
Citation: Xie, C.; Burrello, A.;

Daghero, F.; Benini, L.; Calimera, A.;

Macii, E.; Poncino, M.; Jahier Pagliari,

D. Reducing the Energy

Consumption of sEMG-Based

Gesture Recognition at the Edge

Using Transformers and Dynamic

Inference. Sensors 2023, 23, 2065.

https://doi.org/10.3390/s23042065

Academic Editor: Georg Fischer

Received: 15 January 2023

Revised: 5 February 2023

Accepted: 8 February 2023

Published: 12 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Reducing the Energy Consumption of sEMG-Based Gesture
Recognition at the Edge Using Transformers and
Dynamic Inference
Chen Xie 1 , Alessio Burrello 2,3,* , Francesco Daghero 1 , Luca Benini 3,4 , Andrea Calimera 1 ,
Enrico Macii 2 , Massimo Poncino 1 and Daniele Jahier Pagliari 1

1 Department of Control and Computer Engineering, Politecnico di Torino, 10129 Turin, Italy
2 Interuniversity Department of Regional and Urban Studies and Planning, Politecnico di Torino,

10129 Turin, Italy
3 Department of Electrical, Electronic and Information Engineering, University of Bologna, 40136 Bologna, Italy
4 Department of Information Technology and Electrical Engineering, ETH Zurich, 8092 Zurich, Switzerland
* Correspondence: alessio.burrello@polito.it; Tel.: +39-011-0907072

Abstract: Hand gesture recognition applications based on surface electromiographic (sEMG) signals
can benefit from on-device execution to achieve faster and more predictable response times and
higher energy efficiency. However, deploying state-of-the-art deep learning (DL) models for this task
on memory-constrained and battery-operated edge devices, such as wearables, requires a careful
optimization process, both at design time, with an appropriate tuning of the DL models’ architectures,
and at execution time, where the execution of large and computationally complex models should
be avoided unless strictly needed. In this work, we pursue both optimization targets, proposing
a novel gesture recognition system that improves upon the state-of-the-art models both in terms
of accuracy and efficiency. At the level of DL model architecture, we apply for the first time tiny
transformer models (which we call bioformers) to sEMG-based gesture recognition. Through an
extensive architecture exploration, we show that our most accurate bioformer achieves a higher
classification accuracy on the popular Non-Invasive Adaptive hand Prosthetics Database 6 (Ninapro
DB6) dataset compared to the state-of-the-art convolutional neural network (CNN) TEMPONet
(+3.1%). When deployed on the RISC-V-based low-power system-on-chip (SoC) GAP8, bioformers
that outperform TEMPONet in accuracy consume 7.8×–44.5× less energy per inference. At runtime,
we propose a three-level dynamic inference approach that combines a shallow classifier, i.e., a random
forest (RF) implementing a simple “rest detector” with two bioformers of different accuracy and
complexity, which are sequentially applied to each new input, stopping the classification early for
“easy” data. With this mechanism, we obtain a flexible inference system, capable of working in many
different operating points in terms of accuracy and average energy consumption. On GAP8, we
obtain a further 1.03×–1.35× energy reduction compared to static bioformers at iso-accuracy.

Keywords: transformers; sEMG; gesture recognition; deep learning; embedded systems

1. Introduction

Nowadays, edge computing on energy-efficient devices is a major trend in the person-
alized healthcare field, with benefits such as low cost, portability, and real-time health data
analysis. Many applications, including heart rate (HR) monitoring, blood oxygen saturation
measurement, and early warning of fall risk, have been moved to wearable devices and
supported by direct execution at the edge. With respect to the traditional approaches
based on cloud computing, the on-device paradigm reduces the total energy consumption
by eliminating raw data transmission. Moreover, by getting rid of the dependency on a
good-quality connection at all times, it ensures fast and predictable response times, making
more and more novel healthcare and wellness applications achievable [1,2].

Sensors 2023, 23, 2065. https://doi.org/10.3390/s23042065 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23042065
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-9225-3106
https://orcid.org/0000-0002-6215-8220
https://orcid.org/0000-0001-9595-7216
https://orcid.org/0000-0001-8068-3806
https://orcid.org/0000-0001-5881-3811
https://orcid.org/0000-0001-9046-5618
https://orcid.org/0000-0002-1369-9688
https://orcid.org/0000-0002-2872-7071
https://doi.org/10.3390/s23042065
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23042065?type=check_update&version=3

Sensors 2023, 23, 2065 2 of 21

On the same trend, human–machine interfaces (HMIs) based on hand gesture recogni-
tion have shown great potential, enabling various novel types of interactions with robots
and computers, especially useful for physically impaired subjects [3] and hearing impaired
ones [4]. A popular approach is vision-based gesture recognition, which classifies videos
of the hand gesture captured by optical cameras [5,6]. However, this approach relies on
the quality of visual frames, and classification results can be negatively affected by en-
vironmental factors, such as camera position, obstructions, light conditions, and so on.
On the other hand, gesture recognition based on sEMG signals, which can directly reflect
behavioral intention from muscle contractions at different arm positions, is receiving in-
creasing interest from the scientific community. Compared to the vision-based alternative,
this solution is more invasive, requiring the user to wear a potentially uncomfortable
set of electrodes on their arm (e.g., [7,8] shows an example of the physical interface re-
quired). However, it benefits from wearability and smaller raw input data bandwidth
and is less affected by environmental factors. Moreover, sEMG-based solutions are not
restricted to specific camera-equipped environments and also enable the recognition of
gesture intentions of amputees.

Most current sEMG-based gesture recognition systems utilize classic machine learning
(ML) algorithms coupled with carefully crafted feature extraction [8–11]. Selecting appro-
priate features to achieve the best possible classification performance in all conditions is
known to be a hard problem. Therefore, in recent years, DL algorithms, which learn feature
representations during training, have drawn increasing attention and have become the
state-of-the-art approach for this task [4,12–14].

The implementation of a DL-based system at the edge comes with significant chal-
lenges. Most advanced DL algorithms were initially designed for the cloud, and are too
energy-hungry and complex to deploy on memory- and energy-constrained edge devices.
In fact, the latter are typically battery-operated, they have power envelopes in the order of
tens of mW, and are equipped with less than 1MB of working memory (SRAM) [15]. Thus,
they cannot support the large memory footprint and huge amount of operations required
by cloud models [12,14,16]. To fill this gap, lightweight yet accurate DL models specifically
tailored for edge devices have been proposed. Optimization techniques at different levels
can be adopted to generate such models, ranging from modifications of the architecture
through architectural search and pruning [17] to reductions in the bit-widths used to
represent weights and intermediate activations with quantization [18]. Thanks to these
techniques, colossal DL models can be slimmed down to fit edge devices, while retaining
superior performance with respect to classic ML algorithms based on handcrafted features.

However, since innovation in DL architectures is booming in recent years, there is
typically a temporal lag between the initial design of a new cloud model and its porting
at the edge. One representative of this trend is the transformer, a recent DL architecture
initially designed to solve sequence-to-sequence problems [19], which nowadays achieves
state-of-the-art performance in many applications in the fields of natural language process-
ing (NLP) and computer vision (CV), through popular implementations such as BERT [20],
GPT-3 [21], and vision transformers (ViT) [22]. All these popular transformers are cloud-
based, and include millions or billions of parameters, which makes them impossible to
deploy at the edge. On the other hand, most research on edge deployment and optimiza-
tion still concentrates on “older” models, such as CNNs, and relatively few edge-oriented
transformers have been proposed.

In this work, which extends [23], we demonstrate that efficient transformers specifically
tailored for edge devices are able to achieve very high energy efficiency, while maintaining
state-of-the-art performance. We focus in particular on using these networks for the
sEMG-based gesture recognition task. In addition, we also leverage dynamic inference
techniques [2] to further increase the flexibility and efficiency of our proposed gesture
recognition system. Rather than always processing all inputs with the same transformer
model, we combine two different networks, and a third, non-deep classifier, to form a
three-stage system capable of significantly reducing the average energy consumption per

Sensors 2023, 23, 2065 3 of 21

classification, at the cost of a negligible drop in accuracy. To our knowledge, this is the first
application of dynamic inference both to the sEMG-based gesture recognition task, and
to tiny transformers deployed at the edge. The main novel contributions of our work are
the following:

• We introduce bioformers, a set of efficient transformer architectures, which can achieve
state-of-the-art accuracy on a popular sEMG-based gesture recognition dataset [7]. We
perform an extensive network architecture exploration, varying several key hyper-
parameters of our bioformers, such as the number of initial convolutional layers, the
dimension of the input signal patches passed to the attention layers, the number of
attention blocks, the dimension and number of attention heads, etc. We obtain several
Pareto-optimal configurations, achieving different trade-offs in terms of accuracy
versus computational complexity. Specifically, the accuracy ranges from 62.4% to
69.8%, outperforming the 66.7% obtained by a state-of-the-art CNN [24] on the same
data and with the same training protocol.

