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Abstract
While the problem of the applicability of mathematics in science has been the object 
of much philosophical discussion, the converse issue of accounting for the success-
ful application of science in mathematics is still in its exploratory stages. In this 
paper I focus on the latter issue and I discuss it in connection with the mapping view 
of applied mathematics, which is currently the most influential approach adopted 
by philosophers to account for the applicability of mathematics in the empirical sci-
ences. More specifically, I address the question of whether the mapping view works 
for cases of converse applications (i.e., successful applications of the empirical sci-
ences in mathematics). By focusing on some case studies, I argue that the answer to 
this question is negative and the mapping account of applied mathematics, as it is 
usually presented in the literature on the applicability of mathematics, does not have 
the resources to handle the converse applicability issue. To make my point, I will 
proceed in the following way: first, I will maintain that we can distinguish two types 
of converse applications, which I name in-argument and in-result converse applica-
tions; next, I will assess the mapping account on these types of converse applica-
tions and I will point to the reasons why such view cannot accommodate converse 
applications within its framework.

1  Introduction

The ‘problem of the applicability of mathematics in science’, or sometimes sim-
ply ‘the applicability problem’, is the philosophical issue arising from the success-
ful application of mathematics in the empirical sciences. Surely, such an issue has 
a long-standing philosophical pedigree and the first reflections on it can be traced 
back at least to the early Pythagoreanism. Nevertheless, the fact that successful 
interactions between mathematics and the empirical sciences have been growing 
massively since the first half of the twentieth century has given new impetus to the 
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philosophical study of the applicability of mathematics. Several analyses have been 
developed by philosophers, and many of these centred around the reaction to Eugene 
Wigner’s paper ‘The unreasonable effectiveness of mathematics in the natural sci-
ences’ (Wigner, 1960).

Among the accounts that have been proposed, the most influential approach to 
address the applicability issue remains the so-called ‘mapping view of applicability’ 
(Pincock, 2004, 2012; Bueno & Colyvan, 2011; Bueno & French, 2018). The map-
ping view draws on a structuralist view of models and a 2-place relation account of 
representation, according to which representation is relation between a model and 
a target system. In this view, an explanation of the applicability of mathematics in 
the empirical sciences is given in terms of mappings that are established between 
mathematics and the empirical system we want to study. These mappings are math-
ematical and include not only isomorphisms but also other kinds of mathematical 
mappings such as homomorphisms, epimorphisms and monomorphisms. What 
mappings ensure is that some crucial features of the empirical system are mirrored 
in the mathematical model (a ‘structure’, in the mathematical sense) used to study 
that system. Thus, according to the mapping view, the applicability of mathemat-
ics is fully explained by appreciating the relevant structural similarities between the 
empirical system under study and the mathematical framework used in the investiga-
tion of that system.

Is the applicability problem the end of the story when it comes to the philosophi-
cal analysis of the interplay between mathematics and science? This question has 
been addressed in Molinini (2022) and Molinini (2023), where it is argued that the 
applicability problem, as usually conceived by philosophers of science and math-
ematics, does not fully render the philosophical issue that stems from the successful 
interplay between mathematics and the empirical sciences. The reason is that there 
also exist “converse applications”, namely successful applications of the empirical 
sciences in mathematics.1 In these studies, several examples of such applications are 
offered. Furthermore, some research avenues that are potentially advantageous for 
tackling the converse applicability issue (i.e., the issue of accounting for the effec-
tiveness of science in mathematics) are outlined. Among these directions for future 
research, one concerns the analysis of the mapping view in the context of converse 
applications and is particularly relevant to the present study:

By offering a novel, although sketchy, picture of application I am not ruling 
out the possibility that a different account of applicability, as for instance the 
mapping account view, may be able to provide a unified treatment of direct 
and converse applications. (Molinini, 2022, p. 19)2

Implicit within this remark is the following research suggestion: to investigate 
whether the mapping view, namely the most influential account that has been 

1  Molinini (2023) offers the first detailed philosophical analysis of converse applications. Nevertheless, 
it is important to note that other authors had already acknowledged the issue of accounting for the effec-
tiveness of science in mathematics (see, e.g., Levi, 2009; Skow, 2015; Ginammi, 2018).
2  The expression ‘direct applications’ refers to successful applications of mathematics in science.
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proposed by philosophers to explain the success of applications of mathematics in 
science, can be used to account for converse applications. The main goal of the pre-
sent study is to enrich our understanding of converse applications by examining this 
proposal.

To pursue this objective and assess whether the mapping view of applicability 
can be used to account for successful applications of science in mathematics, I will 
proceed in two steps. First, in Sect. 2, I will distinguish two types of converse appli-
cations (in-argument and in-result converse applications). In this section, I will also 
present two case studies from mathematical practice that bring out the significance 
of making such type-distinction. Secondly, in Sect. 3, I will focus on the question 
of whether the mapping view can accommodate converse applications and I will 
show why this question should be answered in the negative. More precisely, I will 
draw attention to two issues arising for the mapping account in the context of con-
verse applications: object- and theory- sensitivity. After presenting my argument, in 
Sect. 4 I will consider some remarks that can be used to challenge my criticism and 
I will maintain that these considerations fall short of their goal. Finally, in the con-
cluding section, I will resume the results of my analysis and point to the import that 
the present work has in the context of the philosophical study of one topic, that of 
converse applications, which is still largely unexplored.

2 � Types of Converse Applications

Before presenting the distinction I make between two types of converse applications, 
let me introduce a couple of clarifications about what we mean by ‘successful appli-
cations of science in mathematics’ (or ‘converse applications’).3

First, when we speak of ‘applications of science in mathematics’, we are only 
considering the application of theoretical parts of science in mathematics. In other 
words, the applicability in question has to do with the “application of (methods and 
ideas that are proper to) science in mathematics”, with the proviso that these meth-
ods and ideas are not empirical in themselves (Molinini, 2023, p. 3). For instance, 
the use of the alleged mechanical instruments invented by the Pythagorean Archytas 
of Tarentum to determine mean proportionals, which seems to have angered Plato, 
would not count as a converse application of mechanics in mathematics,4 Simi-
larly, Lakatos’s use of empirical considerations in his famous discussion of Euler’s 
conjecture for polyhedra, reported in his Proofs and Refutations (Lakatos, 1976), 
would not qualify as a converse application. Or, to use a more modern example, the 
use of a computer to solve a mathematical problem would not count as a converse 

3  In characterising such applications, I am following Molinini (2023).
4  The story of Plato’s quarrel with Archytas is reported in the Table Talk, which is a set of dialogues in 
Book VIII of Plutarch’s Moralia. According to Plutarch, Plato criticized Archytas’ use of the intelligible 
realm in geometry and accused him of destroying the value of geometry by appealing to machines to 
solve geometrical problems.
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application, since here too we would not be applying a theoretical bit of science, but 
rather an empirical piece of it.

