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Abstract
We present a White Paper with a science theme concept of ocean world evolution and
habitability proposed in response to ESA’s Voyage 2050 Call with a focus on Titan and
Enceladus in the Saturn system. Ocean worlds in the outer Solar System that possess
subsurface liquid water oceans are considered to be prime targets for extra-terrestrial life
and offer windows into Solar System evolution and habitability. The Cassini-Huygens
mission to the Saturn system (2004–2017) revealed Titan with its organic-rich evolving
world with terrestrial features and Enceladus with its active aqueous environment to be
ideal candidates to investigate ocean world evolution and habitability. Additionally, this
White Paper presents a baseline for a multiple flyby mission with a focused payload as an
example of how ocean world evolution and habitability in the Saturn system could be
investigated building on the heritage of the Cassini-Huygens mission and complementing
the recently selected NASA Dragonfly mission.
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1 Introduction

1.1 Overview

Recent observations from the ground and in space have shown that Earth is not the only
place in the Solar System to possess exposed surface liquid. Observations have
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provided evidence of subsurface liquid water oceans covered by icy shells on multiple
objects in the Solar System, called ocean worlds, including the icy moons of Jupiter
(Europa, Ganymede, and Callisto) and of Saturn (Titan and Enceladus) as well as dwarf
planets (Ceres and Pluto) (see [83] for a review and De [33]). The NASA/ESA/ASI
Cassini-Huygens mission (2004–2017) has done much to advance our understanding of
the Saturn system in general and Titan and Enceladus in particular, and has shown
these satellites of Saturn to be two favourable locations in the Solar System in our quest
for a better understanding of the evolution of the Solar System and its habitable
potential. Both Saturnian moons possess energy sources, liquid habitats, nutrients
(organic compounds), and transport cycles of liquid moving nutrients and waste, all
necessary ingredients for habitability [46, 92]. Titan is the only active extraterrestrial
alkanological system in the Solar System (analogous to the Earth’s hydrological
system), including an organically rich atmosphere, hydrocarbon lakes and seas on the
surface and a liquid water subsurface ocean. Enceladus has active plumes composed of
multiple jets containing complex organics and water vapour and likely connected to its
liquid water subsurface ocean. Along with their energy sources, these bodies are prime
environments in which to investigate the conditions for the emergence of life and
habitability conditions of ocean worlds in the outer Solar System, as well as the origin
and evolution of gas giant planetary systems, in a single mission.

The Cassini-Huygens mission also introduced new first order scientific questions for
geologists, astrobiologists, organic chemists, and planetary scientists, that remain unan-
swered to date [30, 36, 117, 151]. On Titan, its resemblance to primitive Earth and the
presence of a rich mixture of organic material in contact with liquid reservoirs, which may
be in contact with the subsurface, constitute major motivations for further exploration of
the astrobiological potential of this ocean world [29]. On Enceladus, the accessibility of
the contents of its subsurface ocean and hydrothermal system is an unprecedented
opportunity to determine its abiotic or prebiotic potential while its comet-like composition
raises new questions about the evolution of the Saturnian system and the Solar System in
general. In the over two decades since the launch of the Cassini-Huygensmission in 1997,
there have been great technological advancements in instrumentation that would enable
answering key questions that still remain about the Saturnian ocean worlds.