• We propose a novel multi-stage dynamic inference scheme to achieve further energy re-
ductions and to improve the flexibility of our gesture recognition system. Specifically,
in a first stage, a lightweight RF separates inputs relative to a gesture from those corre-
sponding to a rest condition (no gesture). Only when a gesture is predicted, a small
bioformer is invoked to classify it. Then, based on a measure of the classification’s
confidence, the process is either stopped at this second stage, or continued, invoking
an additional, larger bioformer.

• When deployed on the GAP8 ultra-low-power SoC [15], bioformers achieve an execu-
tion time of 0.36–2.80 ms per classification, while consuming 19–143 µJ, and requiring
at most 104 kB of memory. Bioformer configurations that achieve a higher quantized
accuracy compared to the CNN of [24] consume 7.8 ×–44.5× less energy per inference.
Moreover, thanks to the proposed dynamic inference scheme, we obtain a system that
can be configured at runtime to work in 10 s of different operating points, spanning
an ample accuracy range (60.9-69.8%). On GAP8, dynamic solutions further reduce
the average energy consumption per classification by 1.03×–1.35× at iso-accuracy
compared to static bioformers.

2. Background
2.1. Attention and Transformers

In [19], the authors introduce the transformer architecture, which leverages the
attention mechanism to enhance the performance of a DL model on sequence process-
ing tasks. Attention is based on the intuition that, in an input sequence, not all the elements
are equally important for the target task. Thus, a subset of the inputs should have higher
impact on the final output (the network should pay “close attention” to them), while
other parts could almost be disregarded. The layers that model this mechanism in neural
networks compute a set of input-dependent weights (so-called attention weights), whose
values correspond to the relative importance of different input sequence portions.

More precisely, the authors of [19] use a variant called multi-head self-attention
(MHSA). The name self-attention refers to the fact that importance weights are computed
as a function of the same sequence to which they are applied, as opposed to cross-attention,
which considers two different sequences. Furthermore, MHSA splits the attention function
in H separate representations, the so-called heads, with the goal of leveraging the informa-
tion from different representation subspaces. In this work, we leverage MHSA blocks to
implement our efficient DL models for sEMG-based gesture recognition.

As main reference implementation, we take the one of the vision transformers (ViTs) [22],
which extended attention-based DL models to work with patches of image pixels instead
of natural language tokens. In our case, we follow a similar approach, but feed the MHSA
with patches extracted from the sEMG signal time-series.

Sensors 2023, 23, 2065 4 of 21

2.2. Surface Electromyographic Signal

Elecromiography (EMG) signals stem from the electrical activity generated during the
contraction of a muscle, and are typically collected by placing conductive plates (electrodes)
on the subject’s skin surface (surface EMG or sEMG). The resulting electrical signals range
from 10 µV to 1 mV, with a bandwidth of ≈2 kHz for standard applications, or up to
≈10 kHz if the EMG signal is collected for motor unit action potential analysis.

Recognition applications based on these signals must tackle several major challenges,
such as the high variability and often low signal quality due to the data acquisition through
the less-than-optimal skin–electrode interface. Moreover, as explained by the authors of [24],
floating ground noise and motion artifacts, together with possible electrode re-positioning
and user adaptation, may cause further signal degradation.

Accordingly, current state-of-the-art gesture recognition systems that rely on sEMG
signals use subject-specific ML or DL models, trained on data from the same person on
which they are evaluated or pre-trained on a wider set of patients and then fine-tuned on
subject-specific data. In order to account for the time drift of sEMG signals caused by the
aforementioned non-idealities, the generalization capabilities of these systems should then
be assessed in terms of how well they perform on data collected in different recording sessions
with respect to those used for training, as detailed in Section 3.

3. Related Work

In recent years, many approaches for hand gesture recognition using sEMG signals
have been developed for both academic and commercial purposes. These approaches
typically consist of three parts: (i) an analog front end for bio-potential acquisition, (ii) a
data preprocessing and feature extraction/selection step, and (iii) a final classification back
end. They often use classic ML algorithms, such as support vector machines (SVMs), RFs,
linear discriminant analysis (LDA), or artificial neural networks (ANNs) [8–11,13], or
more recently, DL ones [4,23–27]. For example, authors in [28,29] have achieved over 90%
accuracy in hand gesture classification using ANNs with five time-domain features (mean
absolute value, mean absolute value slope, number of slope sign changes, number of zero
crossings, and waveform length). Another study [30] achieved 97.1% classification accuracy
on the recognition of three grasps using root mean square values as features for an SVM.
On a more general scenario (three datasets with tens of gestures), remarkable results were
obtained by Atzori et al. [8] on the NinaPro DB1, DB2, and DB3 datasets, employing both
time- and frequency-domain-extracted features. However, these approaches are limited
to a single-session setup, which does not address the issue of inter-session accuracy drop
when classifying gestures from a never-seen session.

The main challenge in sEMG-based gesture recognition has therefore shifted from
achieving high classification accuracy to managing the variability of the signal, which is
affected by various factors, such as anatomical variability, posture, fatigue, perspiration,
changes in the skin-to-electrode interface, user adaptation, and electrode repositioning
over multiple days of use [7,9,23,24,31]. These factors significantly hinder generalization,
limiting long-term use and the development of robust real-time recognition systems. For
instance, [7,32] collected sEMG data from multiple subjects over multiple days and found
that the inter-session accuracy drop for conventional ML algorithms was up to 30% after
training on a single session. To overcome these challenges, a new state-of-the-art approach
is to use multi-session training, which aims to make recognition more robust against
temporal variability. This approach has been made possible by the availability of multi-
session sEMG datasets such as NinaPro DB6 (10 sessions, 8 classes) [7], which is the dataset
used in this work, and is described in detail in Section 4.1. In Table 1, we report the most
relevant works from the literature that used Ninapro DB6 as a benchmark. Under the
accuracy column, we report as inter-session accuracy the accuracy achieved on unseen,
consequent in time sessions; as intra-session, the accuracy on the same data sessions used
for training, but following a temporal data split (the initial part of a session is used for

Sensors 2023, 23, 2065 5 of 21

training, and the final part for validation); and as random, the accuracy on a random data
split at the level of individual samples.

Table 1. Previous works tested on Ninapro DB6 dataset [7]. Accuracy results preceded by “q:” refer
to models using a int8-quantized data representation.

Work Year Features Algorithm Real-Time Emb.

Accuracy
Inter % /
Intra % /
Random %

Energy

Palermo [7] 2017 WL RF No No
25.4 /
52.4 /
n.a.

n.a.

Cene [33] 2019
MAV,
VAR,
RMS

ELM No No
41.8 /
69.8 /
n.a.

n.a.

Zanghieri [24] 2019 Raw Data TCN Yes Yes
65.2 (q: 61.0) /
71.8 /
n.a.

0.90 mJ

Wei [25] 2019 Raw Data Multi-View
CNN No No

64.1 /
n.a. /
n.a.

n.a.

Zou [26] 2021 Raw Data Multiscale
CNN No No

n.a. /
n.a. /
(97.2, 74.5, 90.3) *

n.a.

Han [27] 2021 Raw Data Multiscale
CNN No No

n.a. /
n.a. /
98.52 *

n.a.

Bioformer [23] 2022 Raw Data Transformers Yes Yes
65.7 (q: 64.7) /
n.a. /
n.a.

0.139 mJ

Our Work 2023 Raw Data Transformers Yes Yes
69.8 (q: 67.0) /
n.a. /
n.a.

0.143 mJ

* Training and testing data are randomly divided without following temporal order.

In Palermo et al. [7], which first introduced the new dataset, the authors reached
an inter-session accuracy of 25.4% by feeding the waveform length feature to an RF.
Successively, Cene et al. [33] employed extreme learning machines (ELMs) to raise the
inter-session accuracy to 41.8%. In 2019, Wei et al. [25] first applied DL to this dataset,
reaching 64.1% inter-session accuracy by feeding raw data to a multi-view CNN. Similarly,
Zanghieri et al. [24] employed a temporal convolutional network (TCN) that reached a
new state-of-the-art accuracy of 65.2% (61.0% when quantized to 8-bit integers). In 2021,
Zou et al. [26] and Han et al. [27], used the NinaPro DB6 as a benchmark, but they picked
random data or random sessions to create training, validation, and test datasets, not fol-
lowing any temporal order and therefore reaching very high accuracy; however, this is not
representative of a real-world setup. It is worth noticing that the reason why the accuracy
reached on the NinaPro DB6 is much lower than the one reached on other datasets with a
similar number of classes and sensors is that the hand movements of NinaPro DB6 are all
grasps, thus much less diverse and discernable than the gestures in ordinary datasets.

Few of the aforementioned works focus on achieving real-time classification, or on
embedding these algorithms on low-power edge devices, such as wearables. In [24], the
authors show that their algorithm fits the real-time classification constraint of 15 ms, needed
to have fluid movement, for instance, in an artificial-intelligence-powered prosthesis, with
an energy consumption per classification of 9.8 mJ.