Secondly, it is important to explain what we mean by ‘successful’ applications 
of science in mathematics. In other words, when can we say that an application of 
science in mathematics is successful? The answer to this question is, as suggested 
in Molinini (2023), straightforward: we have a successful (converse) application 
when we have a purely mathematical proof of the mathematical result that is the 
object of such (converse) application (Ibid., p. 13). For instance, consider that we 
are using a physical law within a mathematical argument (this is the scenario that 
we will encounter in the first example illustrated below). In this case, to say that the 
application of the physical law in mathematics is successful, we need to know that 
the mathematical result is correct from a purely mathematical point of view, that is, 
we need a purely mathematical proof of it. If we do have such proof, then we can 
answer in the affirmative the question of whether the application of physics in math-
ematics is successful.

Let me now introduce a new topic for discussion. This topic has gone unnoticed 
until now and it concerns the distinction of converse applications into two different 
types: in-argument and in-result converse applications. I define them in the follow-
ing way:

in-argument converse applications: converse applications in which non-mathe-
matical considerations are successfully used in the mathematical treatment of a 
mathematical problem.

in-result converse applications: converse applications in which non-mathematical 
considerations lead to the conclusion of a mathematical argument.

The distinction between in-argument and in-result converse applications lies in the 
specific way in which non-mathematical considerations are applied in mathematics 
(i.e., in their ‘point of application’).5 As the name suggests, in-argument converse 
applications are characterised as converse applications in which non-mathematical 
considerations are applied within the mathematical argument that is used to estab-
lish a (mathematical) result. To put it another way, in in-argument converse appli-
cations the point of application of non-mathematical considerations is within the 
mathematical argument itself. On the other hand, in in-result converse applications 
the non-mathematical ingredient does not intervene within the mathematical argu-
mentation but at the level of the mathematical result. Once a non-mathematical con-
clusion is reached, such conclusion can be identified with a mathematical result, and 
therefore we say that non-mathematical considerations lead to, or ‘support’, the con-
clusion of a mathematical argument.

5  Implicit in my definitions is the assumption that the non-mathematical considerations applied in math-
ematics are scientific ones. And even if in the present paper I will be focusing on the case of physics, I 
am leaving open the possibility that the non-mathematical considerations in question come from empiri-
cal sciences other than physics.
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To illustrate the distinction just introduced, I will consider two examples. Both 
are drawn from actual mathematical practice, and for each of the two mathematical 
results relative to them there exists a purely mathematical proof that sanctions the 
‘success’ of the converse application in question (indeed, for each of these results we 
have more than one mathematical proof). The first example comes from Archime-
des’ work in geometry and it has already been presented in detail in Molinini (2023). 
Here I will just recap it to make the following point: the kind of converse application 
involved in this example is an in-argument converse application. The second exam-
ple, which provides a case for the existence of in-result converse applications, deals 
with an application of mechanics in geometry. This example has also already been 
used in previous philosophical writing. In fact, it has been discussed by Gila Hanna 
and Hans Niels Jahnke in the context of a study in mathematics education (Hanna 
& Jahnke, 2002). Nevertheless, differently from what these authors do in their 2002 
paper, here I will examine the example in the context of the philosophical analysis of 
converse applications.

2.1 � An Example of In‑Argument Converse Application

In the first proposition of his treatise The Method of Mechanical Theorems, usu-
ally referred to as The Method, Archimedes states that the parabolic segment (i.e., 
the region bounded by a parabola and a line) is four-thirds the triangle it encloses,6 
The diagram in Fig.  1 serves as an illustration of this proposition: if the para-
bolic segment ABC (henceforth ABCps ) is bounded by the straight line AC and the 
parabola � , and if the point B is found by drawing from the middle point of AC 
(the point D in figure) a line parallel to the axis of symmetry, or diameter, of the 
parabola (the dashed line in figure), then the area of the parabolic segment ABCps 

6  In this section, I am reporting only those aspects of Archimedes’ argument that are instrumental to 
make my point. For a more comprehensive presentation of Proposition 1 of The Method the reader is 
referred to Heiberg (1909) and Dijksterhuis (1987). Archimedes’ mathematical treatment is also 
described, in full details, in Molinini (2023).

Fig. 1   The parabolic segment 
ABC is bounded by the straight 
line AC and the parabola � . 
Point B is determined by draw-
ing a line parallel to the axis of 
symmetry of the parabola from 
the midpoint D of AC 
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is equal to four-thirds of the area of the triangle △ABC inscribed in the parabola 
( ABCps =

4

3
△ ABC).

To reach the desired conclusion, Archimedes makes use of physical, and there-
fore non-mathematical, considerations. More precisely, he uses the law of lever. 
How? The law of the lever, found by Archimedes in Propositions 6 and 7 of his trea-
tise On the Equilibrium of Planes, states that bodies placed on opposite sides of a 
fulcrum are in equilibrium at distances reciprocally proportional to their weights. 
For instance, if two bodies of masses A and B are placed on the arms of a straight 
lever of fulcrum F, and if dA and dB are the distances of the bodies’ centres of mass 
from the fulcrum, then the two bodies will balance just in case dA∕dB = B∕A 
(Fig. 2a). In his mathematical treatment, Archimedes uses this mechanical law in the 
following way: he takes a straight line, HX, and considers it as an idealized lever, of 
arms HK and KX, that remains in equilibrium under the influence of two weights; 
the two ‘weights’ in question are the parabolic segment ABCps and the triangle 
△AZC ; by considering the geometrical objects in this way, namely as objects that 
define a lever-system in which longer segments and larger figures have greater 
weight than shorter segments and smaller figures, Archimedes is able to use the law 
of the lever and state the following equation: HK

KX
=

△ZAC

ABCps

 (Fig. 2b). Such equation, 

which results from an application of the law of the lever within a purely geometrical 

Fig. 2   The law of the lever, established by Archimedes in Propositions 6 and 7 of the treatise On the 
Equilibrium of Planes, is applied in a purely geometrical context
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scenario, is what allows Archimedes to proceed in his mathematical treatment and 
reach the mathematical conclusion.

