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Abstract

We present a new statistics based on the turnaround radii of cluster halos to break the dark sector degeneracy
between the ΛCDM model and the alternative ones with f (R) gravity and massive neutrinos (ν) characterized by
the strength of the fifth force, |fR0|, and the total neutrino mass, Mν. Analyzing the Rockstar halo catalogs at the
present epoch from the DUSTGRAIN-pathfinder N-body simulations performed for four different cosmologies,
namely, ΛCDM (|fR0|= 0, ∑mν= 0.0 eV), fR6 (|fR0|= 10−6, ∑mν= 0.0 eV), fR6+0.06 eV(|fR0|= 10−6,
∑mν= 0.06 eV), and fR5+0.15 eV(|fR0|= 10−5, ∑mν= 0.15 eV), which are known to yield very similar
conventional statistics to one another. For each model, we select those cluster halos that do not neighbor any other
larger halos in their bound zones and construct their bound-zone peculiar velocity profiles at z= 0. Then, we
determine the radial distance of each selected halo at which the bound-zone velocity becomes equal to the
recession speed of the Hubble flow as its turnaround radius, and evaluate the cumulative probability distribution of
the ratios of the turnaround radii to the virial counterparts, P(rt/rv� α). The degeneracy between the fR6 and
fR5+0.15 eV models is found to be readily broken by the 10σΔP difference in the value of P(α= 4), while the
3.2σΔP difference between the ΛCDM and fR6+0.06 eV models is detected in the value of P(α= 8.5). It is also
found that the four models yield smaller differences in P(α) at higher redshifts.

Unified Astronomy Thesaurus concepts: Cosmological models (337); Large-scale structure of the universe (902)

1. Introduction

The turnaround radius of a dark matter (DM) halo is a
characteristic distance scale at which the velocity field around
the halo has a vanishingly small value in the radial direction
due to the complete counterbalance between its inward gravity
and the outward repulsion of the Hubble flow. Even though the
turnaround radius is a property of a highly nonlinear structure,
its value can in principle be theoretically predictable from the
first principles as far as the halo forms through the spherically
symmetric gravitational collapse process (Pavlidou et al. 2014;
Pavlidou & Tomaras 2014). This advantageous aspect of the
turnaround radius has motivated many authors to examine its
potential as a probe of cosmology. For example, Pavlidou &
Tomaras (2014) analytically evaluated the upper limit on the
turnaround radii for the standard ΛCDM cosmology, where the
gravitational law is described by Einstein’s general relativity
(GR), the present acceleration of the universe is driven by the
cosmological constant (Λ) with equation of state w=−1, and
the most dominant matter content is the collisionless cold DM
(CDM) particles having negligibly low speed at the moment of
their decoupling.

What Pavlidou & Tomaras (2014) proved was that the spherical
upper limit on the turnaround radii sensitively depends on the
amount of Λ (see also Pavlidou et al. 2014; Bhattacharya &
Tomaras 2017) and thus that a bound violation, if observed to
occur, could in principle challenge the ΛCDM cosmology. Here, a
bound violation is a term coined by Pavlidou & Tomaras (2014) to

describe an event of observing a cosmic structure whose
turnaround radius is exceeding the analytically found spherical
upper limit of the ΛCDM cosmology. Later, Lopes et al. (2018)
theoretically proved that the upper limit of the turnaround radii can
be used to detect the presence of modified gravity (MG; Clifton
et al. 2012, for a review), which has an effect of significantly
increasing the turnaround radii (see also Lopes et al. 2019).
The aforementioned theoretical works were based on the

simple top-hat spherical dynamics (Gunn & Gott 1972), from
which the real gravitational dynamics were in fact well known
to depart (e.g., Bond & Myers 1996). To take into account the
nonspherical nature of gravitational collapse for the determina-
tion of the turnaround radii and their upper limit, the numerical
experiments had to be employed (Pavlidou & Tomaras 2014).
For instance, Lee & Yepes (2016) used a high-resolution N-
body simulation to measure the turnaround radii of DM halos
located in the cosmic web (Bond et al. 1996) and demonstrated
that the anisotropic merging along the filamentary structures
has an effect of enlarging the turnaround radii. Their result
implied that the occurrence of a bound violation is not
unconditionally prohibited but occasionally possible even in
the ΛCDM cosmology since the numerically determined
nonspherical upper limit on the turnaround radii turned out to
be higher than the analytically predicted spherical limit (see
also Bhattacharya & Tomaras 2021; Faraoni 2021; Giusti &
Faraoni 2021).
Nevertheless, the usefulness of the turnaround radii as a

cosmological probe is not necessarily undermined by the fact
that their upper limit cannot be treated in a purely analytical
way. Lee & Li (2017) numerically found that it becomes
significantly more probable for a bound violation to occur in
the presence of MG and thus that the frequency of the

The Astrophysical Journal, 938:137 (7pp), 2022 October 20 https://doi.org/10.3847/1538-4357/ac94ca
© 2022. The Author(s). Published by the American Astronomical Society.

Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

1

https://orcid.org/0000-0003-0522-4356
https://orcid.org/0000-0003-0522-4356
https://orcid.org/0000-0003-0522-4356
https://orcid.org/0000-0003-4145-1943
https://orcid.org/0000-0003-4145-1943
https://orcid.org/0000-0003-4145-1943
mailto:jounghun@astro.snu.ac.kr
http://astrothesaurus.org/uat/337
http://astrothesaurus.org/uat/902
https://doi.org/10.3847/1538-4357/ac94ca
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ac94ca&domain=pdf&date_stamp=2022-10-21
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ac94ca&domain=pdf&date_stamp=2022-10-21
http://creativecommons.org/licenses/by/4.0/


occurrence of the bound violations should be a powerful test of
GR. Their claim was supported by several follow-up works that
theoretically proved that the alternative cosmologies including
quintessence dark energy, scalar-tensor theory, and phantom
brane world induce more frequent occurrences of the bound
violations (Bhattacharya & Kousvos 2017; Bhattacharya &
Tomaras 2017; Lopes et al. 2018; Nojiri et al. 2018; Lopes
et al. 2019).

In light of the aforementioned works that disclosed the
sensitivity of the turnaround radii especially to the nature of
gravity, we attempt here to numerically explore if the
turnaround radii are capable of discriminating the alternative
MG models that have been known to be degenerate with the
ΛCDM cosmology by the conventional statistics such as the
linear and nonlinear density power spectra, cluster mass
function, halo bias factor, and redshift distortion effect (Baldi
et al. 2014; Hagstotz et al. 2019). For this exploration, our
analysis will focus on a particular class of MG models, namely,
the νCDM+f (R) gravity model, where the massive neutrinos
(ν) with nonzero total mass ∑mν are present along with CDM
and the apparent acceleration of spacetime at the present epoch
is caused by the failure of GR on the cosmological scales (see
De Felice & Tsujikawa 2010, for a review).

The gravitational dynamics of this alternative model is
dictated by the modified Einstein–Hilbert action in which some
specified function, f (R), substitutes for the Ricci scalar R. An
additional fifth force is generated by its extra degree of
freedom, fR≡ df/dR, dubbed the scalaron, whose absolute
value at the present epoch, |fR0|, quantifies how strong fifth
force the f (R) gravity can exert (see Hu & Sawicki 2007, and
references therein). Although the Chameleon shielding mech-
anism turns off the fifth force in the high-density regions, the
overall effect of f (R) gravity alone is to enhance the density
growth via its fifth force compared with the ΛCDM case (see
Khoury & Weltman 2004, and references therein). However, in
the presence of massive neutrinos that have an effect of
suppressing the density growth (e.g., see Lesgourgues &
Pastor 2014), this effect of f (R) gravity can be severely
attenuated. It was indeed numerically shown that a proper
combination of∑mν with |fR0| can make a νCDM+f (R) gravity
model yield very similar conventional statistics to the ΛCDM
case (Baldi et al. 2014; Hagstotz et al. 2019).

In this Paper, we will provide numerical evidence supporting
that the turnaround radii may break this degeneracy between
the ΛCDM and νCDM+f (R) gravity models. The organization
of this paper is as follows. In Section 2, we briefly review
the previously developed algorithm for the estimation of the
turnaround radii of DM halos. In Section 3, we describe the
numerical data used for our analysis and explain how well
the cumulative probability of the turnaround radii of DM halos
differentiates between the ΛCDM and νCDM+f (R) gravity
models. In Section 4, we summarize the results and discuss the
caveats and limitations of our statistics as a cosmological
discriminator.

2. A Review of the Turnaround Radius Estimator
Algorithm

The neighborhood around a DM halo is often divided into
three distinct sectors called the infall, bound, and Hubble
zones, depending on which effect is more dominant between
the gravity and the cosmic expansion. The infall (Hubble) zone
corresponds to the radial distance range, r� 2rv (r� 10rv), in

which the effect of the gravitational attraction of the halo on the
radial components of the peculiar velocities, vr, completely
surpasses (surrenders) that of the receding Hubble flow, where
rv is the halo virial radius. Meanwhile, the in-between bound
zone corresponds to the region where the two competing forces
are so well balanced that vr can be tractable in the linear
perturbation theory.
Falco et al. (2014) showed that the profile of the radial

components of the peculiar velocity field in the bound zone,
vr(r), around the cluster halos with virial mass Mv�
0.5× 1014 h−1 Me has a universal shape, well approximated
by the following formula

⎛
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v r
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v
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where two adjustable parameters, A and n, quantify the
amplitude and slope of the profile, respectively, and Vc is the
circular velocity equivalent to GM rv v