Tiny transformers were first applied to this task in our previous work [23], where we
demonstrated that they can reach a state-of-the-art accuracy of 65.73% (64.7% with int8
data representation) with an energy consumption of just 0.143 mJ per classification, dramat-

Sensors 2023, 23, 2065 6 of 21

ically increasing the battery lifetime of the edge device on which the network is deployed
compared to the CNN of [24]. In this work, we further extend this approach, by improving
the accuracy of ∼4%, while keeping a constant energy consumption. Furthermore, we also
show how our tiny transformers can be combined with a dynamic inference system to
obtain additional energy savings and flexibility, at zero (or very limited) cost in accuracy.

4. Material and Methods

The goal of this paper is to propose energy-efficient sEMG gesture recognition systems
that can run at the edge, based on transformer neural networks. The overall methodology
that we follow to derive such systems is depicted in Figure 1, and consists of two main parts.

Figure 1. High-level view of the proposed methodology.

The first part (left side of the Figure) is performed at design time, and consists in ex-
ploring the space of possible transformer architecture hyper-parameters in order to identify
a Pareto-optimal set of solutions in terms of accuracy versus model size, and accuracy ver-
sus number of multiply-and-accumulate (MAC) operations, where the two non-functional
metrics are proxies for memory occupation and latency/energy consumption, respectively.
We call the tiny attention-based models derived from this search phase “Bioformers”, since
they are one of the first applications of transformers to biosignal processing. After detailing
the sEMG dataset (Ninapro DB6) that we use for benchmarking our work in Section 4.1,
we describe the search space explored in this first phase in Section 4.2, while Section 4.3
provides the details of the procedure used to train bioformers.

The second part of the methodology (right side of Figure 1) deals with runtime. We
propose use of a multi-stage dynamic inference mechanism, where two different bioformers,
plus an optional non-deep classifier, are combined with the goal of reducing the average
energy consumed by the system for a minimal accuracy drop. The details of this mechanism
are provided in Section 4.4.

4.1. Target Dataset

To assess the performance of our proposed method, we employ the Ninapro DB6 [7],
one of the most popular public datasets for sEMG-based hand gesture reconition, which
was specifically designed to study the degradation over time of the classification accuracy
due to the aforementioned non-idealities.

More in detail, the Ninapro DB6 includes data collected from 10 non-amputee subjects
(7 males and 3 females with an average age of 27± 6 years), each of whom was asked to
repeat the same experiments over 10 different sessions. During each session, the subject
was asked to repeat the same hand gesture 12 times, and sessions have been performed
twice a day for 5 consecutive days, one in the morning and one in the afternoon.

The recorded gestures are seven different grasps that closely resemble daily life activi-
ties, plus a rest position. Each gesture repetition lasts around 6 s, followed by 2 s of rest.

Sensors 2023, 23, 2065 7 of 21

Concerning the hardware used for the data collection, the array of sensors employed is
composed of 14 Delsys Trigno sEMG Wireless electrodes, placed on the higher half of the
forearm to simulate an amputation of the lower half. Each sensor collects the data with a
sampling rate of 2 kHz.

In this work, we split the 10 recording sessions into two groups of 5 sessions each, the
training dataset and the testing one. The training sessions always precede the testing ones
to maintain temporal coherence among sessions (i.e., we used sessions 1–5 for training,
and 6–10 for testing). We divided the data into windows of 150 ms (i.e., 300 samples) for
preprocessing, with a time shift between them of 15 ms. The final input windows are of
dimensions 300 (time samples) × 14 (sensors). Consistently with all previous works on
this dataset, network training was performed on steady gestures, removing contraction
transients, i.e., the first and last 1.5 s of each gesture. Examples of input windows fed to
our neural networks are shown in Figure 2 for three different gestures.

Figure 2. Examples of sEMG signals from [7] corresponding to different gesture classes.

4.2. Bioformer Architectures

For the architectural template of bioformers, we take inspiration from ViTs, which
have been shown to outperform CNNs on high-end computer vision tasks [22]. Similarly
to ViTs, our architecture is structured as a chained connection of three main components:
(i) an initial set of convolutional layers (temporal frontend), which extracts patches and local
features from the input, (ii) one or more MHSA layers that combine patches to extract
higher-level features, and finally (iii) a single fully-connected output layer, applied only to
the first patch (a special class token prepended to the proper input sequence) to associate a
gesture label to the input. A scheme is shown in Figure 3. As a key difference compared
to ViTs, our frontend uses 1-dimensional convolutions, since we are dealing with sEMG
time-series.

Figure 3. Architecture template of bioformers.

Sensors 2023, 23, 2065 8 of 21

4.2.1. MHSA Layer Details

The scheme of the MHSA layer used in bioformers is shown in Figure 4. Given an
input sequence of patches X, with dimensions S×C, with S being the sequence length and
C the number of channels, the first operation is the addition of positional embeddings. These
are vectors associated with each position in the sequence, that allow MHSA to take into
account positional relations when extracting information from the patches. As in ViTs, we
used positional embeddings learned during training.

After a layer normalization (LN), the next set of operations (shown as multiple over-
lapping circles) was repeated identically H times, with H being the number of MHSA
heads. Namely, each head projects the input sequence into three different spaces of size DH ,
yielding as output three vectors named queries (Q), keys (K), and values (V). The projections
are computed as

Q = XWquery K = XWkey V = XWvalue (1)

where Wquery, Wkey, and Wvalue are matrices of size C×DH . Subsequently, the computed
vectors are fed to the scaled dot-product block, which is the proper attention layer, and
combines queries, keys, and values with the following formula:

Attention(Q, K, V) = So f tMax(
QKT
√

DH
)V (2)

The softmaxed matrix multiplied with V is the one containing attention weights,
representing the relative importance of each element in V with respect to all the others.

Next, the concatenation of the attention outputs over the H heads is fed to a linear
layer that re-projects them from the S×(H × DH) space back to S×C. This permits the
realization of a residual connection, which sums together the input and attention output
for each sequence element. The residual sums undergo another LN, followed by two
consecutive linear layers, each with a Gaussian error linear unit (GELU) non-linearity,
where the first one increases the number of channels from C to C′ > C and the second
reduces it again to C. Lastly, another residual addition completes the block.

S
M

H

X

S
MSMSM 2X

Matrix
Mult.

Linear GELUAdd SoftMaxS
M

Layer
Norm

L
N

L
N

Pos.
Embedding

L
N

Concat.

Legend:

Q

K

V

Figure 4. Multi-head self-attention layer implementation used in this work. All operations are
applied to the entire sequence of input patches.

4.2.2. Architecture Exploration

In order to explore the trade-off between task accuracy and complexity, we parametrized
the bioformer template and explored it through a grid search. Specifically, the search is
split into two phases, as shown on the left of Figure 1. At first, we explored the model ar-
chitecture, making the depth of the convolutional frontend and of the attention component
modular, and tuning some of the key hyper-parameters of the latter. During this phase, we

Sensors 2023, 23, 2065 9 of 21

considered bioformer variants that process “default” input patches of intermediate size.
Then, in a second phase, we varied the patch size for the Pareto-optimal models obtained
in phase 1, since this hyper-parameter greatly influences both accuracy and complexity. We
separate the two phases to keep the cost of the search manageable.

We explore frontends composed of a minimum of 1 and a maximum of 6 1-dimensional
convolutions (Conv). Each Conv is followed by batch normalization (BN) and by a rectified
linear unit (ReLU) activation function, not shown in Figure 3 for simplicity. Specifically,
we consider 1, 2, or 3 frontend blocks, with 1 or 2 layers each. The first (optional) Conv
layer of each block has a 3 × 1 filter size, and a stride of 1. The second Conv uses a bigger
stride, equal to the filter size, to process patches of the input signal [22,32]. The patch size
is equal to the convolution stride, indicated as P in Figure 3. The three frontend blocks
have 32, 16, and 14 output channels, respectively. To maintain the compatibility of tensor
shapes with the case in which we have a single patching layer, the number of output
channels of the last block is always 14, i.e., equal to the number of channels in the input
sEMG signal. When using less than 3 blocks, we removed them from first to last (e.g., the
32-output-channels initial block is the first one to be removed). When a block contains
2 layers, the first convolution alters the number of channels, while the second one keeps
them constant, while reducing the temporal dimension thanks to the stride. In the initial
model architecture exploration phase, we consider patch dimensions (P0, P1, P2) equal to
(, , 10), (, 5, 3) and (1, 5, 3) for bioformers with 1, 2, and 3 frontend blocks, respectively. The
larger patch size selected for 1-block frontends is motivated by the quadratic complexity
of the attention block with respect to the input size sequence. We therefore selected patch
sizes that ensure that the input sequence length passed to the MHSA part is always lower
than 30 to keep a low complexity of the bioformer architecture.

For what concerns the attention part, we consider bioformers with either 1 or 2 MHSA
blocks, structured as described in Section 4.2.1. We varied the number of attention heads
H in the set {2, 4, 8}, and the size of each head’s projection (DH) in {8, 16, 32}. The hidden
dimensions of the two linear layers are fixed at C = 64 and C′ = 128. An additional
linear layer before the first MHSA block projects the convolutional front-end output onto
C channels.