It has already been noted how Archimede’s geometrical treatment of Proposi-
tion 1 is an example of converse application, where the success of the application 
is secured by the existence of a purely mathematical proof of the result (Molinini, 
2023). To these considerations, I add a further element: the kind of converse appli-
cation involved in this example is an in-argument converse application, since in this 
case non-mathematical considerations (the law of the lever) are successfully used in 
the mathematical treatment of a mathematical problem (Archimedes’ geometrical 
argument).

But do converse applications always conform to the type of application described 
here? In the next subsection I focus on another example, which shows how there 
exists another type of converse application that is essentially different from an in-
argument converse application.

2.2 � An Example of In‑Result Converse Application

Let us now move to another converse application: an application of mechanics in 
geometry to find that given an arbitrary quadrangle the midpoints of its sides form a 
parallelogram. In mathematics, this result is known as ‘Varignon theorem’.

Consider A,  B,  C,  D as four weights, each of mass 1, connected by rigid but 
weightless rods. What we obtain is the physical system represented in Fig.  3, of 
total mass 4. If we want to determine the centre of gravity of such system, we start 
from the following consideration: AB and CD, which are subsystems of the main 
system, each have weight 2. Next, we observe that the centres of gravity of AB and 
CD are their midpoints W and Y. At this point, we appeal to static considerations and 
replace AB and CD by W and Y, each having mass 2. But AB and CD constitute the 
entire system ABCD. Therefore, the centre of gravity of ABCD is the midpoint M of 
WY. By reasoning in the same way, we can consider ABCD as constituted by BC and 
DA. Hence the centre of gravity of the system ABCD must also be the midpoint of 
XZ. Now, since the centre of gravity of the system is unique, this midpoint must be 

Fig. 3   Diagram represent-
ing a physical system ABCD 
composed by four weights 
(A, B, C, D), each of mass 1, 
connected by rigid but weight-
less rods. The centre of gravity 
of ABCD is the midpoint M of 
WY, which is also the midpoint 
of XZ 
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M. What this means is that M divides both WY and XZ into equal parts. As a conse-
quence, the object WXYZ, whose diagonals are WY and XZ, is a parallelogram,7

What we have found through a physical argument is a result that can be inter-
preted mathematically. In Euclidean geometry, Varignon theorem deals with the 
construction of a particular parallelogram (‘Varignon parallelogram’) from an 
arbitrary quadrangle. The theorem, which was first proved by the French math-
ematician Pierre Varignon in 1731 (Varignon, 1731), states that ‘The midpoints 
of the sides of an arbitrary quadrilateral form a parallelogram’. This is exactly the 
result that we found through the physical argument.

We can now appreciate the difference between the example considered in the pre-
vious subsection and the one seen in the previous lines. Both are converse appli-
cations (of physics in mathematics). Nevertheless, there is an essential difference 
between the way in which non-mathematical considerations intervene in the applica-
tion process. In Archimedes’ case, a physical law is applied within a mathematical 
argument. In the example illustrated in this subsection, on the other hand, physical 
considerations are used to support a mathematical conclusion (Varignon theorem) 
and are therefore applied to the conclusion of the mathematical argument. In the lat-
ter case, what we have is an in-result converse application.

Before proceeding to the next section, and more specifically to the question of 
whether the mapping view can accommodate in-argument and in-result converse 
applications, let me dispel two important doubts that may arise in connection with 
the last example discussed. First of all, are we sure that the role of physics in this 
example is not merely a representational one (i.e., that of just representing the 
mathematical concepts we are interested in)? Secondly, are we applying physics to 
mathematics in the form of theoretical principles? The doubts in question can be 
dispelled by introducing some observations. First, it is important to note that the 
physical considerations used to analyse the system ABCD make use of physical laws 
(e.g., mechanical laws about the equilibrium of bodies), which in turn embed con-
cepts that have no mathematical counterpart (e.g., the uniqueness of the centre of 
gravity of a 2-dimensional body). Furthermore, the physical considerations allow 
one to establish theoretical connections among statements, thus providing us with an 
argument that can be used to generalise further.8 For these reasons, the role of phys-
ics is not simply that of representing some mathematical concepts, and the applica-
tion in question should be regarded as an application of theoretical parts of physics.9 
The very same point about the value of physical considerations in this example is 
made by Hanna and Jahnke:

8  To generalise and extend the physical argument, we can consider a system with a different number of 
masses and determine its centre of gravity. For the way in which this can be done, see Hanna and Jahnke 
(2002).
9  Here I am claiming that physical considerations have a key role in leading to, or supporting, the math-
ematical result. This, of course, does not mean that the physical argument is the only path to the mathe-
matical result. In fact, as I have already noted, Varignon theorem can be proved within pure mathematics.

7  The argument reported here is taken from the textbook Some Applications of Mechanics to Mathemat-
ics, written by the Russian mathematician Vladimir Uspenskii (1961, pp. 30–31). The same argument 
appears in Hanna and Jahnke (2002).



Mapping‑Based Accounts of Applicability and Converse…

The application of physics under discussion here goes well beyond the simple 
physical representation of mathematical concepts [...] What is being explored 
here is the classroom use of proofs in which a principle of physics, such as the 
uniqueness of the centre of gravity, plays an integral role in a proof by being 
treated as if it were an axiom or a theorem of mathematics. This application 
of physics is also entirely distinct from experimental mathematics, which pur-
ports to employ empirical methods to draw valid general mathematical conclu-
sions from the exploration of a large number of instances. (Hanna & Jahnke, 
2002, p. 1)

Having illustrated the distinction between two types of converse applications, and 
how this distinction is supported by two cases of converse applications taken from 
actual mathematical practice, in the next section I move to the examination of the 
mapping view in the context of converse applications. The distinction made between 
in-argument and in-result converse applications will play a key role in developing 
my analysis.

3 � Mapping View and Converse Applications

Rather than a single view, the mapping view can be described as a set of approaches. 
In fact, proponents of this picture of application adopt different stances on what 
mappings are to be adopted and how these mappings should be determined. Never-
theless, what all these approaches have in common is that they “seek to explain the 
utility of mathematics in some applied situation by demonstrating the existence of 
the right kind of map from a mathematical structure to some appropriate physical 
structure” (Batterman, 2010, p. 8). In the present section, I will consider this idea as 
the hallmark of the mapping view and my analysis will be directed towards the map-
ping view in general (rather than towards one or more specific mapping approaches).