1 2( ) . The negative sign
in the right-hand side of Equation (1) indicates that the bound-
zone neighbors still feel the net gravitational force of the halo.
From here on, we let vr(r) exclusively denote the profile of the
radial components of the peculiar velocity field in the bound
zone around the cluster halos and call it the bound-zone
velocity profile.
Falco et al. (2014) claimed the universality of Equation (1)

based on their numerical finding that the stacked bound-zone
velocity profiles over the cluster halos have a constant slope
and amplitude, being almost independent of the cluster masses
and redshifts. It was also found by Falco et al. (2014) that not
only the stacked ones but also the bound-zone velocity profiles,
vr(r), around individual cluster halos follow the above formula
well, although the best-fit values of A and n exhibited
substantial scatters around the mean values. The pioneering
work of Falco et al. (2014) motivated further numerical
investigations of the bound-zone velocity profiles around the
cluster halos, which all confirmed the validity of Equation (1)
for the description of vr(r) (Lee et al. 2015; Lee 2016; Lee &
Yepes 2016; Lee 2018; Hansen et al. 2020).
Lee & Yepes (2016) demonstrated with the help of N-body

simulations that the best-fit values of A and n in Equation (1)
depend on the halo environments and that the best agreements
between the numerically obtained vr(r) and Equation (1) can be
achieved for the case that the cluster halos are located in the
relatively low-density environments, having no larger neighbor
halos in their bound zones. They also showed that even when
vr(r) is constructed not directly from the DM particles but only
from the distinct neighbor halos in the bound zones, it is well
described by Equation (1), proving the feasibility of the
observational application of Equation (1) to real data. Lee
(2016) confirmed the universality of Equation (1), showing that
the best-fit values of A and n in Equation (1) are quite
insensitive to the variation of the key cosmological parameters,
σ8 and Ωm. It was also found by Lee (2016) that Equation (1) is
valid even on the lower mass scales corresponding to the
group-size halos, 5× 1012�Mv/(h

−1 Me)� 1013, as far as the
halos are located in the isolated regions.
Lee et al. (2015) proposed an algorithm based on

Equation (1) to estimate the turnaround radii, rt, of the cluster
halos, calling it the turnaround radius estimator (TRE). By
definition, the magnitude of the bound-zone velocity, vr, at rt
becomes equal to the speed of the Hubble flow, H0rt. By
Equation (1), however, |vr(rt)| is nothing but A r rv t

n[ ] . Given
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that A and n have constant values, the turnaround radius of a
cluster halo can be estimated simply by solving the following
equation:

⎡
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Lee & Li (2017) applied the TRE to the numerical data from a
high-resolution N-body simulation and found that the TRE
worked better when they used the best-fit values of A and n
obtained separately for each cluster halo rather than using their
constant mean values.

For the application of the TRE to the real clusters from
observations, the critical issue to address was whether or not
the values of A and n for the individual clusters could be
obtained without measuring the bound-zone peculiar velocities.
According to Falco et al. (2014), for those cluster halos
embedded in cosmic filaments, it is possible to construct vr(r)
from limited information only on the redshift space positions of
the bound-zone galaxies. Once vr(r) is constructed for the
filament clusters whose virial mass and radius are known, then
the values of A and n can be readily obtained through fitting of
vr(r) to Equation (1). Lee (2018) applied this TRE to the local
galaxy clusters located in the straight filamentary structures and
successfully estimated their turnaround radii, validating its
practical usefulness. In Section 3, we will apply the TRE to the
numerical data for the investigation of the combined effects of
f (R) gravity and massive neutrinos on the turnaround radii of
the cluster halos.

3. Physical Analysis

The DUSTGRAIN-pathfinder simulation project aimed at
keeping track of 7683 CDM particles of individual mass
8.1× 1010 h−1 Me under the influence of f (R) gravity in the
presence of massive neutrinos (Giocoli et al. 2018) on the periodic
box of volume 7503 h−3 Mpc3. The MG-GADGET encoded by
Puchwein et al. (2013) was implemented for the computation of
the Hu–Sawicki f (R) gravity (Hu & Sawicki 2007), while the
incorporation of massive neutrinos was achieved via the particle-
based routine programmed by Viel et al. (2010). See Giocoli et al.
(2018) and Puchwein et al. (2013) for detailed information on the
DUSTGRAIN-pathfinder project and MG-GADGET code,
respectively. Among many νCDM+f (R) gravity models simulated
by the DUSTGRAIN-pathfinder, we consider the following three,
fR6 (|fR0|= 10−6, ∑mν= 0.0 eV), fR6+0.06 eV (|fR0|= 10−6,
∑mν= 0.06 eV), and fR5+0.15 eV with |fR0|= 10−5 and
∑mν= 0.15 eV) models. As mentioned in Section 1, it was
shown by the previous works of Baldi et al. (2014) and Hagstotz
et al. (2019) that the conventional statistics can hardly discriminate
these three models from the ΛCDM cosmology, which was also
simulated by the DUSTGRAIN-pathfinder project, setting the
initial conditions at the Planck values (Planck Collaboration et al.
2016).

