electro-osmotic flow through amicroannulus. Phys. Fluids 2010, 22, 042001. [CrossRef]
52. Sadr, R.; Yoda, M.; Zheng, Z.; Conlisk, T. An experimental study of electro-osmotic flow in rectangular microchannels. J. Fluid

Mech. 2004, 506, 357–367. [CrossRef]
53. Zimparov, V. Extended performance evaluation criteria for enhanced heat transfer surfaces: Heat transfer through ducts with

constant wall temperature. Int. J. Heat Mass Transf. 2000, 43, 3137–3155. [CrossRef]
54. Zimparov, V. Extended performance evaluation criteria for enhanced heat transfer surfaces: Heat transfer through ducts with

constant heat flux. Int. J. Heat Mass Transf. 2001, 44, 169–180. [CrossRef]
55. Tabeling, P. Introduction to Microfluidics; Oxford University Press: Oxford, UK, 2010.

http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.06.022
http://dx.doi.org/10.1021/j100895a062
http://dx.doi.org/10.1016/S0142-727X(97)00032-5
http://dx.doi.org/10.1002/elps.201000692
http://dx.doi.org/10.1016/j.ijthermalsci.2013.04.028
http://dx.doi.org/10.1088/1742-6596/501/1/012026
http://dx.doi.org/10.1016/j.ijthermalsci.2011.12.016
http://dx.doi.org/10.1115/1.4027657
http://dx.doi.org/10.1016/j.jnnfm.2012.01.011
http://dx.doi.org/10.1016/j.physa.2016.06.142
http://dx.doi.org/10.1016/j.icheatmasstransfer.2015.09.009
http://dx.doi.org/10.1016/j.ijthermalsci.2010.03.012
http://dx.doi.org/10.1016/j.ijthermalsci.2011.06.006
http://dx.doi.org/10.1080/01457632.2011.562457
http://dx.doi.org/10.1051/lhb/2013035
http://dx.doi.org/10.1080/01457632.2015.1111100
http://dx.doi.org/10.1088/1742-6596/923/1/012002
http://dx.doi.org/10.1016/j.icheatmasstransfer.2006.02.015
http://dx.doi.org/10.1016/j.ijthermalsci.2019.106032
http://dx.doi.org/10.1016/j.ijthermalsci.2006.01.009
http://dx.doi.org/10.1063/1.3358473
http://dx.doi.org/10.1017/S0022112004008626
http://dx.doi.org/10.1016/S0017-9310(99)00317-8
http://dx.doi.org/10.1016/S0017-9310(00)00074-0

	Introduction
	Mathematical Model
	Electric Potential Field
	Velocity Field
	Temperature Field

	Materials and Methods
	Numerical Modeling
	Problem Setup
	Grid Independence Analysis

	Results and Discussion
	Model Validation
	Fully Developed Flow Solution
	Graetz Problem Solution

	Conclusions
	
	Electric Potential Field
	Velocity Field
	Temperature Field

	References