Let us now address the following question: Can the mapping account of 
applied mathematics accommodate in-argument and in-result converse applica-
tions? Below I offer a twofold argument to answer this question in the negative. 
First, I show that the mapping view falls short in explaining in-argument converse 
application because of a specific issue that I call object-sensitivity. Next, I show 
that the mapping view also faces a challenge when it comes to in-result converse 
applications, since in this context it suffers from another issue that I name theory-
sensitivity. Taken together, these issues highlight that the mapping view, in the 
general form discussed here, is not able to handle converse applications.

Before moving to the specific issues just mentioned, it is important to dis-
cuss a point that will be instrumental in building my argument. In order to 
assess the mapping account for a particular scenario, the standard way to pro-
ceed is to characterise the mathematical and the empirical content of our set-
ting in structural terms and see whether the (mathematical and empirical) struc-
tures are related through one or more suitable mappings. Thus, we can represent 
the mathematical content by a structure T =< E , Rt > , where E is a non-empty 
set of mathematical objects and Rt is a non-empty indexed set of mathematical 
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relations on E, and the empirical content by a structure S =< D , Rs > that con-
sists of a non-empty set D of physical objects and a non-empty indexed set Rs of 
relations on D. In this way, we identify two structures (one relative to the math-
ematical content and the other relative to the physical content). Afterward, we 
can assess if there exists a structure-preserving mapping that links the two struc-
tures. Now, if we proceed in this way, it seems that the mapping account can be 
said to work for both in-argument and in-result converse applications. In fact, in 
both cases, the structural characterisation of the setting allows us to identity the 
relevant structures and pick out a structure-preserving mapping. The reason for 
this is that in the case of converse applications it is always possible to say that T 
is structurally isomorphic to S, that is, there exists a function f ∶ D ⟶ E that 
is bijective and that preserves relations between the elements of D and E. This is 
easy to see in our examples. In Archimedes’ case, the structure T =< E , Rt > is 
identified by considering as elements of E the particular geometrical objects that 
appear in the equation HK∕KX = △ZAC∕ABCps and as elements of Rt the geo-
metrical relations that are fixed by the equation itself. If we move to the empiri-
cal content, we can characterise S =< D , Rs > as the structure in which D is 
the set of physical objects that appear in the law of the lever dA∕dB = B∕A and 
Rs is the set of physical relations fixed by the law of the lever itself. Similarly, 
if we consider our second example, we can identify: a mathematical structure 
T =< E , Rt > , in which the elements of the set E are some geometrical objects 
(lines and points) and the elements of Rt are the particular relations existing 
between these objects according to Varignon theorem; an empirical structure 
S =< D , Rs > in which D is the set of physical objects that appear in the conclu-
sion of the physical argument (weights and rods) and Rs is the set of physical 
relations that exist between these objects. In both examples, the mathematical 
and the physical structures are related through a structure-preserving mapping, 
and more specifically through an isomorphism.

Thus, the mapping view seems to work very well for converse applications. 
Nevertheless, this conclusion is too quick. In fact, although the mapping account 
works very well (and maybe too well) according to the analysis just sketched, 
if we examine its viability from a slightly different standpoint we can see how 
two important issues arise: object-sensitivity and theory-sensitivity. It is to these 
issues that I turn my attention in the remaining part of this section.

3.1 � The Object‑Sensitivity Issue

I introduce object-sensitivity as the following issue:

object-sensitivity: the mapping account is not sensitive to some features of the 
physical setting that are embedded in, and essential to, the non-mathematical con-
siderations that are applied in mathematics.

What does this mean? Consider a physical law in the form of a generalisation (e.g., 
the law of freely falling bodies, which states that the distance a body falls to earth 
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in time t is (1∕2)gt2 ). Such generalisation usually requires a number of provisos that 
must be met for it to be valid (e.g., the absence of air resistance). Moreover, the sort 
of information contained in these provisos is information about some features of the 
physical setting we are interested in (e.g., the physical setting is a physical setting in 
which the medium is devoid of resistance). Therefore, we can say that the generali-
sation embeds a number of features of the physical setting that must be ‘as such’ if 
we want to consider the law as valid.10 Now, if some of the conditions concerning 
these features had been different, but the generalisation had retained the same for-
mal structure (e.g., s(t) = (1∕2)gt2 ), it is reasonable to assume that the result of the 
converse application would also have been different. Nevertheless, under the coun-
terfactual hypothesis that some conditions on the features of the physical setting 
were different, the mapping account would still have worked (that is, the analysis 
provided above in terms of structures and structure-preserving mappings would still 
apply). More precisely, in such a counterfactual scenario, the formal relations that 
characterise the generalisation will continue to hold for the relevant mathematical 
objects, regardless of the provisos on the law that do not actually allow its applica-
tion, and the appropriate mapping would mirror such formal relations. Therefore, 
the mapping account is not sensitive to some features of the physical setting that are 
embedded in, and essential to, the non-mathematical considerations that are applied 
in mathematics.

The object-sensitivity issue clearly emerges in connection with the analysis of 
in-argument converse applications. Take, for instance, Archimedes’ example. In 
the counterfactual scenario that I am considering, the counterfactual changes affect 
the provisos required for the law to apply, but the law itself remains unaffected. In 
Archimedes’ case, we can focus on some features of the physical underpinning for 
the equilibrium-preserving assumption, such as the uniform weightless character of 
the lever arms. Although such features do not explicitly figure in the law of the lever, 
they are embedded in this law and are also essential to it. In particular, what we can 
envisage is a counterfactual scenario in which the proviso concerning the uniform, 
weightless character of the lever arms is different (e.g., the law applies when the 
lever arms are not uniform and weightless), but the law of the lever (magnitudes 
are in equilibrium at distances reciprocally proportional to their weights) still holds. 
In such a scenario, the law of the lever would not apply in mathematics because, 
as observed by Archimedes himself, in mathematics we do consider segments and 
figures as uniform and weightless. Nevertheless, in the very same scenario, all the 
structural relations that characterise the law of the lever are still intact and have a 
mathematical counterpart. And since these relations are the formal (structural) rela-
tions captured by the mapping view when demanded to account for the applicability 

10  My claim that some laws require provisos can be elaborated further in terms of the debate on strict 
generalisations and ceteris-paribus generalisations (for a presentation of this debate see Lange, 1993; 
Earman & Roberts, 1999; Reutlinger & Unterhuber, 2014). Such discussion has received much atten-
tion in the philosophical literature on laws and it is unquestionably central to the philosophy of science. 
Nevertheless, it is not necessary to resort to it in order to make the simple point that some laws require 
provisos. For this reason, I am not addressing it here.
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of physics in Archimedes’ example, the mapping would still obtain (regardless of 
the provisos on the law that do not actually allow the application).