Combining the MHSA and frontend variants, a total of 108 different bioformer models
are considered in the first phase of the exploration. Note that although hyper-parameter
ranges are determined by hand, we verified empirically that values outside these ranges
lead to poorly performing or not converging models. In the results of Section 5, we report
only a subset of the 108 models considered, i.e., those achieving interesting accuracy versus
complexity trade-offs.

Once a set of Pareto-optimal bioformers with default patch sizes has been identi-
fied, we further explore the complexity vs. accuracy trade-off induced by varying P to
obtain additional network configurations. In particular, we consider patch size values
in {5, 10, 30, 60}, since values outside this range lead to worsening results for the specific
models that end-up on the Pareto-frontier after the first exploration phase.

4.3. Training Protocol

We trained each model in the search space defined in Section 4.2 to completion, with a
pre-training plus fine-tuning scheme similar to the one described in our previous work [23].
Namely, we initially pre-trained the model on the first 5 data collection sessions of all
subjects for 100 epochs. We used the Adam optimizer and a standard categorical cross-
entropy loss function. We set the batch size to 64, and applied a triangular cyclic learning
rate schedule in the range [10−7 : 10−3] with a period of 400 training steps.

We then fine-tuned the model on the data relative to the first 5 sessions relative to
the target subject for 20 additional epochs. In this phase, we used a batch size of 8 and
a fixed learning rate of 10−4, reduced by a factor of 10 after the first 10 epochs. All other
training hyper-parameters are identical to those of the pre-training. The obtained model
was finally tested on the last 5 sessions relative to the same subject, according to the

Sensors 2023, 23, 2065 10 of 21

reference per-patient split proposed in [7]. Fine-tuning and testing were repeated for each
of the 10 subjects in the dataset.

We did not employ training techniques that require periodically evaluating the model
on unseen data (e.g., early stopping, best-model checkpointing, etc.). Moreover, we con-
sidered the average accuracy over all patients when comparing different bioformer archi-
tectures, similarly to a k-fold cross-validation approach. Thus, we do not need a separate
validation set, and we can include the entire first 5 sessions in the training sets for pre-
training and fine-tuning. This is a key difference compared to our earlier work [23], and
is the main reason why we sometimes achieve a higher test accuracy with an identical
model architecture.

4.4. Dynamic Inference

The result of the architecture optimization and of the following Pareto analysis is
a set of bioformers, each achieving a different test accuracy, and involving a different
number of parameters and MAC operations per classification. In a standard machine
learning operations (MLOps) flow, the model to deploy in-field would be chosen from
this set depending on the specific requirements of the hardware (e.g., the most accurate
one requiring less than a given amount of energy/latency). While this offers a certain
degree of flexibility, designers still have to select among few options that provide a coarse-
grain sampling of the design space, and most importantly, the choice is made once-for-all.
Intuitively, this could be suboptimal.

In fact, one might want to run a complex yet accurate model only when it is (i) afford-
able (e.g., the system battery is well-charged) and (ii) necessary (the input to be classified
is a “difficult” one—e.g., a particularly noisy sample, or one corresponding to a hard-to-
recognize gesture, such as a grasp). Vice versa, when the battery is about to discharge,
and/or when the input is “easy” (e.g., a sample corresponding to the rest class), one might
prefer to use a simpler and less energy-hungry model.

This additional flexibility can be offered by dynamic (or adaptive) inference [2] techniques,
which optimize the way ML applications operate at runtime, lifting the usual assumption
that the same model must be executed identically for all processed inputs.

Many dynamic inference techniques have been proposed in recent years, mainly
targeting CNNs [2,34–43]. One of the first yet most effective approaches is the so-called
“big/little” system, in which two classifiers of different complexity and accuracy are com-
bined at runtime to improve efficiency [34]. The basic idea is to use the “little” CNN for
easy inputs, and the “big” one for difficult ones. However, since knowing the difficulty
of an input a priori is difficult, an iterative approach is used instead: each new input is
first classified by the “little” model, also computing a measure of prediction confidence. If
the confidence score is high, the little model’s output is kept, and the prediction stops.
Otherwise, the input is classified again using the “big” model. This introduces an overhead
(two classifications for “difficult” samples). However, assuming that easy inputs are the
majority, which is the case in most applications, the big/little system can outperform both
individual models, achieving an accuracy similar to the “big” CNN with a lower average
latency/energy per input, or vice versa, a higher accuracy than the “little” model, with
a small latency/energy overhead. Refinements of this technique build the little model
as a portion of the big one, e.g., deactivating part of its layers in the first iteration [35,36],
reducing the data bit-width [37]. To our knowledge, the big/little scheme has not yet been
applied to tiny transformers.

An alternative dynamic approach is staged inference, in which a task is partitioned
in sub-problems solved sequentially by increasingly complex classifiers. The underlying
principle is that not all classes are equally difficult to recognize [43]. Consequently, the
initial stages only recognize inputs belonging to easy classes, outputting a “fallback class”
for all other samples. Then, the following stages refine the classification for those inputs
that were associated to the fallback class. As practical examples, in a diagnostic system, a
patient can be classified as healthy or sick in stage 1, then refining the disease classification

Sensors 2023, 23, 2065 11 of 21

for sick patients in stage 2 [38]. In people counting, the first stage could perform human
detection, and the second one could apply the counting algorithm only to frames that
contain at least one person [40]. In a human activity recognition system for wearables, easy
activities such as laying or sitting can be detected in stage 1, and more complex ones such
as running or cycling in stage 2 [39].

We propose the application of both staged and big/little inference to sEMG-based
gesture recognition. To our knowledge, the combination of these two approaches has
not been studied in the previous literature. The resulting system is a 3-stage one, and
combines two bioformers plus a shallow ML model. A block diagram is shown on the right
of Figure 1.

4.4.1. Rest Detector

The first stage is implemented with a small RF, and its goal is to classify an input
into rest or no-rest. To train the RF, we used all inputs from [7] that do not belong to the
rest position class as no-rest examples. The rationale for this first stage is two-fold: (i) rest
samples would be the most frequent ones in a real deployment scenario and (ii) they corre-
spond to sEMG signals with low variability, easily distinguishable from those associated
with specific gestures. This can be seen by comparing the three charts of Figure 2, which
shows three examples of sEMG signals corresponding to one rest input and two other
gestures, taken from our target dataset (see Section 4.1).

We trained a different rest detector per subject, using the same data split described in
Section 4.3. We considered RFs composed of at most 12 decision trees, each with a maximum
depth of 5. We fed the model with a single feature per sEMG channel, corresponding to the
total waveform length of the signal in an input window, i.e.,

Fi =
300

∑
k=1
‖Xi,k − Xi,k−1‖ (3)

where 300 is the number of samples in a window and Fi is the resulting i-th channel feature.
This feature is selected in accordance with other previous works that used classic ML models
for this task [7,28,29], and also due to its simple extraction, which has linear complexity
with respect to the window length. Since we have 14 sEMG electrodes (i.e., channels), the
total number of features fed to the rest detector is 14. Note that the memory and number of
operations required to run this model, including the features extraction, are negligible even
compared to the simplest bioformer.

4.4.2. Big/Little Bioformers

No-rest samples were then fed to the following stages, which consisted of a big/little
classifier obtained combining two bioformers of different accuracy and complexity. The
details of the selected architectures are provided in Section 5. The classification confidence
metric that we used to decide between stopping after the “little” bioformer (stage 2)
or continuing with the “big” one (stage 3) is the score margin (SM) [34], which can be
computed with the following formula:

SM = ŷ(little)imax
− ŷ(little)i2nd−max

(4)

where ŷ(little)imax
and ŷ(little)i2nd−max

denote, respectively, the largest and the second largest class
probability scores produced by the little model. Then, at runtime, the SM is compared with
a tunable threshold Th to perform the stopping decision:

ŷ =

{
ŷ(little) if SM > Th

ŷ(big) otherwise
(5)

Sensors 2023, 23, 2065 12 of 21

The rationale of this stopping criterion, which is the most commonly used one in this
kind of system, is that a large SM corresponds to a confident classification (only one class
is highly probable), and vice versa.

Different criteria can be used to select the two bioformer models that form the big/little
system. In general, the choice depends on the range of accuracy and energy/latency values
that must be supported by the system at runtime. In absence of more specific constraints,
a natural choice is to select the two extremes of the Pareto frontier in terms of accuracy
versus number of operations, determined at the end of the architectural exploration phase.
This is the approach followed in our experiments, as detailed in Section 5.3.

4.4.3. Tuning Parameters and Overheads

The proposed dynamic system has several degrees of freedom that allow tuning of its
configuration at runtime. The threshold Th of the big-little bioformers can be changed to
easily achieve different trade-off points in terms of complexity and accuracy. For instance,
a large Th stops the classification at stage 2 (“little” bioformer) only when the prediction
is very skewed towards a single class, thus resulting in a conservative system, that prefers
invoking the “big” model more often in order to maximize accuracy. Conversely, a small
Th favors energy savings, stopping more frequently at the “little” stage. As shown in our
results, varying Th permits many different runtime operating conditions to be obtained
with just two models.