For each of the four models, i.e., the ΛCDM and the three
νCDM+f (R) gravity cosmologies, Lee et al. (2022) identified
the DM halos by applying the Rockstar algorithm (Behroozi
et al. 2013) to the snapshot data of the DUSTGRAIN-
pathfinder simulations. From the Rockstar halo catalogs at
z= 0, we extract the cluster-size distinct halos with
Mv� 4.05× 1013 h−1 Me enclosing 500 or more DM particles
within their virial radii rv. Among them, we select only those
cluster halos that do not neighbor any higher-mass halos in

their bound zones. From here on, the selected cluster halos will
be referred to as the host halos, for which we find the neighbor
halos located in their bound zones and containing 20 or more
DM particles. Then, we compute the radial components of the
relative peculiar velocities of the bound-zone neighbors around
each host as

r V Vv , 3r h bˆ · ( ) ( )= -

where Vh and Vb denote the comoving peculiar velocities of a
host halo and its bound-zone neighbor halo, respectively, and r̂
is the unit vector in the direction from the host halo center to
the bound-zone neighbor separated by a distance r. The
rescaled bound-zone velocities and separation distances, vr̃ and
r̃ , are defined as v v Vr r c˜ º and r r rv˜ º , respectively. From
here on, we will call vr̃ the bound-zone velocity profile,
dropping the term, “rescaled,” unless otherwise stated.
Breaking up the bound-zone distance range of r2 10˜< <

into several intervals of equal length, r 1˜D = , we take the
average of vr̃ over those neighbors with r̃ falling in each
interval to determine the bound-zone velocity profile, v rr̃ ( ), for
each host. Then, we take its ensemble average over all of the
hosts to determine the stacked bound-zone velocity profile, vr̃á ñ,
the result of which is shown in Figure 1. As can be seen, the
average bound-zone velocity profiles conspicuously differ
between the fR5+0.15 eV and the other three models. The
former case yields significantly higher values of vr∣ ˜ ∣á ñ in the
whole range of r̃ than the latter case, which must be caused by
the difference in the strength of the fifth force between the two
cases. This result implies that the free streaming of more
massive neutrinos present in the fR5+0.15 eV model do not
severely attenuate the effect of it stronger fifth force on the
bound-zone velocity profiles.
We fit vr̃á ñ to Equation (1) by simultaneously adjusting A and

n with the help of the χ2 minimization method for each model.
Table 1 lists their best-fit values in the third and fourth columns
for the four cosmologies. Figure 2 compares the numerically
obtained vr̃á ñ (black filled circles) to the analytic formula with
the best-fit values of A and n (red solid lines), revealing the
excellent agreements between the numerical and analytical

Figure 1. Bound-zone velocity profiles around the cluster halos with
Mv � 4.05 × 1013 h−1 Me at z = 0 for four different cosmological models.
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results. This result confirms the validity and usefulness of
Equation (1) not only for the ΛCDM model but also for the
νCDM+f (R) gravity models. Figure 3 plots the 68%, 95%, and
99% contours of χ2(A, n), quantifying how significant the
differences in the best values of A and n are between the
fR5+0.15 eV and the other three models.

Recall that the fR5+0.15 eV model is very similar to the
other three ones in the conventional statistics (Baldi et al.
2014). Especially the fR6 model has been shown to be almost
indistinguishable from the fR5+0.15 eV, as the effect of the
stronger fifth force, |fR0|= 10−5 is so severely attenuated by
the free streaming massive neutrinos with ∑mν= 0.15 eV that
the palpable effect amounts only to that of |fR0|= 10−6.
However, the average bound-zone velocity profile, unlike the
aforementioned conventional statistics, is capable of disentan-
gling the effect of the fifth force from that of the massive
neutrinos, sensitively varying with the former, but not with the
latter. Yet, given that the other three models still remain mutually
indistinguishable even by 〈vr(r)〉, we now investigate if any other
statistics based on vr(r) beyond its ensemble average can break
the degeneracy among the other three models. Basically, we

consider the turnaround radii of the hosts as such statistics, and
estimate them by applying the TRE reviewed in Section 2 to the
individual bound-zone velocity profiles.
For each host, we fit the individual bound-zone velocity profile

to Equation (1) and separately determine the best-fit values of A
and n. While performing this fitting procedure, we exclude a small
fraction of the hosts whose bound-zone velocity profiles fail to be
fitted by Equation (1) due to the low number of their bound-zone
neighbors. Table 1 lists the number of the hosts, Nh, whose vr(r)
matches Equation (1) for the four cosmologies in the second
column. Plugging the best-fit values of A and n into Equation (2)
and solving it, we estimate the turnaround radius, rt, of each of the
included hosts. Counting the host halos whose turnaround radii
exceed αrv as a function of a dimensionless variable α, we obtain
the cumulative probability P(rt� αrv). To assess the errors, σP, in
P(rt� αrv), we create 10,000 bootstrap resamples composed of
equal numbers of the hosts and obtain the cumulative probabilities
from each resample. The one standard scatter among the resamples
from the average is taken as σP.
Figure 4 plots the cumulative probabilities, P(rt� αrv), with

the bootstrap errors, σP, for the four models. As expected, the

Table 1
Best Parameters and Probabilities of rt � αrv at z = 0

Cosmology Nh A n P(α = 4) P(α = 8.5)
(10−2) (10−3)