This can be seen more formally. Consider the hypothetical scenario described in 
the previous paragraph, in which the law of the lever applies when the lever arms 
are not uniform and weightless. In this case, considering the step at which Archime-
des uses the law of the lever in his mathematical treatment, we would (still) have: a 
structure S =< D , Rs > that captures the empirical content, where D = {body 1 of 
weight W1 , body 2 of weight W2 , arm 1 of length L1 , arm 2 of length L2} and Rs is 
a four-place relation holding between W1 , W2 , L1 , L2 and expressing the law of the 
lever (the four-place relation expresses the following proportion: ‘ W1 is to W2 as L2 
is to L1’); a mathematical structure T =< E , Rt > , where E = {geometric figure 1 of 
area A1 , geometric figure 2 of area A2 , segment 1 of length S1 , segment 2 of length 
S2} and Rt is a four-place relation holding between A1 , A2 , S1 and S2 (the relation is 
‘ A1 is to A2 as S2 is to S1’). We can now observe that S is structurally isomorphic to 
T because there exists a function f ∶ D ⟶ E that is bijective and that preserves 
relations between the elements of D and E.11 This is all the (structural) information 
required for the mapping account to capture the successful application of the law 
of the lever in mathematics. Thus, the mapping has survived because no informa-
tion about the specific conditions required for the law to apply is mirrored in this 
account. Nevertheless, since in the counterfactual scenario we are considering the 
provisos on the law do not allow the application of the law of the lever in mathemat-
ics, we do not have an application of the physical law in mathematics.

The principal conclusion drawn from the preceding analysis is that since cer-
tain provisos do not define the structural relations that characterise the physical law 
involved in the application, a change in them does not affect the way in which the 
mapping view accounts for the applicability of physics to mathematics. In fact, in 
a physically possible scenario in which such provisos are different but the physi-
cal law retains the same structure, the mapping established between the mathemati-
cal and the physical structures is still one that preserves structure, and the mapping 
account is still deemed successful. Nevertheless, and this is the key point, we do 
know that the physical features described by the provisos are crucial to the applica-
tion process. Indeed, if one or more of these features were different, we would have 
a different application of physics in mathematics or, as it happens in Archimedes’ 
case, no application at all. Thus, there is something that the mapping account picture 
of applications is missing when it comes to converse applications, and more particu-
larly when such view is used to give an explanation of the success of non-mathe-
matical considerations in those converse applications that I have named in-argument 
converse applications.

11  Let me note that, on a more rigorous level of analysis, here we should speak of relations between 
properties of the elements of D and E. Nevertheless, this more fine-grained perspective does not under-
mine my formal analysis and the point I want to make in this paragraph, since discussing relations 
between properties of the elements of D and E is essentially discussing relations between elements of 
these sets (e.g., speaking of a relation between the weight of body 1 and the weight of body 2 is speak-
ing of a relation between body 1 and body 2). For this reason, and also for reasons of brevity, I am using 
‘relations between elements’ instead of ‘relations between properties of elements’.
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3.2 � The Theory‑Sensitivity Issue

Let us now move to the second issue examined here, that is, theory-sensitivity. Such 
issue can be characterised in the following way:

theory-sensitivity: the mapping account is not sensitive to the actual physics used 
in the converse application process.

What this means is that if some physical laws (the actual physics) had been different 
but had led to the same result, the mapping account would still have worked. Simi-
larly to the previous issue, what we are considering here is a counterfactual scenario. 
Nevertheless, differently from the previous issue, we are focusing on the physical 
laws involved in the converse application, rather than on the features of the physi-
cal setting.12 What we are examining is the way in which the mapping view would 
respond to a change in one or more physical laws used in the converse application.

In the previous subsection, we noted how object-sensitivity arises in the context 
of in-argument converse applications. In the present subsection, we can proceed in 
a similar way and observe how theory-sensitivity can be appreciated by consider-
ing in-result converse applications. Take, for instance, our second example (i.e., the 
example in which we analysed the system ABCD). We can imagine a scenario in 
which the weight A has mass 1 and the weight B has mass 2, but the centre of grav-
ity of AB is still its midpoint. Of course, this is a counterfactual scenario that does 
not correspond to our actual physics (indeed, if we use the actual physics, the centre 
of gravity for such system would not be the midpoint of A and B). But on a contin-
gentist view of laws, some facts about the world are contingent on the way some 
aspects of the world are, and we can take some laws of physics as contingent (see, 
e.g., (Sidelle, 2002; Strevens, 2008). For instance, the fact that the centre of gravity 
of a system made by A, of mass 1, and B, of mass 2, is not their midpoint, is contin-
gent on how gravity is acting in the world. Thus, we can conceive a physically pos-
sible scenario in which the weight A has mass 1 and the weight B has mass 2, and 
it still holds that the centre of gravity of AB is its midpoint M. If we acknowledge 
such a counterfactual scenario, it is possible to consider again the system ABCD 
and build a physical argument whose conclusion coincides with the conclusion we 
reached when we presented the example of Varignon theorem in Sect. 2.2. And, at 
this point, we can ask whether the mapping account would still work (even though 
we know that the physical laws we used are, from the standpoint of our actual sci-
ence, incorrect).

Not surprisingly, we discover that the mapping account would still work in sce-
narios like that envisaged in the previous lines. Why? The diagnosis is similar to 

12  Note that I am implicitly making a distinction between the law and the provisos about the state of 
affairs described by a law-statement. For instance, I am considering that the law of falling bodies 
s(t) = (1∕2)gt2 should be distinguished from those conditions, like the absence of air resistance, that 
should be met for such law to apply. Such distinction is usually made in the philosophical literature on 
laws.
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what we have already seen in the case of object-sensitivity and can be resumed by 
saying that the mapping view is not sensitive to (i.e., it does not track) the phys-
ics that is relevant to the application process. When we change the physics of the 
system, and at the same time we have that the conclusion of the physical argument 
still applies with success in mathematics, the empirical and mathematical structures 
examined in the application process are unaffected by the change. And the same 
holds for the structure-preserving mapping between these structures: the mapping 
account will continue to work, untouched by the changes that we are envisaging, 
because the mathematical relations will keep mirroring the empirical relations. 
However, this would be problematic, as we want to say that the applicability in ques-
tion holds when we use our current physical laws, and not also when we manipulate 
the actual physical laws used in the application process.