We therefore propose a Voyage 2050 theme of ocean worlds evolution and habit-
ability with a focus on Enceladus and Titan in the Saturn system. Building on the
heritage of Cassini-Huygens, future exploration of Enceladus and Titan should be
dedicated to investigating the unique properties and the habitability potential of these
ocean worlds. The proposed baseline is for a large mission (class L) and consists of
multiple flybys using a solar-electric powered spacecraft in orbit around Saturn. The
proposed mission would have a focused payload that would provide high-resolution
mass spectrometry of the plume emanating from Enceladus’ south polar terrain and of
Titan’s upper atmosphere. High-resolution IR imaging would be performed of the
plume and the source fractures on Enceladus’ south polar terrain (SPT), and would
detail Titan’s geomorphology at 50–100 m resolution at minimum. In addition, radio
science measurements would provide constraints on the ice shell structure and the
properties of the internal ocean of Enceladus and constrain higher degree gravity field
components of Titan. The baseline mission is based on the Explorer of Enceladus and
Titan (E2T) concepts proposed as a medium-class mission led by ESA in collaboration
with NASA in response to ESA’s M5 Call [102], along with several other previous
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proposals (e.g., TSSM, [27]; TIME, [155]; JET, [149]) and will complement the
information provided by Cassini-Huygens, as well as the results of the newly-
selected NASA Dragonfly mission [79].

The baseline mission can address key scientific questions regarding extraterrestrial
habitability, abiotic or prebiotic chemistry, the emergence of life, and the origin and
evolution of ocean worlds. Optional elements include 1) an in-situ sea-probe to
investigate one of Titan’s northern seas as well as the lower atmosphere and 2) an
ice penetrating radar (IPR) to perform radar sounding of the subsurface of Titan and
Enceladus during flybys. The in-situ sea-probe would open up new vistas regarding
Titan’s seas and lakes, the hydrological system and the possibility of prebiotic or biotic
components within Titan’s seas, complementing the equatorial investigations of
NASA’s Dragonfly, while the IPR would reveal subsurface structures and processes
of Titan and Enceladus’ SPT. While the baseline mission is conceived as a multiple
flyby mission it can also include a final orbiter phase around Titan. The joint explo-
ration of these two fascinating objects would potentially be performed with interna-
tional collaboration and will allow us to better understand the origin of their organic-
rich, liquid water habitable environment and will give access to planetary processes that
have long been thought unique to the Earth. Finally, joint exploration of these ocean
worlds would complement NASA’s Dragonfly mission to Titan, which while unprec-
edented is only regional in scope exploring a low-latitude impact crater site (Selk
impact crater). Thus, local observations of Enceladus’ south pole, global observations
of Titan, and possible in-situ exploration of a northern sea are important science goals
that remain to be addressed by a future mission to the Saturn system.

1.2 Titan: An organic-rich evolving world

Shrouded by a dense atmosphere of nitrogen, methane, hydrogen, and haze products,
Titan, Saturn’s largest satellite, was once thought to host a global ocean of methane and
ethane on its surface [80]. Data from the Cassini-Huygens mission uncovered a fascinat-
ing Earth-like world beneath the haze with dunes (e.g., [74]), lakes and seas [154],
networks of rivers and canyons [123, 143, 163], and mountains [99, 131] and impact
structures [73, 110, 144, 176] within an alien landscape composed of organics and water-
ice. Titan’s dense, extensive atmosphere is primarily composed of nitrogen (97%) and
methane (1.4%) (e.g., [9]), and a long suite of organic compounds resulting from
multifaceted photochemistry which occurs in the upper atmosphere down to the surface
(e.g., [9, 45, 66, 173]). Titan’s organic-rich dense atmosphere has provided a rich field of
study with multiple models investigating the origin of its nitrogen atmosphere (e.g., [94,
105]), the persistence of atmospheric methane despite methane escape, and the distribu-
tion of its atmospheric components. The organics detected by the Cassini mission in
Titan’s atmosphere have provided tantalizing hints of the prebiotic potential of Titan’s
atmospheric aerosols [164]. For example, a compelling find by Cassini for abiotic or
prebiotic species is the discovery of complex large nitrogen-bearing organic molecules in
Titan’s upper atmosphere [23, 173]. Stevenson et al. [153] suggest that membranes
formed from atmospheric nitriles such as acrylonitrile could provide Titan analogues of
terrestrial lipids, a component essential to life on Earth.