ΛCDM 18188 1.061 ± 0.045 0.580 ± 0.023 43.50 ± 0.37 0.87 ± 0.22
fR6 19317 1.086 ± 0.041 0.590 ± 0.021 43.69 ± 0.36 0.50 ± 0.16
fR6+0.06 eV 18811 1.096 ± 0.043 0.595 ± 0.021 43.61 ± 0.37 0.11 ± 0.08
fR5+0.15 eV 19291 1.245 ± 0.053 0.625 ± 0.035 53.74 ± 0.36 1.37 ± 0.28

Figure 2. Comparison of the numerically obtained bound-zone velocity profiles (black filled circles) with the best-fit analytic formula (red solid lines) at z = 0.
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fR5+0.15 eV model yields the most conspicuously different
P(rt� αrv) from the other three models. The host halos in the
fR5+0.15 eV model seem to have much larger turnaround radii
than in the other three models, producing a 22% higher value of
P(α= 4), corresponding to a 10σΔP signal, where the

uncertainties, σΔp, associated with the measurement of the
difference between the cumulative probabilities, are computed
through the propagation of the bootstrap errors.
Regarding the other three models, they yield almost identical

values of P(rt� αrv) up to α= 8. However, the two models,
ΛCDM and fR6+0.06 eV, which are in fact indistinguishable
by the conventional statistics (Baldi et al. 2014; Hagstotz et al.
2019), show different behaviors in the limit of α> 8. The
difference in the value of P(α= 8.5) between the two models is
found to be as high as 3.2σΔP in spite of the strongest
degeneracy between them, yielding the same value of σ8 (Baldi
et al. 2014; Hagstotz et al. 2019). Table 1 lists P(α= 4) and P
(α= 8.5) for the four cosmologies in the fifth and sixth
columns. Noting that the fR6+0.06 eV model yields a smaller
value of P(α= 8.5) than the other models and that the fR6
model does not show any significant difference in the whole
range of α from the ΛCDM case; we suspect the following:
even though the bound-zone velocity profiles are less sensitive
to the presence of massive neutrinos, the effect of f (R) gravity
combined with massive neutrinos on the turnaround radii is
different from that of f (R) gravity alone especially for the case
that the f (R) gravity is not strong enough to prostrate the effect
of free streaming massive neutrinos.
We make the same analysis but of the cluster halos identified

at two different redshifts, z = 0.2 and 0.4 to see how P(α)
changes with redshifts, the results of which are shown in
Figures 5 and 6, respectively. As can be seen, P(α), diminishes
more rapidly with α at higher redshifts. While the statistical
significance of the difference in P(α= 4) between the fR5
+0.15 eV and other three models is quite robust against the

Figure 3. 68%, 95%, and 99% contours from the χ2 statistics for two parameters, A and n, which characterize the analytic formula for the bound-zone velocity
profiles, Equation (1), at z = 0.

Figure 4. Cumulative probability function of the ratios of the turnaround radii
to the virial counterparts at z = 0.
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redshift variation, which in P(α� 8) between the ΛCDM and
fR6+0.06 eV models drops to 2.3σΔP at z = 0.2 and to a
negligible level at z = 0.4. The low abundance of the cluster
halos at higher redshifts contributes to the large uncertainties in
P(α), rendering it inconclusive whether or not the strongest
degeneracy between ΛCDM and fR6+0.06 eV can be broken
by the turnaround radii of the cluster halos at z� 0.2.

4. Summary and Conclusion

We have numerically demonstrated that the turnaround radii
of cluster halos can in principle be useful to detect the effect of
f (R) gravity attenuated by the presence of massive neutrinos.
The samples of the cluster halos with Mv� 4.0× 1014 h−1 Me
at z= 0 were obtained from the DUSTGRAIN-pathfinder
simulations (Giocoli et al. 2018) performed for four different
cosmologies: the Planck ΛCDM and three νCDM+f (R) gravity
models having different strengths of fifth force and total
neutrino mass: fR6, fR6+0.06 eV, fR5+0.15 eV, which were
known to be degenerate with the ΛCDM model and with one

another, yielding very similar conventional statistics (Baldi
et al. 2014; Hagstotz et al. 2019).
For the determination of the turnaround radii, rt, of the cluster

halos at which the value of the peculiar velocity field becomes
equal to the recession speed of the Hubble flow, we have
employed the TRE developed by Lee et al. (2015), which in turn
utilizes the universal analytic formula for the peculiar velocity
profile in the bound zone around the cluster halos, put forth by
Falco et al. (2014) for the ΛCDM case. Our comparison of the
analytic formula with the average bound-zone velocity profile
through the χ2 statistics has confirmed its validity not only for
the Planck ΛCDM but also for the three νCDM+f (R) gravity
models. It has also revealed that the amplitudes and slopes of the
bound-zone velocity profiles, quantified by their two adjustable
parameters, significantly differ between the fR5+0.15 eV and
other three models (Figures 1–3). This result implies that the
bound-zone velocities of the cluster halos must be much more
susceptible to the presence of the strong fifth force than to that of
massive neutrinos and thus some statistics based on them may be
useful to disentangle the former from the latter.
With the turnaround radii of the cluster halos estimated by