Let me elaborate more on theory-sensitivity and clarify why it presents an issue 
for the mapping account.13 In the counterfactual scenario envisioned above, the 
application of physics to mathematics is still successful. And we may think that what 
this shows is that, contra to my claims, certain aspects of the physics are not impor-
tant to the application. Thus, the advocates of the mapping account would stress that 
what my argument shows is that only some aspects (e.g., the fact that the centre of 
gravity is at the midpoint between the two masses) are relevant to the success of the 
application. Nevertheless, my aim in this section is to present an argument that goes 
beyond the structural aspects considered by the mapping account. More precisely, 
what I address in this section is the question of whether wrong physical considera-
tions (that is, physical considerations that do not belong to our actual, or best, phys-
ics because they are disconfirmed empirically) genuinely lead to a converse applica-
tion process. My point is that obtaining an in-argument application through physical 
considerations that –we know– are not right (as the physical consideration envisaged 
in the counterfactual scenario) does not count as a genuine successful application. 
And this even if the result of the argument built on these considerations preserves 
some structural aspects that can be seen as essential to the (converse) application 
process. How can I support this view? The argument in favour of this standpoint is 
twofold. First, we can note how working mathematicians do not consider applica-
tions of flawed physics in their applications of physics in mathematics. This holds 
for the examples of converse applications analysed in the literature (see, e.g., Molin-
ini, 2023), and also for the examples reported in the present work. All such cases are 
taken from mathematical practice. Thus, if we want to give an account of converse 
applications that mirrors the way in which working mathematicians apply physics in 
their practice, it seems that we have to consider that a legitimate converse applica-
tion does not make use of wrong physics. Secondly, and perhaps more significantly, 
converse applications resulting from a physical argument based on erroneous physi-
cal considerations (such as the physical law discussed earlier, specifically ‘the centre 
of gravity of two different weights A and B is the midpoint of AB’) should not be 
considered genuine converse applications because they rely on arguments that use 

13  I am thankful to an anonymous reviewer for pushing me to clarify my presentation of the theory-
sensitivity issue and improve my argument.
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principles falling outside the scope of what is accepted within our best physics. This 
is precisely the point with theory-sensitivity. If we have two arguments that lead 
to the same converse application, where one argument (e.g., that envisioned in the 
counterfactual example) relies on considerations we deem illegitimate from a physi-
cal standpoint, while the other employs principles grounded in our actual physics, 
we aim to distinguish between them and assert that the only valid converse applica-
tion arises from sound physical considerations. The mapping view does not discrim-
inate between the two scenarios (it is not sensitive to the counterfactual change). 
Nevertheless, it seems that we want to draw such a distinction.14

The natural conclusion of this section is that, taken together, object- and theory- 
sensitivity undermine the possibility of using the mapping view of application to 
account for converse applications. Furthermore, what the analysis presented thus far 
seems to highlight is that, rather than providing an explanation for the success of 
science in mathematics, the mapping view offers a picture about how some empiri-
cal terms that are involved in the application process are represented mathematically. 
And for it to provide an explanation of the converse application process something 
more than mere correspondence between an empirical and a mathematical structure 
is required.15

Can we rescue the mapping view from the criticism above? The goal of the next 
section is to discuss some strategies that proponents of the mapping account can 
employ to defend their view.

4 � Possible Responses to the Criticism

In this section I address four concerns that can arise in connection with the criti-
cism just presented. By limiting my discussion to these concerns, I am not sug-
gesting that they are the only worries that can be raised against my argument. 
Nevertheless, I see them as particularly relevant to my analysis and for this reason 
I am narrowing my focus.

First, it can be noticed how the conclusion reached in the previous section 
(i.e., object- and theory- sensitivity undermine the possibility of using the map-
ping view of application to account for converse applications) rests on the claims 

15  This point resonates with what has been already observed by other authors in their discussions of the 
mapping account in cases of applications of mathematics in science. For instance, in his analysis of the 
application of the mapping view in the context of a problem of election design (Arrow’s voting problem), 
Davide Rizza has noted how “mapping-based accounts of applications must therefore include mapping-
independent moves as part of the application process, if they are to be realistic.”(Rizza, 2013, p. 402).

14  For the unconvinced reader, let me briefly consider an even more distant-from-actuality (counterfac-
tual) scenario. In this scenario, the centre of gravity of two weights A and B is the midpoint of AB only 
when A and B are perfect spheres (denote this law as LS , and WS as the world in which such law holds). 
In WS , the application of a physical argument based on LS in mathematics is successful. However, when 
we consider our actual world and actual physics, it is reasonable not to regard the converse application 
of an argument based on LS as a genuine converse application. This is because LS is not recognised as a 
physical law in our actual world. Nevertheless, the mapping account does not distinguish between the 
counterfactual and the actual scenarios.
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that (a) converse applications are just of two types, namely in-argument and in-
result converse applications, and that (b) these types of converse applications are 
essentially different. Are these claims questionable? Of course they are. Never-
theless, those who want to deny (a) would need to find other types of converse 
applications in the actual practice of mathematicians and show that these types of 
converse applications do not conform to the types of converse applications intro-
duced here, while those who want to deny (b) should show that there is no essen-
tial difference between examples like those discussed here. In both cases, the bur-
den of the proof is on those who want to deny (a) and (b).

Let me now address a second, more significant concern: even granting that the 
mapping account is not sensitive to the features of the physical setting (object-sensi-
tivity) and to the actual physics used in converse applications (theory-sensitivity), is 
such insensitivity a real issue from the perspective of the mapping view? Supporters 
of the mapping view might respond to this question with a simple “no”, noting that 
the fact that the mapping-based account works well when we analyse converse appli-
cations in terms of structures marks the end of the story. If we endorse this line of 
reasoning, insensitivity (in both its variants) does not matter. In fact, since the idea 
behind the mapping view is to show that the application is successful because there 
exists a structural similarity between the empirical and the mathematical contents, 
finding such structure similarity is the desired result. To this remark, I respond by 
observing how the application process does not seem to be just a matter of showing 
that there is a structural similarity between two structures taken in isolation from the 
whole physical and mathematical contexts. In fact, what my examination of object- 
and theory- sensitivity suggests is that an analysis of converse applications in terms 
of purely structural features may not be sufficient to account for these applications. 
This is because such analysis lacks relevant information about the provisos on the 
law(s) and the actual character of the physical considerations used in the application. 
Thus, if non-structural features can matter to converse applications, we must not 
overlook these elements when explaining the converse application process. Simply 
asserting a structural similarity between two structures at the stage where we apply 
physics to mathematics does not appear to adequately capture the richer context in 
which the relevant application takes place.