Since methane is close to its triple point on Titan, it gives rise to an alkanological
cycle analogous to the terrestrial hydrological cycle, characterized by cloud activity,
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precipitation, river networks, lakes and seas covering a large fraction of the northern
terrain (Fig. 1) (e.g., [50, 97, 154, 163]). Titan is the only extraterrestrial planetary body
with long-standing liquid on its surface, albeit hydrocarbons instead of water, likely fed
by a combination of precipitation, surface runoff and subsurface alkanofers (hydrocar-
bon equivalent of aquifers) in the icy shell [50]. Recent work has shown that the
surfaces of Titan’s northern lakes and seas are on the same equipotential surface
confirming the presence of subsurface alkanofers [51, 89]. Titan’s seas and larger lakes
are typically broad edge depressions while many small lakes present as sharp edge
depressions often with raised ramparts [11] and some surrounded with rampart-like
structures [147]. Observations of water-ice poor 5-μm bright material surrounding
Titan’s northern lakes and seas may be evaporite deposits [6]; though they are also
found in the largest areal concentration in equatorial regions and if they do represent
evaporites, suggest previous equatorial seas [85]. Experimental work in Titan condi-
tions is attempting to reveal compounds that could form evaporites on Titan and their
prebiotic and biotic potential [18, 19].

The presence of radiogenic noble gases in the atmosphere indicates some commu-
nication between the surface and the subsurface and is suggestive of water-rock
interactions and methane outgassing processes [161], possibly associated with cryo-
volcanic activity [71, 73]. The detection of a salty ocean at depth estimated between
50 km and 80 km beneath the surface [8, 62, 101, 148] and the possible communication
between this ocean and the organic-rich surface opens up exciting astrobiological
perspectives. While Cassini has provided tantalizing views of the surface with its lakes
and seas, dunes, equatorial mountains, impact craters, and possible cryo-volcanoes, its
low resolutions make it difficult to identify morphological features, to quantify geo-
logical processes and relationships between different geological units and monitor
changes due to geologic or atmospheric activity. Determining the level of geological
activity on Titan is crucial in understanding its evolution and whether this ocean world
could support abiotic or prebiotic activity.

Fig. 1 Cassini SAR mosaic images of the north polar region showing Kraken, Ligeia, and Punga Maria.
Black–yellow color map was applied to the single band data (from [100])
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1.3 Enceladus: An active aqueous environment

The discovery in 2005 of a plume of multiple jets emanating from Enceladus’ south
polar terrain (SPT) is one of the major highlights of the Cassini–Huygens mission
(Fig. 2) [35, 84, 124, 150]. Despite its small size (10 times smaller than Titan),
Enceladus is the most active moon of the Saturnian system. Although geyser-like
plumes have been observed on Triton [145] and more recently transient water vapor
activity around Europa has been reported [134, 135], Enceladus is the only one proven
to have current endogenic activity. Approximately 100 jets [125] form a huge plume of
vapor and ice grains above Enceladus’ south polar terrain and are associated with
abnormally elevated heat flow along tectonic ridges, called ‘tiger stripes’. Enceladus’
endogenic activity and gravity measurements indicate that it is a differentiated body
providing clues to its formation and evolution [63]. Gravity, topography and libration
measurements demonstrate the presence of a global subsurface ocean [20, 63, 93, 157].
Analysis of the gravity data showed that Enceladus’ ice shell thickness above the
subsurface ocean is likely 30–40 km, from the south pole up to 50° S latitude [63] while
libration data suggest a mean thickness of 21–26 km [157]; however recent models
have shown that the variable ice shell thickness in Enceladus’ south pole can be as little
as 5 km [20, 21]. This variable ice shell thickness could be the result of heat flux
variation along the ice-ocean interface due to true polar wander [156].

Postberg et al. [127] and Porco et al. [125] have shown that most of the plume
material is likely not from the upper brittle layer of the ice shell but from a subsurface
liquid water reservoir beneath the icy shell. Libration measurements finally confirmed
the presence of a global ocean [157]. Sampling of the plume by Cassini’s instruments
revealed the presence of water vapor, ice grains rich in sodium and potassium salts
[128], gas and solid phase organics [126, 129, 174]. The jet sources are connected to a
subsurface salt-water reservoir that is probably alkaline in nature and the site of possible
hydrothermal water-rock interactions [40, 57, 58, 124, 125, 127, 128, 172, 174].