Another degree of freedom is offered by the possibility of disabling the RF-based rest
detector. In fact, the two bioformers can still classify inputs as belonging to the “rest”
class, hence they can operate alone. This creates another complexity/accuracy trade-
off. In fact, while the filtering of “easy” inputs by the rest detector greatly reduces the
average computation per input, it may also be detrimental for accuracy, since false positives
(samples wrongly classified as “rest”) cannot be corrected by following stages. Thus,
disabling the rest-detector moves the operating point towards higher latency/energy and
higher accuracy regions of the space. Note that the fact that bioformers maintain the “rest”
class also has the secondary benefit of possibly correcting some rest detector false negatives
(samples wrongly classified as “no rest”).

Combining these two knobs (varying Th and disabling the RF) yields 10 s of different
operating points, switchable at runtime, and spanning a wide range in terms of accuracy
and energy/latency.

The evaluation of the early-stopping policy for the big/little bioformer has a negligible
impact on the total prediction time and energy, and the memory required for storing the rest-
detector is also extremely small. The main overhead of the dynamic system is the additional
memory required for storing two bioformers instead of one. However, as will be discussed
in Section 5, the resulting flexibility makes it acceptable. In fact, spanning a comparable
range of operating conditions with multiple independent static models (not combined
through a multi-stage dynamic approach) would involve significantly larger overheads.

5. Experimental Results
5.1. Setup

We trained and validated bioformer models on the NinaPro DB6 dataset (described in
Section 4.1) using Python 3.8.13 and PyTorch 1.10.2. The initial training and architecture
exploration was performed with a standard single-precision floating-point (fp32) repre-
sentation for weights and intermediate activation tensors. Before deployment, we then
performed quantization-aware training (QAT) to convert fp32 tensors into 8-bit integers
(int8). Besides reducing the storage and memory required by Bioformers, this step is also
necessary because our target edge platform does not include a hardware floating-point
unit. We used the built-in QAT functionality of PyTorch for this step.

We deployed the quantized models on the GAP8 SoC [15] using the optimized library
of kernels (i.e., layers implementations) described in [44] for MHSA, and in [45] for con-
volutions. GAP8 is a commercial SoC from GreenWaves Technologies, which inlcudes

Sensors 2023, 23, 2065 13 of 21

a controller unit called fabric controller (FC), composed of a single RISC-V core, which
manages the peripherals and orchestrates the program execution, and a cluster of 8 iden-
tical RISC-V cores (with a shared 64 kB scratchpad memory) which accelerates intensive
workloads. FC and cluster share a 512 kB L2 memory. We refer to [15] for more details on
the platform.

We compared our bioformers against the CNN-based gesture recognition solution
proposed in [24], called TEMPONet, which achieved the previous state-of-the-art accuracy
on NinaPro DB6. To make the comparison fair, we used an identical training protocol for
our models and for TEMPONet, including the pre-training plus fine-tuning scheme which
was not used in the original work of [24].

5.2. Architecture Exploration

Figure 5 shows the results of the first part of the bioformer architecture exploration. As
explained in Section 4.2, we first explored bioformer variants using default patch sizes, varying
hyper-parameters such as the number of layers in the convolutional frontend, the number of
MHSA blocks, the number of attention heads, and the size of each head’s projection.

The two graphs of Figure 5 show the Pareto curves generated by some of these
architectures in terms of accuracy versus number of MAC operations and accuracy versus
the number of parameters, respectively. Accuracy results refer to floating-point models
at this stage. Each marker represents a specific architecture configuration. Note that only
the configurations that are close to the Pareto frontier are shown in the Figure, while
models with low accuracy (or not converging), too high complexity, or too large size are
not reported to ease the visualization.

x107
100,000 200,000 300,000 400,000

Figure 5. Network topology exploration results.

Pareto-optimal solutions are highlighted in the two graphs by black dashed lines.
Interestingly, the same set of three models turns out to be optimal when considering both
MACs and parameters as complexity metrics. We name these three bioformers, respectively,
Model 0 (identified with marker • in the graphs), Model 1 (N), and Model 2 (�), in order of
increasing accuracy. With default patch sizes, these three models span a relatively small
accuracy range in 68.73–69.81%, while MAC operations vary more widely in 1.37–3.36 M,
and parameters in 44.35–94.09 k. The detailed architecture configurations of the three
Pareto-optimal bioformers are as follows:

• Model 0: H = 8, DH = 8, 1 block with 1 Conv layer in the frontend;
• Model 1: H = 8, DH = 16, 1 block with 1 Conv layer in the frontend;
• Model 2: H = 8, DH = 32, 1 block with 2 Conv layers in the frontend;

Sensors 2023, 23, 2065 14 of 21

Several interesting insights can be drawn from these results. First, a large number
of heads H in MHSA blocks is important to achieve high accuracy on this task. Second,
increasing the size of each projection (DH) is the easiest way to trade-off more operations
and parameters for more accuracy. Last, a deep temporal frontend is not necessary, since
all Pareto-optimal solutions use a single frontend block, and at most two one-dimensional
convolutional layers.

All three bioformers significantly outperform the comparison baseline (TEMPONet) [24],
shown as a red triangle in the Figure. Importantly, the advantage of bioformers comes
mostly from their ability to learn effectively from larger amounts of training data. In fact, as
shown in our previous work of [23], the pre-training plus fine-tuning scheme yields greater
benefits on transformer-based architectures compared to TEMPONet. More in detail, in [23],
TEMPONet with pre-training still outpeformed our best bioformer in terms of accuracy,
although at the cost of many more parameters and operations. In this paper, however,
thanks to the wider architecture exploration, and to the slightly different training protocol,
which uses all data from the first five sessions of a subject as a training set, we obtain
transformers that are both more accurate and less computationally demanding compared
to TEMPONet. Also note that the highest accuracy of 69.81% that we were able to attain on
the DB6 dataset represents the most recent state-of-the-art for trainings that use a data split
based on time (i.e., using only data from the past to infer gestures at future time instants).
While there are still ample margins for improvement, this accuracy is sufficient for various
practical tasks. For example, a “majority voter” on the most recent N predictions might
be utilized to practically achieve much higher accuracy while only slightly increasing the
prediction latency in a system for controlling a robotic arm. The errors, in fact, tend to be
random and evenly distributed, as analyzed in earlier publications [24]. In other words,
with a 69.8% accuracy, an identical gesture is expected to be misclassified three times,
evenly distributed in between seven accurate classifications rather, than for instance, ten
consecutive times. In this situation, a majority voter could completely weed out mistakes.

Figure 6 shows the results obtained exploring the patch size hyper-parameter. Namely,
the results are obtained starting from the three Pareto-optimal bioformers with default
patch size shown in Figure 5, and varying the patch size generated by the single frontend
block in the set {5, 10, 30, 60} (the default value was P = 10). The graph axes are analogous
to those of Figure 5. Each Pareto model is represented by a different marker shape, while
different colors denote different patch sizes. The Pareto frontiers are again highlighted by
black dashed lines.

x106
40,000 60,000 80,000 100,000 120,000 140,000

Figure 6. Patch size exploration results.

Sensors 2023, 23, 2065 15 of 21

Varying the patch size significantly enriches and enlarges the set of optimal solu-
tions in the accuracy versus MACs space, which now includes models with an accuracy
ranging in 62.43–69.81% and requiring 0.44–3.36 M MAC operations. In contrast, the
effect is less evident when considering the accuracy versus parameters space, where
Pareto-optimal models have accuracies very close to each other (69.39–69.81%) and include
41.8–94.09 k parameters.

This is expected, since the number of operations in the forward pass of an MHSA
block is quadratic with respect to the sequence length S, which is a direct function of the
patch size P (larger patches result in a shorter sequence and vice versa). The operations in
the temporal frontend are independent from P, since the (optional) first convolution has a
fixed 3 × 1 filter, and the second one performs a single MAC per input value, regardless of
P (due to using a stride equal to the kernel size). Overall, we therefore obtain an inverse
dependency, where models with larger patch sizes require fewer operations, and generally
achieve lower accuracy.

Instead, the number of weights in MHSA blocks is not affected by P, given that C,
C′, H, and DH are fixed. The only place where the patch size affects the parameters is
the strided convolution in the frontend. In fact, the number of parameters of this layer is
expressed by the formula Cin · Cout · K1 · K2 = Cin · Cout · P · 1, which is linearly dependent
on P. So, in this case, a larger patch size corresponds to a larger layer, but the impact on
the total size of the model is minimal. Nonetheless, we still find a model that improves the
previous Pareto frontier (corresponding to the orange markers). Namely, for Model 0, a
patch size of 5 slightly improves accuracy, due to better generalization, compared to the
case of P = 10, while requiring fewer parameters.