To the considerations just raised, we can add an observation that highlights an 
interesting asymmetry existing between the way in which the mapping account han-
dles object- and theory- sensitivity in the context of converse applications and the 
way in which the same account deals with these issues in the context of direct appli-
cations (that is, in the context of applications of mathematics to science). Although 
the mapping view is, according to my argument above, not able to accommodate 
converse applications because of object- and theory- sensitivity, it is not vulnera-
ble to the same issues when it is considered in the context of direct applications. 
Why? The reason lies in the following remarks. First, if we consider object-sensi-
tivity in the context of direct applications, we can note how the mathematics used in 
the application is not subject to the same counterfactual treatment that we used, in 
Sect. 3.1, to reason on the provisos of the physical law. Mathematical laws, in fact, 
are not contingent on external conditions like physical laws are. And even if we con-
sider that there are contexts in mathematics where certain conditions or assumptions 
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(analogous to provisos in a broader sense) are required for specific results or theo-
rems to hold, such conditions or assumptions are stated explicitly because they guar-
antee that the conclusion of the theorem is true. Thus, a change in the assumptions 
of the deductive argument that leads to a result would always produce a change of 
the result itself, and therefore a different application of mathematics to science or 
an invalid proof. In this situation, contrary to what happens with converse applica-
tions, the mapping account will be able to track the change by incorporating it into 
its structural framework.16 Secondly, if we evaluate the issue of theory-sensitivity 
in the context of direct applications, we can note how such issue does not arise. The 
reason is that it would be impossible to imagine a counterfactual scenario in which a 
mathematical law (i.e., a theorem) or axiom is changed and the mathematical result 
that is obtained through that law or axiom remains the same. A change in the math-
ematical law(s) or axiom(s) used to reach a particular result would involve a change 
in the result itself. This is, after all, a key feature of mathematics: even a slight vari-
ation of the statements that are used in the deductive chain that drives us from some 
statements to the conclusion will lead to a different outcome (or to an invalid proof). 
Therefore, contrary to what happens with converse applications, in this scenario the 
mapping account is immune to theory-sensitivity because a change in the theorem or 
axiom used to reach a conclusion is always mirrored in the structural framework of 
the account.17

There is a third remark that seems to me extremely relevant to the criticism 
presented in the previous section and that can be advanced against my argument, 
namely: even if in its basic form the mapping account cannot handle converse appli-
cations, such account can be supplemented with a partial structures framework and 
this extension may be sufficient to handle the issues raised here. It is to this third 
remark that I will now turn my attention.

At the beginning of the previous section, I observed how there exist several strat-
egies to implement the mapping conception of application. I also noted how all these 
approaches share a common idea: the applicability of mathematics can be explained 
in terms of (mathematical and empirical) structures and mappings between these 
structures. The partial structures framework, originally introduced by Newton da 

16  It may be observed that there are also cases in which the mathematical result used in the direct appli-
cation, say T, can be obtained through methods that belong to one or more different mathematical theo-
ries (see, e.g., Dawson, 2015; Ording, 2019). In these cases, it seems that the same result can be obtained 
by changing the features of the mathematical setting. Note, however, that when a mathematical result is 
obtained through a different mathematical theory, the way in which the result is formulated is different 
(depending on the theory used) and this change in formulation has a consequence on the way in which 
the result is applied in science. Therefore, also in such scenario, it would be fair to consider that the 
application context has radically changed and that, because of its capacity to respond to the change, the 
mapping-account is not challenged by object-sensitivity.
17  My feeling is that the asymmetry discussed in this paragraph can be explored further by focusing on 
the contrast between counterfactuals with a physically possible antecedent and counterpossibles whose 
antecedents are mathematically impossible. The latter are also called ‘countermathematicals’ (for an 
overview of the debate over countermathematicals, and counterpossibles in general, see Baker, 2021; 
Kocurek, 2021). Due to space constraints, I will not get into this subject here and I leave it for future 
studies.
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Costa and Steven French (da Costa & French, 1990, 2003; French, 2003), and later 
explicitly discussed in the context of the applicability of mathematics in terms of a 
three-step framework (Bueno & Colyvan, 2011; Bueno & French, 2018), is among 
these approaches and provides an extension of the mapping view. Such framework 
has been considered by many philosophers of science as a philosophical device 
that it sufficiently strong to explain the dynamics of rational theory change over 
time, as well as the use of abstract mathematical laws and idealisations in direct 
applications.18

The basic idea of the partial structures approach is the following: rather than 
requiring complete identity of structure between a structure and an empirical tar-
get system, we loosen our requirements on representation to allow partial identity 
of structure between these systems. Unlike a traditional or ‘total’ structure (i.e., 
the structure we have already seen in the previous section), a partial structure is 
a structure A =< D , Ri > in which each relation is identified with an ordered tri-
ple < R1 , R2, R3 > , where: R1 is the set of ordered pairs that stand in relation Ri ; 
R2 is the set of ordered pairs that do not stand in relation Ri ; and R3 is the set of 
ordered pairs for which it is not defined (i.e., it is left open) whether they stand in 
relation Ri or not.19 In this approach, an important role is played by the notion of 
partial mapping (Bueno, 1997; Bueno et al., 2002). To give an example of partial 
mapping, let me consider the case of (partial) isomorphisms.20 Given two par-
tial structures A =< D , Ri > and B =< E , R�

i
> , where Ri =< R1 , R2, R3 > and 

R�
i
=< R�

1
, R�

2
, R�

3
> , the function f from D to E (that is, f ∶ D ⟶ E ) is a partial 

isomorphism between A and B if: (a) f is bijective, and (b) for all x and y in D, 
Ri1(x, y) if and only if R�

i1
(f (x), f (y)) and Ri2(x, y) if and only if R�

i2
(f (x), f (y)) (French, 

2003).21

A fuller account of how the applicability of mathematics can be treated through 
a partial structures approach is given by Otávio Bueno and Steven French in their 
recent book Applying Mathematics: Immersion, Inference, Interpretation (Bueno & 
French, 2018). Building on previous work by Bueno and Colyvan (2011), Bueno 
and French propose a framework for dealing with the applicability of mathematics 
within the partial structures approach, in terms of a three-step process: (a) immer-
sion, (b) derivation and (c) interpretation. In the immersion step, a correspondence 
between mathematics and the empirical set up is established via a suitable mapping. 
In the second step, the derivation step, some consequences are generated from the 