The co-existence of organic compounds, salts, liquid water, and energy sources on
this small moon provides all the necessary ingredients for the emergence of life by
chemoautotrophic pathways [91] – a generally held model for the origin of life on Earth
in deep sea vents, such as the Lost City hydrothermal field located in the Mid-Atlantic
Ridge. The eruption activity of Enceladus offers a unique possibility to sample fresh

Fig. 2 Plume emanating from multiple jets in Enceladus’ south polar terrain. Image credit: NASA/JPL-
Caltech
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material emerging from subsurface liquid water and to understand how exchange
processes with the interior control surface activity. It provides us with an opportunity
to in situ study phenomena that have been important in the past on Earth and
throughout the outer Solar System.

2 Science case after the Cassini-Huygens mission

While Cassini-Huygens and its extended missions have revealed much about Enceladus
and Titan [36, 84], the spacecraft was not equipped to search for life or constrain the
evolution of these ocean worlds and many open questions remain. In situ measurements
by Cassini at Enceladus and Titan revealed a wealth of chemical complexity of neutral
and positively charged molecules. However, analysis was restricted by mass spectroscop-
ic instruments, which were limited by their low sensitivity, mass range, and resolution and
subsequent inability to resolve high-mass isobaric molecular species, neutral and positive
ions. For example, in Enceladus’ vapor plume an unidentified species with a mass-to-
charge (m/z) ratio of 28, which is thought to be either CO, N2, C2H4 or a combination of
these compounds was detected. Determining the abundance ratio between these different
species is essential to constrain the origin of volatiles on Enceladus and to assess whether
they were reprocessed internally. The evidence of high temperature hydrothermal activity
[59] within Enceladus’ subsurface ocean provides strong incentive to test the plume for
prebiotic and biotic signatures using high-resolution spectrometers. Further, putative
exothermic water-rock interactions on Enceladus could be further constrained by quan-
tifying H2 in the plume. On Titan, higher resolution spectroscopic instruments would
enable better constraints on complex organic processes and components occurring in
Titan’s atmosphere, particularly those with prebiotic and biotic potential.