In summary, this exploration shows that all three bioformers (Model 0, 1 and 2) remain
in the Pareto front when varying P. Further, increasing the patch size is a very effective way
to trade-off a reduction in the number of inference operations for a drop in accuracy. When
the goal is to reduce the memory occupation (i.e., the number of parameters), instead, the
patch size should be reduced as much as possible.

5.3. Dynamic Inference

Figure 7 shows the results obtained by the dynamic inference system described
in Section 4.4. In particular, the system is built selecting the two bioformers with the
least/most MAC operations as a basis for the big/little scheme. Those correspond to
Model 0 with P = 60 and Model 2 with P = 10.

x106

Figure 7. Dynamic inference results.

Sensors 2023, 23, 2065 16 of 21

The green and blue points in Figure 7 correspond to the possible operating conditions
of the dynamic inference systems with/without the RF rest detector enabled, respectively.
Different points are obtained varying in [0 : 1] the confidence threshold Th of the big/little
scheme, which determines when to stop after stage 2, or continue with stage 3. For
comparison, Figure 7 also reports the results of independent Pareto-optimal static models
spanning a comparable range of MACs, directly derived from Figure 6, as orange dots. The
number of MAC operations reported for the dynamic approach is the average over the test
set for all subjects.

As shown in the Figure, varying Th allows us to easily obtain many different operating
points in the accuracy versus number of operations plane. Specifically, large Th values yield
high accuracy at the cost of more operations and vice versa. In addition to that, enabling or
disabling the rest detector creates two different sets of operating points, one more efficient
and less accurate (with rest detector enabled, shown in green) and the other more accurate
but requiring a larger number of operations per input on average (rest detector disabled,
in blue).

Overall, combining these two parameters, the three-stage dynamic system can span a
wide range in accuracy 60.90–69.78% and MACs (196.4 k–3.74 M), which then translate into
different average energy consumption and latency values. In total, the two combined knobs
result in≈100 distinct operating points. Compared to static solutions, the dynamic achieves
slightly inferior but comparable accuracy versus MAC trade-offs. However, the advantage
of a dynamic approach with respect to deploying all static models and selecting among
them at runtime depending on external constraints (e.g., battery status) becomes evident
when considering the memory overhead, as discussed below in Section 5.4. Intuitively, the
dynamic system can span this wide trade-off with only two bioformers (plus the negligible
rest detector). In contrast, to reach a similar range of accuracy and complexity based on the
standalone static models (orange dots) would require deploying seven different bioformers
with obvious overheads in terms of memory and storage. Yet, the flexibility offered by the
latter approach would still be more limited (only 7 points versus 100).

5.4. Deployment on GAP8

We deployed all optimal bioformer architectures in terms of accuracy versus MACs
derived in Figure 6 on the GAP8 SoC, after quantizing them to 8-bit. For comparison,
we also quantized and deployed the TEMPONet CNN from [24]. Table 2 shows the
detailed deployment results. Besides the gesture recognition accuracy, we report the
memory occupation, energy consumption, and inference latency of each model on the
target hardware (HW). Moreover, we also report the total MACs per inference in millions
(MMAC), and two measures of HW efficiency, i.e., the GMAC/s and the GMAC/s/W. Note
that accuracy values in the table are lower than those in previous figures due to the effect
of quantization.

Table 2. Performance of Pareto-optimal bioformers on GAP8.

Model Patch Size Memory MMAC [#] Lat. [ms] Energy [mJ] GMAC/s GMAC/s/W Accuracy

- 0 - 10 44.35 kB 1.37 1.130 0.058 1.21 23.78 67.04%
- 1 - 10 60.74 kB 1.97 1.611 0.082 1.22 23.97 66.89%
- 2 - 10 94.09 kB 3.36 2.797 0.143 1.20 23.58 65.28%

- 0 - 30 60.99 kB 0.61 0.490 0.025 1.25 24.41 63.91%
- 1 - 30 77.38 kB 0.79 0.633 0.032 1.24 24.34 64.37%
- 0 - 60 87.55 kB 0.44 0.364 0.019 1.20 23.43 60.82%
- 1 - 60 103.94 kB 0.52 0.438 0.022 1.19 23.27 61.25%

[24] n.a. 461 kB 16.00 21.828 1.113 0.73 14.37 61.95%

All bioformers with default patch size (P = 10) outperform TEMPONet in terms
of accuracy (from +3.3% to +5.1%), while at the same time significantly reducing energy

Sensors 2023, 23, 2065 17 of 21

consumption and inference latency (from 7.8× to 19.2×). When enlarging the patch size,
the energy savings increase. For instance, with respect to [24], Model-0 bioformers with
P = 30 and P = 60 reduce the energy consumption by 44.5× and 58.6×, at +2% and
−1.1% accuracy, respectively. Notably, after quantization, the accuracy ranking of the three
bioformers with default patch sizes reverses. However, since the accuracies of these three
models are very close to each other, this can be attributed to the random noise inserted
by quantization.

The fact that the total number of MMAC is 4.8× smaller than those required by
TEMPONet, even for the largest bioformer, hints that similar energy and latency reductions
could be achieved regardless of the target HW platform. However, the GMAC/s and
GMAC/s/W columns show that, in the case of GAP8, our models not only require fewer
total operations but also utilize the hardware better, achieving higher throughput and
efficiency. Concerning real-time constraints, all bioformers can provide very fast responses
with a latency of <3 ms, well below the 15 ms constraint imposed by the time lag between
two consecutive input windows in Ninapro DB6.

Lastly, bioformers are also small. Model-0 with P = 10 only requires 44.35 kB, thus
being 10.4× smaller than TEMPONet, and simultaneously more accurate (+5.1%). All our
models easily fit in the 512 kB L2 memory of the target SoC (occupying at most 20% of it),
whereas the baseline CNN fills it almost entirely.

Table 3 reports the results obtained deploying several dynamic inference solutions on
GAP-8. Configurations are described according to the model used for each stage (leftmost
three columns of the table). For bioformers, we use the notation-N-(P), where N is the
model number (0, 1, or 2) and P the patch size. Solutions that do not use all the stages
have “n.a.” values in some of the columns. The “Technique” column clarifies the type of
dynamic system considered, where “Rest” corresponds to the usage of the RF-based rest
detector, and “Big/Little” to the combination of two different bioformers. We report the
accuracy, MMAC, latency, and energy consumption for each configuration, where the last
two metrics are averaged over the Ninapro DB6 test sets.

Table 3. Performance of dynamic inference solutions on GAP8.

Stage-1 Stage-2 Stage-3 Technique MMAC [#] Latency [ms] Energy [mJ] Accuracy

n.a. n.a. - 0 - (10) None 1.37 1.130 0.058 67.04%
n.a. n.a. - 2 - (10) None 3.36 2.797 0.143 65.28%
n.a. n.a. - 0 - (60) None 0.44 0.364 0.019 60.82%

RF - 2 - (10) n.a. Rest. 1.686 1.402 0.071 62.55%
n.a. - 0 - (60) - 2 - (10) Big/Little 2.483 2.067 0.105 65.20%

RF - 0 - (60) - 2 - (10) Rest. +
Big/Litte 1.274 1.061 0.054 62.54%

RF - 0 - (10) n.a. Rest. 0.685 0.570 0.029 64.69%
n.a. - 0 - (60) - 0 - (10) Big/Little 1.319 1.098 0.056 67.02%

RF - 0 - (60) - 0 - (10) Rest. +
Big/Litte 0.631 0.525 0.027 64.72%

The first three rows report the metrics relative to the three static models that we used as
the basis for big/little bioformers, for comparison. Then, the following six rows report the
metrics obtained by two dynamic systems constructed using these bioformers as building
blocks. Precisely, we use the least-energy-consuming bioformer (Model-0 with P = 60)
as the “little” neural network (NN) in all cases, and we consider as a “big” NN either
the bioformer that achieves the highest float accuracy (Model-2 with P = 10) or the one
achieving the highest int8 accuracy (Model-0 with P = 10). The former results in the same
combination of big/little models shown in Figure 7. Each of the two dynamic systems is
shown in multiple configurations, namely, (i) a solution that combines the rest detector with
the big model directly, without leveraging the big/little technique; (ii) the big/little system
with rest detector disabled; (iii) the big/little system with rest detector enabled. Since

Sensors 2023, 23, 2065 18 of 21

each of these combinations can work in tens of different operating conditions (obtained
bchanging Th), we report the latency and energy results corresponding to the Th value that
yields the maximum accuracy with the fewest MACs, i.e., the equivalent of the leftmost
extreme of the horizontal green and blue segments in Figure 7.