18  Although it has found much favor among philosophers of science, the partial structures view is not 
free from criticisms. For instance, some authors have raised objections to using this view, as well as 
the corresponding notion of partial isomorphism, as a suitable account of representation (see, e.g., Cart-
wright, 1999; Suárez, 2003, 2004; Pincock, 2005; Frigg, 2006; Batterman, 2010).
19  If each R3 is empty, a partial structure becomes a total structure by replacing the ordered triples 
< R1 , R2, R3 > by R1.
20  For the sake of simplicity, I am considering here only the case of partial isomorphisms, which can be 
used to spell out the notion of ‘partial identity of structure’ between structures. Nevertheless, it is impor-
tant to note that the partial mappings framework can be extended to include a richer variety of partial 
morphisms (see, e.g., Bueno & French, 2018).
21  If Ri3 = R�

i3
= � , we do not have partial structures but total ones. In this circumstance, what we obtain 

is the conventional (i.e., not partial) notion of isomorphism (Bueno, 1997).
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mathematical formalism. Finally, in the interpretation step, the mathematical conse-
quences obtained in the derivation step are interpreted in terms of the initial empiri-
cal set up via a mapping that does not necessarily coincide with the mapping used 
in the immersion step. In this account, partial structures intervene at the level of the 
immersion and derivation steps, since according to Bueno and French these steps, 
and more precisely the mappings involved in them, can be interpreted with partial 
morphisms.

What is the utility of extending the mapping view through the framework of par-
tial structures (and partial mappings)? As observed by Chris Pincock, “partial mod-
els are useful in indicating what the theory remains silent about” (Pincock, 2005, p. 
1249, my italics). This means that, by being able to incorporate those elements that 
are not fully characterised by a theory, the partial structures framework is seen as a 
useful account also in cases where idealizations are involved. Now, if we recall what 
we saw about the insensitive character of the mapping account in the context of con-
verse application, we can identify those elements (about which the theory, or model, 
remains silent) with those features and theoretical components of the physical set-
ting to which the mapping account is insensitive. Thus, it seems that by adopting 
the partial framework there is a way to avoid both the object- and theory- sensitiv-
ity issues and take the mapping view as capable to handle converse applications. 
To this remark, I reply that there is no such solution in terms of partial structures 
and mappings in the context of converse applications. And this for the following 
reason. Differently from what happens when we adopt the partial structures frame-
work to explain direct applications, in the context of converse applications we can-
not include some empirical elements to which the account is insensitive into the set 
R3 of ordered pairs for which it is not defined whether they stand in relation Ri or 
not. Why? The reason is very simple: these elements do not have a mathematical 
counterpart. Consider, for instance, what we saw in Archimedes’ example. When we 
discussed object-sensitivity, we noted how the mapping account is insensitive to fea-
tures like the uniform weightless character of the lever arms. Now, if we adopt a par-
tial mappings framework, we should somehow include these features into the set R3 , 
which represents those pairs for which we are as yet unsure whether Ri obtains. But, 
and here is the crucial observation, there is nothing in the mathematical domain that 
can serve as a counterpart (that is, a representation in the mathematical structure) 
for physical features like the uniform weightless character of the lever arms. Hence, 
even though the partial structures extension can be considered as an adequate way to 
handle direct applications, it does not have the same efficacy in the context of con-
verse applications and it cannot save the mapping view from my criticism above.22

22  The argument just set out is enough to weaken the claim that the adoption of partial structures and 
partial mappings can save the mapping view from my criticism. Nevertheless, as the reader may have 
noticed, I have not used considerations of theory-sensitivity in it. The reason for this is that when it 
comes to theory-sensitivity, it is less clear how my response can be elaborated. In fact, physical laws are 
usually mathematised. And to develop an argument that shows how the partial framework cannot save 
the mapping account from the theory-sensitivity issue, we should first of all discuss the possibility of 
having physical laws that cannot have a mathematical counterpart. For reasons of space, and also in view 
of the fact that such discussion would take us far from the content of the present paper, I am not address-
ing this discussion here.
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Finally, it can be observed that if we assume the heuristic value of converse appli-
cations, there is no obligation for the advocates of the partial structures approach 
to accommodate such heuristic treatments within their account.23 Consequently, 
someone who supports the mapping account might reject my claims in this way.24 
Regarding this concern, it should be noted that the heuristic character of converse 
applications is not settled in a conclusive way, and therefore it remains an open 
question as to whether or not the mapping approach can be used to account for the 
success of converse applications. In fact, although converse applications like those 
discussed here are seen by some as incorporating heuristic moves, there is no con-
clusive argument in favour of the purely heuristic character of converse applications. 
It is true that in Sect. 2 I followed the criterion of success (of converse applications) 
offered in Molinini (2023), and this criterion points to the heuristic character of such 
applications. Nevertheless, what if (some) converse applications do not fall within 
the regime of purely heuristic devices? This possibility should be considered. For 
instance, in the final pages of Molinini (2023), it is suggested that converse applica-
tions could involve more than just heuristic methods (the idea advanced is that, in 
cases like that of Archimedes, what is involved is an application of metaphysically 
necessary principles). For this reason, and more precisely because the heuristic or 
non-heuristic character of converse applications is not settled, a discussion of the 
mapping account in this context is valuable and my claims cannot be dismissed by 
appealing to the alleged heuristic character of converse applications.

5 � Conclusions

In this paper I have focused on converse applications, namely on successful 
applications of science in mathematics. With the help of two case studies, I have 
introduced a distinction between two different types of converse applications: in-
argument and in-result converse applications. Furthermore, I have argued that 
the mapping view of applicability, which is currently the most widely accepted 
account of the applicability of mathematics, cannot accommodate converse appli-
cations because of the following issues: (object-sensitivity) the mapping account 
is not sensitive to some features of the physical setting that are embedded in, and 
essential to, the non-mathematical considerations that are applied in mathemat-
ics; (theory-sensitivity) the mapping account is not sensitive to the actual physics 
used in the converse application process. Finally, I have tackled some potential 
objections that can be used against my argument and I have maintained that these 
objections do not pose a serious challenge to my criticism.

The analysis of converse applications is a relatively uncharted field, presenting 
philosophers with a wide array of potential research directions. Rather than offer-
ing a full-fledged account of converse applications, my aim in the present study 

23  Da Costa and French (2003, p. 53), as well as Bueno and French (2018, p. 47), make clear that there 
is no obligation for the advocates of the partial structures approach to accommodate heuristic treatments 
within their account.
24  I would like to thank an anonymous reviewer for raising this concern.
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was to explore one of these research paths to lay the ground for future work on 
this topic. Surely, new analysis of case studies, as well as a deeper examination 
of how other conceptions of applicability may prove relevant for a better under-
standing of converse applications, will enrich or even revise the considerations 
reported here, thus opening promising avenues for further research.
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sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.
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