the application of the TRE to the bound-zone velocity profiles
of individual cluster halos, we have determined the cumulative
probability distributions of the turnaround to virial radius
ratios, P(rt� αrv). With the help of the bootstrap statistics, we
have shown that the fR5+0.15 eV model can be plainly
differentiated by P(rt/rv� 4) from the other three cases, with
statistical significance as high as 10σΔP (Figure 4). We have
also detected a 3.2σΔP difference in P(rt/rv� 8.5) between the
ΛCDM and fR6+0.06 eV models, in spite of the strongest
degeneracy between the two cases. Yet, given the low value of
P r r 8.5 10t v

4( ) ( )~ -  , it is not conclusive whether the
3.2σΔP difference in P(rt/rv� 8.5) between the ΛCDM and
fR6+0.06 eV models is a real signal or just a spurious one
produced by the shot noise. A larger sample of the massive
cluster halos with rt� 8rv) will be required to confirm the
statistical significance of the difference in P(α> 8) between the
two models. It has been also shown that the significance of the
difference between the fR5+0.15 eV and the other three
models is robust against the variation of the redshifts from
z = 0.0 to 0.4 (Figures 5–6).
The advantage of using the turnaround radii estimated by the

TRE to distinguish among the ΛCDM and νCDM+f (R) gravity
models comes from the universality of the bound-zone velocity
profile on which the TRE is based. As revealed by the previous
works (Falco et al. 2014; Lee 2016), the shape of the bound-zone
velocity profile is insensitive to the key cosmological parameters of
the ΛCDM model. Thus, the variation of σ8 and Ωm in the ΛCDM
model cannot produce the same effect on the turnaround radii as the
νCDM+f (R) gravity. Furthermore, it does not require tracking
down the redshift evolution of rt unlike the previously suggested
statistics as a possible discriminator of the νCDM+f (R) gravity
model such as the size evolutions of galaxy voids, nonlinear growth
rates, and redshift distortions, evolution of the drifting average
coefficient of the field cluster mass function, and high-order weak
lensing statistics (Giocoli et al. 2018; Peel et al. 2018; Hagstotz et al.
2019; Wright et al. 2019; Ryu et al. 2020; Contarini et al. 2021).
It is, however, worth discussing the practical difficulties of

our statistics. To detect a signal of the difference in P(α� 8)
strong enough to distinguish among the degenerate models,
what is required is to measure the turnaround radii of as many
galaxy clusters as possible in the local universe. However, as

Figure 5. Same as Figure 4 but at z = 0.2.

Figure 6. Same as Figure 4 but at z = 0.4.
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shown in Lee (2018) and Hansen et al. (2020), the TRE is
applicable only to those isolated galaxy clusters whose bound-
zone neighbor galaxies exhibit a very high degree of anisotropy
in their spatial distributions. Due to this limitation of the TRE,
it would be difficult to obtain a large sample of the galaxy
clusters with their turnaround radii measurable without
information on the peculiar velocity field. Notwithstanding,
we expect that the large peculiar velocity data set available
from future galaxy surveys like The Large Synoptic Survey
Telescope survey (Tyson 2002) should allow us to directly
measure the turnaround radii of almost all of the galaxy clusters
at low redshifts z� 0.2, making our statistics based on the
turnaround radii to be practically useful as a powerful
discriminator of the νCDM+f (R) gravity models.

J.L. acknowledges the support by Basic Science Research
Program through the National Research Foundation (NRF)
of Korea funded by the Ministry of Education (No.
2019R1A2C1083855). J.L. thanks S.Ryu for having been
helpful in obtaining the Rockstar halo catalogs from the
Dustgrain-pathfinder simulations. M.B. acknowledges support
by the project “Combining Cosmic Microwave Background
and Large Scale Structure data: an Integrated Approach for
Addressing Fundamental Questions in Cosmology,” funded by
the MIUR Progetti di Ricerca di Rilevante Interesse Nazionale
(PRIN) Bando 2017—grant 2017YJYZAH. M.B. also
acknowledges the use of computational resources from the
parallel computing cluster of the Open Physics Hub at the
Physics and Astronomy Department in Bologna (https://site.
unibo.it/openphysicshub/en).