The results show that, with almost the same accuracy of the big models from which
they are generated (67.02% vs. 67.04% and 65.20% vs. 65.28%, respectively, for Model-0 and
Model-2 as “big” NNs), big/little bioformers can reduce the average inference energy con-
sumption by 1.03×–1.35× (56 µJ vs. 58 µJ and 105 µJ vs. 143 µJ, respectively). Furthermore,
the effectiveness of the proposed three-stage solution is demonstrated by the fact that it
achieves the same accuracy as a system that only uses the RF rest detector combined with
the “big” NN (64.72% vs. 64.69% and 62.54% vs. 62.55% for the two cases) while reducing
the average consumption per input by 1.07×–1.31×. Therefore, we can conclude that our
multi-stage dynamic approach combining staged and big/little inference can further reduce
energy consumption and enhance flexibility compared to any scheme involving only two
levels. Furthermore, note that these results are obtained with the NinaPro DB6 test set,
which includes a comparable number of “rest” and “grasp” samples. In a real deployment
scenario, the amount of “rest” samples would probably be much larger, thus resulting in
larger energy savings for the dynamic system.

In terms of memory occupation, the entire three-stage system requires a total of 132 kB/
184 kB when Model-0 and Model-2 are used as “big” NNs, respectively. While the memory
overhead compared to a single static model is not negligible, the system still largely fits the
L2 memory of GAP8. Conversely, for instance, the total memory occupied by all the seven
optimal static solutions reported in Table 2 is 529.04 kB, i.e., 2.90×more than our largest
dynamic system, and exceeding the L2 of GAP8. Thus, besides allowing a finer-grain
tuning of the operating point, the dynamic method is also much less demanding to deploy
compared to multiple independent models.

6. Conclusions

We have proposed bioformers, a set of efficient tiny transformers for sEMG-based
gesture recognition at the edge, that achieve state-of-the-art accuracy on the popular
Ninapro DB6. With an extensive architecture exploration, we obtained a rich set of trade-offs
in terms of accuracy versus complexity. When deployed on the GAP8 edge SoC, bioformers
outperform a previous CNN-based solution [24] in accuracy, while also occupying less
memory, and requiring lower latency and energy.

Furthermore, we have proposed a novel multi-stage dynamic inference solution that
combines staged and big/little inference, in order to further improve energy efficiency.
Thanks to dynamic inference, our system can span a wider range of trade-offs in terms
of accuracy and computational complexity, only by varying two run-time configurable
parameters, and achieves an additional energy saving on GAP8 with respect to static
bioformers for the same accuracy. Overall, our results show that the proposed gesture
recognition system based on bioformers and dynamic inference enables continuous on-
device execution in real time, with very low energy consumption.

Author Contributions: Conceptualization, A.B.; Investigation, C.X. and D.J.P.; Methodology, D.J.P.;
Project administration, A.C., E.M. and M.P.; Resources, D.J.P.; Software, C.X., A.B. and F.D.; Su-
pervision, L.B., E.M. and D.J.P.; Validation, C.X. and D.J.P.; Writing—original draft, C.X. and F.D.;
Writing—review and editing, A.B., L.B., E.M., M.P. and D.J.P. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Sensors 2023, 23, 2065 19 of 21

Acknowledgments: We acknowledge the CINECA award under the ISCRA initiative, for the avail-
ability of high performance computing resources and support.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sun, F.T.; Morrell, M.J.; Wharen, R.E. Responsive cortical stimulation for the treatment of epilepsy. Neurotherapeutics 2008, 5, 68–74.

[CrossRef]
2. Daghero, F.; Jahier Pagliari, D.; Poncino, M. Energy-Efficient Deep Learning Inference on Edge Devices. In Hardware Accelerator

Systems for Artificial Intelligence and Machine Learning; Kim, S., Deka, G.C., Eds.; Elsevier: Amsterdam, The Netherlands, 2021;
Volume 122, pp. 247–301. [CrossRef]

3. Meattini, R.; Benatti, S.; Scarcia, U.; Gregorio, D.D.; Benini, L.; Melchiorri, C. An sEMG-Based Human–Robot Interface for Robotic
Hands Using Machine Learning and Synergies. IEEE Trans. Components Packag. Manuf. Technol. 2018, 8, 1149–1158. [CrossRef]

4. Zheng, Z.; Wang, Q.; Yang, D.; Wang, Q.; Huang, W.; Xu, Y. L-sign: Large-vocabulary sign gestures recognition system. IEEE
Trans. Hum.-Mach. Syst. 2022, 52, 290–301. [CrossRef]

5. Sharma, S.; Singh, S. Vision-based hand gesture recognition using deep learning for the interpretation of sign language. Expert
Syst. Appl. 2021, 182, 115657. [CrossRef]

6. Sarma, D.; Bhuyan, M.K. Methods, databases and recent advancement of vision-based hand gesture recognition for hci systems:
A review. SN Comput. Sci. 2021, 2, 140053. [CrossRef]

7. Palermo, F.; Cognolato, M.; Gijsberts, A.; Muller, H.; Caputo, B.; Atzori, M. Repeatability of grasp recognition for robotic hand
prosthesis control based on sEMG data. In Proceedings of the 2017 International Conference on Rehabilitation Robotics (ICORR),
London, UK, 17–20 July 2017; pp. 1154–1159. [CrossRef]

8. Atzori, M.; Gijsberts, A.; Castellini, C.; Caputo, B.; Hager, A.G.M.; Elsig, S.; Giatsidis, G.; Bassetto, F.; Müller, H. Electromyography
data for non-invasive naturally-controlled robotic hand prostheses. Sci. Data 2014, 1, 140053. [CrossRef]

9. Kaufmann, P.; Englehart, K.; Platzner, M. Fluctuating EMG signals: Investigating long-term effects of pattern matching algorithms.
In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires,
Argentina, 31 August–4 September 2010; pp. 6357–6360.

10. Benatti, S.; Casamassima, F.; Milosevic, B.; Farella, E.; Schönle, P.; Fateh, S.; Burger, T.; Huang, Q.; Benini, L. A Versatile Embedded
Platform for EMG Acquisition and Gesture Recognition. IEEE Trans. Biomed. Circuits Syst. 2015, 9, 620–630. [CrossRef]

11. Milosevic, B.; Farella, E.; Benatti, S. Exploring Arm Posture and Temporal Variability in Myoelectric Hand Gesture Recognition.
In Proceedings of the 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob), Enschede,
The Netherlands, 26–29 August 2018; pp. 1032–1037. [CrossRef]

12. Hu, Y.; Wong, Y.; Wei, W.; Du, Y.; Kankanhalli, M.; Geng, W. A novel attention-based hybrid CNN-RNN architecture for
sEMG-based gesture recognition. PLoS ONE 2018, 13, e0206049. [CrossRef]

13. Tsinganos, P.; Cornelis, B.; Cornelis, J.; Jansen, B.; Skodras, A. Deep Learning in EMG-based Gesture Recognition. In Proceedings
of the 5th International Conference on Physiological Computing Systems, Seville, Spain, 19–21 September 2018.

14. Tsinganos, P.; Cornelis, B.; Cornelis, J.; Jansen, B.; Skodras, A. Improved gesture recognition based on sEMG signals and TCN.
In Proceedings of the ICASSP 2019—2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Brighton, UK, 12–17 May 2019; pp. 1169–1173.

15. Flamand, E.; Rossi, D.; Conti, F.; Loi, I.; Pullini, A.; Rotenberg, F.; Benini, L. GAP-8: A RISC-V SoC for AI at the Edge of the IoT.
In Proceedings of the 2018 IEEE 29th International Conference on Application-Specific Systems, Architectures and Processors
(ASAP), Milan, Italy, 10–12 July 2018; pp. 1–4.

16. Betthauser, J.L.; Krall, J.T.; Kaliki, R.R.; Fifer, M.S.; Thakor, N.V. Stable Electromyographic Sequence Prediction during Movement
Transitions using Temporal Convolutional Networks. In Proceedings of the 2019 9th International IEEE/EMBS Conference on
Neural Engineering (NER), San Francisco, CA, USA, 20–23 March 2019. [CrossRef]

17. Risso, M.; Burrello, A.; Jahier Pagliari, D.; Benatti, S.; Macii, E.; Benini, L.; Poncino, M. Robust and Energy-efficient PPG-based
Heart-Rate Monitoring. In Proceedings of the 2021 IEEE International Symposium on Circuits and Systems (ISCAS), Daegu,
Republic of Korea, 22–28 May 2021; pp. 1–5.

18. Jacob, B.; Kligys, S.; Chen, B.; Zhu, M.; Tang, M.; Howard, A.; Adam, H.; Kalenichenko, D. Quantization and training of neural
networks for efficient integer-arithmetic-only inference. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 2704–2713.

19. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is All You Need.
arXiv 2017, arXiv:1706.03762.

20. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv 2018, arXiv:1810.04805.

21. Brown, T.B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al.
Language models are few-shot learners. arXiv 2020, arXiv:2005.14165.

http://doi.org/10.1016/j.nurt.2007.10.069
http://dx.doi.org/10.1016/bs.adcom.2020.07.002
http://dx.doi.org/10.1109/TCPMT.2018.2799987
http://dx.doi.org/10.1109/THMS.2022.3146787
http://dx.doi.org/10.1016/j.eswa.2021.115657
http://dx.doi.org/10.1007/s42979-021-00827-x
http://dx.doi.org/10.1109/ICORR.2017.8009405
http://dx.doi.org/10.1038/sdata.2014.53
http://dx.doi.org/10.1109/TBCAS.2015.2476555
http://dx.doi.org/10.1109/BIOROB.2018.8487838
http://dx.doi.org/10.1371/journal.pone.0206049
http://dx.doi.org/10.1109/NER.2019.8717169

Sensors 2023, 23, 2065 20 of 21

22. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;
Gelly, S.; et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929.