ORCID iDs

Jounghun Lee https://orcid.org/0000-0003-0522-4356
Marco Baldi https://orcid.org/0000-0003-4145-1943

References

Baldi, M., Villaescusa-Navarro, F., Viel, M., et al. 2014, MNRAS, 440, 75
Behroozi, P. S., Wechsler, R. H., & Wu, H.-Y. 2013, ApJ, 762, 109
Bhattacharya, S., & Kousvos, S. R. 2017, PhRvD, 96, 104006
Bhattacharya, S., & Tomaras, T. N. 2017, EPJC, 77, 526
Bhattacharya, S., & Tomaras, T. N. 2021, AnPhy, 427, 168427
Bond, J. R., Kofman, L., & Pogosyan, D. 1996, Natur, 380, 603
Bond, J. R., & Myers, S. T. 1996, ApJS, 103, 1
Clifton, T., Ferreira, P. G., Padilla, A., et al. 2012, PhR, 513, 1
Contarini, S., Marulli, F., Moscardini, L., et al. 2021, MNRAS, 504, 5021
De Felice, A., & Tsujikawa, S. 2010, LRR, 13, 3
Falco, M., Hansen, S. H., Wojtak, R., et al. 2014, MNRAS, 442, 1887
Faraoni, V. 2021, JPhCS, 2156, 012017
Giocoli, C. M., Baldi, M., & Moscardini, L. 2018, MNRAS, 481, 2813
Giusti, A., & Faraoni, V. 2021, PhRvD, 103, 044049
Gunn, J. E., & Gott, J. R. 1972, ApJ, 176, 1
Hagstotz, S., Costanzi, M., Baldi, M., et al. 2019, MNRAS, 486, 3927
Hagstotz, S., Gronke, M., Mota, D. F., et al. 2019, A&A, 629, A46
Hansen, S. H., Hassani, F., Lombriser, L., et al. 2020, JCAP, 2020, 048
Hu, W., & Sawicki, I. 2007, PhRvD, 76, 064004
Khoury, J., & Weltman, A. 2004, PhRvD, 69, 044026
Lee, J. 2016, ApJ, 832, 123
Lee, J. 2018, ApJ, 856, 5
Lee, J., Kim, S., & Rey, S.-C. 2015, ApJ, 815, 43
Lee, J., & Li, B. 2017, ApJ, 842, 2
Lee, J., Ryu, S., & Baldi, M. 2022, arXiv:2206.03406
Lee, J., & Yepes, G. 2016, ApJ, 832, 185
Lesgourgues, J., & Pastor, S. 2014, NJPh, 16, 065002
Lopes, R. C. C., Voivodic, R., Abramo, L. R., et al. 2018, JCAP, 2018,

010
Lopes, R. C. C., Voivodic, R., Abramo, L. R., et al. 2019, JCAP, 2019, 026
Nojiri, S., Odintsov, S. D., & Faraoni, V. 2018, PhRvD, 98, 024005
Pavlidou, V., Tetradis, N., & Tomaras, T. N. 2014, JCAP, 2014, 017
Pavlidou, V., & Tomaras, T. N. 2014, JCAP, 2014, 020
Peel, A., Pettorino, V., Giocoli, C., et al. 2018, A&A, 619, A38
Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2016, A&A, 594, A24
Puchwein, E., Baldi, M., & Springel, V. 2013, MNRAS, 436, 348
Ryu, S., Lee, J., & Baldi, M. 2020, ApJ, 904, 93
Tyson, J. A. 2002, Proc. SPIE, 4836, 10
Viel, M., Haehnelt, M. G., & Springel, V. 2010, JCAP, 2010, 015
Wright, B. S., Koyama, K., Winther, H. A., et al. 2019, JCAP, 06, 040

7

The Astrophysical Journal, 938:137 (7pp), 2022 October 20 Lee & Baldi

https://site.unibo.it/openphysicshub/en
https://site.unibo.it/openphysicshub/en
https://orcid.org/0000-0003-0522-4356
https://orcid.org/0000-0003-0522-4356
https://orcid.org/0000-0003-0522-4356
https://orcid.org/0000-0003-0522-4356
https://orcid.org/0000-0003-0522-4356
https://orcid.org/0000-0003-0522-4356
https://orcid.org/0000-0003-0522-4356
https://orcid.org/0000-0003-0522-4356
https://orcid.org/0000-0003-4145-1943
https://orcid.org/0000-0003-4145-1943
https://orcid.org/0000-0003-4145-1943
https://orcid.org/0000-0003-4145-1943
https://orcid.org/0000-0003-4145-1943
https://orcid.org/0000-0003-4145-1943
https://orcid.org/0000-0003-4145-1943
https://orcid.org/0000-0003-4145-1943
https://doi.org/10.1093/mnras/stu259
https://ui.adsabs.harvard.edu/abs/2014MNRAS.440...75B/abstract
https://doi.org/10.1088/0004-637X/762/2/109
https://ui.adsabs.harvard.edu/abs/2013ApJ...762..109B/abstract
https://doi.org/10.1103/PhysRevD.96.104006
https://ui.adsabs.harvard.edu/abs/2017PhRvD..96j4006B/abstract
https://doi.org/10.1140/epjc/s10052-017-5102-4
https://ui.adsabs.harvard.edu/abs/2017EPJC...77..526B/abstract
https://doi.org/10.1016/j.aop.2021.168427
https://ui.adsabs.harvard.edu/abs/2021AnPhy.42768427B/abstract
https://doi.org/10.1038/380603a0
https://ui.adsabs.harvard.edu/abs/1996Natur.380..603B/abstract
https://doi.org/10.1086/192267
https://ui.adsabs.harvard.edu/abs/1996ApJS..103....1B/abstract
https://doi.org/10.1016/j.physrep.2012.01.001
https://ui.adsabs.harvard.edu/abs/2012PhR...513....1C/abstract
https://doi.org/10.1093/mnras/stab1112
https://ui.adsabs.harvard.edu/abs/2021MNRAS.504.5021C/abstract
https://doi.org/10.12942/lrr-2010-3
https://ui.adsabs.harvard.edu/abs/2010LRR....13....3D/abstract
https://doi.org/10.1093/mnras/stu971
https://ui.adsabs.harvard.edu/abs/2014MNRAS.442.1887F/abstract
https://doi.org/10.1088/1742-6596/2156/1/012017
https://ui.adsabs.harvard.edu/abs/2021JPhCS2156a2017F/abstract
https://doi.org/10.1093/mnras/sty2465
https://ui.adsabs.harvard.edu/abs/2018MNRAS.481.2813G/abstract
https://doi.org/10.1103/PhysRevD.103.044049
https://ui.adsabs.harvard.edu/abs/2021PhRvD.103d4049G/abstract
https://doi.org/10.1086/151605
https://ui.adsabs.harvard.edu/abs/1972ApJ...176....1G/abstract
https://doi.org/10.1093/mnras/stz1051
https://ui.adsabs.harvard.edu/abs/2019MNRAS.486.3927H/abstract
https://doi.org/10.1051/0004-6361/201935213
https://ui.adsabs.harvard.edu/abs/2019A&A...629A..46H/abstract
https://doi.org/10.1088/1475-7516/2020/01/048
https://ui.adsabs.harvard.edu/abs/2020JCAP...01..048H/abstract
https://doi.org/10.1103/PhysRevD.76.064004
https://ui.adsabs.harvard.edu/abs/2007PhRvD..76f4004H/abstract
https://doi.org/10.1103/PhysRevD.69.044026
https://ui.adsabs.harvard.edu/abs/2004PhRvD..69d4026K/abstract
https://doi.org/10.3847/0004-637X/832/2/123
https://ui.adsabs.harvard.edu/abs/2016ApJ...832..123L/abstract
https://doi.org/10.3847/1538-4357/aabc53
https://ui.adsabs.harvard.edu/abs/2018ApJ...859....5L/abstract
https://doi.org/10.1088/0004-637X/815/1/43
https://ui.adsabs.harvard.edu/abs/2015ApJ...815...43L/abstract
https://doi.org/10.3847/1538-4357/aa706f
https://ui.adsabs.harvard.edu/abs/2017ApJ...842....2L/abstract
http://arxiv.org/abs/2206.03406
https://doi.org/10.3847/0004-637X/832/2/185
https://ui.adsabs.harvard.edu/abs/2016ApJ...832..185L/abstract
https://doi.org/10.1088/1367-2630/16/6/065002
https://ui.adsabs.harvard.edu/abs/2014NJPh...16f5002L/abstract
https://doi.org/10.1088/1475-7516/2018/09/010
https://ui.adsabs.harvard.edu/abs/2018JCAP...09..010L/abstract
https://ui.adsabs.harvard.edu/abs/2018JCAP...09..010L/abstract
https://doi.org/10.1088/1475-7516/2019/07/026
https://ui.adsabs.harvard.edu/abs/2019JCAP...07..026L/abstract
https://doi.org/10.1103/PhysRevD.98.024005
https://ui.adsabs.harvard.edu/abs/2018PhRvD..98b4005N/abstract
https://doi.org/10.1088/1475-7516/2014/05/017
https://ui.adsabs.harvard.edu/abs/2014JCAP...05..017P/abstract
https://doi.org/10.1088/1475-7516/2014/09/020
https://ui.adsabs.harvard.edu/abs/2014JCAP...09..020P/abstract
https://doi.org/10.1051/0004-6361/201833481
https://ui.adsabs.harvard.edu/abs/2018A&A...619A..38P/abstract
https://doi.org/10.1051/0004-6361/201525833
https://ui.adsabs.harvard.edu/abs/2016A&A...594A..24P/abstract
https://doi.org/10.1093/mnras/stt1575
https://ui.adsabs.harvard.edu/abs/2013MNRAS.436..348P/abstract
https://doi.org/10.3847/1538-4357/abbda2
https://ui.adsabs.harvard.edu/abs/2020ApJ...904...93R/abstract
https://doi.org/10.1117/12.456772
https://ui.adsabs.harvard.edu/abs/2002SPIE.4836...10T/abstract
https://doi.org/10.1088/1475-7516/2010/06/015
https://ui.adsabs.harvard.edu/abs/2010JCAP...06..015V/abstract
https://doi.org/10.1088/1475-7516/2019/06/040
https://ui.adsabs.harvard.edu/abs/2019JCAP...06..040W/abstract

	1. Introduction
	2. A Review of the Turnaround Radius Estimator Algorithm
	3. Physical Analysis
	4. Summary and Conclusion
	References