23. Burrello, A.; Morghet, F.B.; Scherer, M.; Benatti, S.; Benini, L.; Macii, E.; Poncino, M.; Jahier Pagliari, D. Bioformers: Embedding
transformers for ultra-low power sEMG-based gesture recognition. In Proceedings of the 2022 Design, Automation & Test in
Europe Conference & Exhibition (DATE), Antwerp, Belgium, 14–23 March 2022; pp. 1443–1448.

24. Zanghieri, M.; Benatti, S.; Burrello, A.; Kartsch, V.; Conti, F.; Benini, L. Robust real-time embedded emg recognition framework
using temporal convolutional networks on a multicore iot processor. IEEE Trans. Biomed. Circuits Syst. 2019, 14, 244–256.
[CrossRef]

25. Wei, W.; Dai, Q.; Wong, Y.; Hu, Y.; Kankanhalli, M.; Geng, W. Surface-electromyography-based gesture recognition by multi-view
deep learning. IEEE Trans. Biomed. Eng. 2019, 66, 2964–2973. [CrossRef]

26. Zou, Y.; Cheng, L. A Transfer Learning Model for Gesture Recognition Based on the Deep Features Extracted by CNN. IEEE
Trans. Artif. Intell. 2021, 2, 447–458. [CrossRef]

27. Han, L.; Zou, Y.; Cheng, L. A Convolutional Neural Network With Multi-scale Kernel and Feature Fusion for sEMG-based
Gesture Recognition. In Proceedings of the 2021 IEEE International Conference on Robotics and Biomimetics (ROBIO), Sanya,
China, 27–31 December 2021; pp. 774–779.

28. Hudgins, B.; Parker, P.; N. Scott, R. A new strategy for multifunction myoelectric control. IEEE Trans. Bio-Med. Eng. 1993,
40, 82–94. [CrossRef]

29. Englehart, K.; Hudgins, B. A robust, real-time control scheme for multifunction myoelectric control. IEEE Trans. Biomed. Eng.
2003, 50, 848–854. [CrossRef]

30. Castellini, C.; Gruppioni, E.; Davalli, A.; Sandini, G. Fine detection of grasp force and posture by amputees via surface
electromyography. J. Physiol. 2009, 103, 255–262. [CrossRef]

31. Phinyomark, A.; Scheme, E.J. EMG Pattern Recognition in the Era of Big Data and Deep Learning. Big Data Cogn. Comput. 2018,
2, 21. [CrossRef]

32. Benatti, S.; Farella, E.; Gruppioni, E.; Benini, L. Analysis of Robust Implementation of an EMG Pattern Recognition based
Control. In Proceedings of the International Joint Conference on Biomedical Engineering Systems and Technologies—Volume 4.
SCITEPRESS-Science and Technology Publications, Lda, Loire Valley, France, 3–6 March 2014; pp. 45–54.

33. Cene, V.H.; Tosin, M.; Machado, J.; Balbinot, A. Open Database for Accurate Upper-Limb Intent Detection Using Electromyogra-
phy and Reliable Extreme Learning Machines. Sensors 2019, 19, 1864. [CrossRef]

34. Park, E.; Kim, D.; Kim, S.; Kim, Y.D.; Kim, G.; Yoon, S.; Yoo, S. Big/Little Deep Neural Network for Ultra Low Power
Inference. In Proceedings of the 2015 International Conference on Hardware/Software Codesign and System Synthesis (CODES +
ISSS),Amsterdam, The Netherlands, 4–9 October 2015; pp. 124–132. [CrossRef]

35. Tann, H.; Hashemi, S.; Bahar, R.I.; Reda, S. Runtime Configurable Deep Neural Networks for Energy-Accuracy Trade-Off. In
Proceedings of the Eleventh IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis—
CODES’16, Pittsburgh, PA, USA, 2–7 October 2016; pp. 1–10. [CrossRef]

36. Yu, J.; Yang, L.; Xu, N.; Yang, J.; Huang, T. Slimmable Neural Networks. arXiv 2018, arXiv:1812.08928.
37. Jahier Pagliari, D.; Macii, E.; Poncino, M. Dynamic Bit-width Reconfiguration for Energy-Efficient Deep Learning Hardware. In

Proceedings of the International Symposium on Low Power Electronics and Design, Seattle, WA, USA, 23–25 July 2018; ACM:
New York, NY, USA, 2018; pp. 47:1–47:6. . [CrossRef]

38. Parsa, M.; Panda, P.; Sen, S.; Roy, K. Staged Inference Using Conditional Deep Learning for Energy Efficient Real-Time Smart
Diagnosis. In Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology
Society (EMBC), Jeju, Republic of Korea, 11–15 July 2017; pp. 78–81. [CrossRef]

39. Daghero, F.; Jahier Pagliari, D.; Poncino, M. Two-stage Human Activity Recognition on Microcontrollers with Decision Trees and
CNNs. In Proceedings of the 2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME), Villasimius,
Italy, 12–15 June 2022; pp. 173–176. [CrossRef]

40. Xie, C.; Jahier Pagliari, D.; Calimera, A. Energy-efficient and Privacy-aware Social Distance Monitoring with Low-resolution
Infrared Sensors and Adaptive Inference. In Proceedings of the 2022 17th Conference on Ph.D Research in Microelectronics and
Electronics (PRIME), Villasimius, Italy, 12–15 June 2022; pp. 181–184. [CrossRef]

41. Mullapudi, R.T.; Mark, W.R.; Shazeer, N.; Fatahalian, K. HydraNets: Specialized Dynamic Architectures for Efficient Infer-
ence. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA,
18–23 June 2018.

42. Burrello, A.; Jahier Pagliari, D.; Rapa, P.M.; Semilia, M.; Risso, M.; Polonelli, T.; Poncino, M.; Benini, L.; Benatti, S. Embedding
Temporal Convolutional Networks for Energy-Efficient PPG-Based Heart Rate Monitoring. ACM Trans. Comput. Healthc. 2022,
3, 19. [CrossRef]

43. Daghero, F.; Burrello, A.; Jahier Pagliari, D.; Benini, L.; Macii, E.; Poncino, M. Energy-Efficient Adaptive Machine Learning on IoT
End-Nodes With Class-Dependent Confidence. In Proceedings of the 2020 27th IEEE International Conference on Electronics,
Circuits and Systems (ICECS), Glasgow, UK, 23–25 November 2020; pp. 1–4. [CrossRef]

http://dx.doi.org/10.1109/TBCAS.2019.2959160
http://dx.doi.org/10.1109/TBME.2019.2899222
http://dx.doi.org/10.1109/TAI.2021.3098253
http://dx.doi.org/10.1109/10.204774
http://dx.doi.org/10.1109/TBME.2003.813539
http://dx.doi.org/10.1016/j.jphysparis.2009.08.008
http://dx.doi.org/10.3390/bdcc2030021
http://dx.doi.org/10.3390/s19081864
http://dx.doi.org/10.1109/CODESISSS.2015.7331375
http://dx.doi.org/10.1145/2968456.2968458
http://dx.doi.org/10.1145/3218603.3218611
http://dx.doi.org/10.1109/EMBC.2017.8036767
http://dx.doi.org/10.1109/PRIME55000.2022.9816745
http://dx.doi.org/10.1109/PRIME55000.2022.9816801
http://dx.doi.org/10.1145/3487910
http://dx.doi.org/10.1109/ICECS49266.2020.9294863

Sensors 2023, 23, 2065 21 of 21

44. Burrello, A.; Scherer, M.; Zanghieri, M.; Conti, F.; Benini, L. A Microcontroller is All You Need: Enabling Transformer Execution
on Low-Power IoT Endnodes. In Proceedings of the 2021 IEEE International Conference on Omni-Layer Intelligent Systems
(COINS), Barcelona, Spain, 23–25 August 2021; pp. 1–6. [CrossRef]

45. Garofalo, A.; Rusci, M.; Conti, F.; Rossi, D.; Benini, L. PULP-NN: Accelerating Quantized Neural Networks on Parallel
Ultra-Low-Power RISC-V Processors. arXiv 2019, arXiv:1908.11263.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/COINS51742.2021.9524173

	Introduction
	Background
	Attention and Transformers
	Surface Electromyographic Signal

	Related Work
	Material and Methods
	Target Dataset
	Bioformer Architectures
	MHSA Layer Details
	Architecture Exploration

	Training Protocol
	Dynamic Inference
	Rest Detector
	Big/Little Bioformers
	Tuning Parameters and Overheads

	Experimental Results
	Setup
	Architecture Exploration
	Dynamic Inference
	Deployment on GAP8

	Conclusions
	References