The geology and morphology of both Titan and Enceladus has been revealed by
Cassini Visual and Infrared Mapping spectrometer (VIMS), Imaging Science Subsystem
(ISS), and RADAR SAR imagery but only at low to moderate resolutions. Additionally,
imaging of the surface was also constrained on Titan by scattering of atmospheric aerosols
and absorption that limited signal-to-noise. A future mission to Titan can provide images
in the mid-IR range at or around 5 μm since images at these wavelengths are subject to
minimal scattering [7, 146] enabling diffraction limited images that are extremely sensi-
tive to composition [5, 22] with spatial resolutions an order of magnitude better than
Cassini observations [5, 22, 146]. A high-resolution map would enable a vastly improved
investigation of Titan’s geology, hydrology, and composition variability and would
enable the detection of morphology not evident from Cassini data, quantify geological
processes and relationships between different geological units and examine alterations due
to geologic, atmospheric or seasonal activity. Recently an ice-rich linear feature of
bedrock, covering 40% of Titan’s circumference was discovered using statistical analysis
of 13,000 Cassini VIMS images [43]; it is likely many features with weaker spectral
signatures remain to be discovered. High-resolution imaging of Enceladus’ SPT will
provide new detail of the tectonically active surface, constrain characteristics of the
hydrothermal system by investigating the composition and kinematics of Enceladus’ jets
and plumes. Further IR imaging will view thermal emission from Enceladus’ hot spots
and constrain the presence of anomalous heat signatures in the SPT [69], at resolutions
comparable to ISS observations of the SPT.
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Gravity field measurements are powerful tools to constrain the interior structure and
to assess mass anomalies, providing information on the internal dynamics and evolu-
tion. Gravity measurements of Enceladus’ south pole can be used to find a local
solution of the SPT gravity field and its time-variation (using along-track data) rather
than a global solution. In the south polar region, we expect a larger time-variation of the
gravity field with respect to the global solution of the time variation of the gravity field
due to the fact that the ice shell thickness is expected to be locally thin at the SPT. A
radio science experiment that will determine the local solution of the gravity field of
Enceladus at the SPT will allow the determination of the thickness variation at the south
polar regions and constraints on the mechanical properties (viscosity) of the ice
overlying an outer ice shell. The expected tidal deformation is characterized by a
pattern more complex than the standard degree-two pattern, with a strong amplification
of the tidal fluctuation in the SPT. Should a final Titan orbiter phase be included in the
baseline mission, higher degrees of gravity coefficients, up to at least degrees twelve
could be obtained as well as an estimation of the real and imaginary parts of Titan’s
Love number, k2,with an accuracy of 0.0001 [165]. The characterization of the global
gravity field of Titan and/or Enceladus might also be significantly improved through a
pair of companion small satellites, to be released by the mothership around either
moons. This element may complement the science observations of the larger spacecraft,
through a combination of Satellite-to-Satellite Tracking (SST) between two smallsats or
between one smallsat and the mothership. Preliminary simulations have shown that in
just three months this technique would allow to estimate the static gravity field up to at
least degree thirteen (for Titan) and degree twenty (for Enceladus), while the real and
imaginary part of k2 can reach an accuracy of about 0.08 for Titan and 0.002 for
Enceladus [166, 167]. This optional element may be studied in parallel to the mission
options 1) sea probe (lander) and 2) ice penetrating radar listed in the Introduction and
discussed in more detail in Sections 3.2, 3.3 and 5.

The subsurface processes and structures of both Titan and Enceladus can be further
investigated with an ice penetrating radar (IPR), which uses microwaves to penetrate
through the surface to examine subsurface characteristics. Structural, thermal, and
compositional profiles of subsurface structures and thickness of the regolith layer can
be used to characterize the surface and subsurface structures and determine their
correlation to each other. Further determination of the ice-ocean interface at Enceladus’
SPT and the brittle-ductile interface within Titan’s ice shell can constrain evolutionary
and thermal processes. Radar sounding instruments have been used in multiple space
missions on Mars and the Moon (e.g., [53, 119, 122, 141]) and will be used to examine
Europa and Ganymede in the Jupiter system in ESA’s upcoming JUICE mission [14,
15]. The upcoming NASA mission, Europa Clipper, will radar sound Europa during a
series of multiple flybys while in orbit around Jupiter [12].

While Cassini has provided stunning imagery of Titan’s lakes and seas (e.g. [154])
and VIMS and RADAR data have been used to constrain their composition and
bathymetry [13, 73, 88], open questions regarding their formation, particularly smaller
sharp edge depression lakes, the extent of subsurface communication, composition of
the lakes and seas and the evaporites that often surround them as well as paleolakes in
the south pole and possible presence of lakes or empty lake basins outside the polar
regions still remain (e.g. [103, 117]). The combination of high resolution remote
sensing and in situ measurements can answer many questions. In addition, in situ

883Experimental Astronomy (2022) 54:877–910



studies of one of Titan’s seas would complement data obtained by the Dragonfly
mission, which was selected by NASA in 2019 as part of its New Frontiers program
as an upcoming mission to be launched in 2026 and arrive at Titan in 2034. The
Dragonfly mission while unprecedented is only regional in scope exploring the low-
latitude Selk impact crater region with a flying rotorcraft drone [79]. Thus in situ
exploration of a northern sea and global observations of Titan are important science
goals that remain to be addressed by a future mission to the Saturn system.

Science goals to be resolved by a future baseline multiple flyby mission to Titan and
Enceladus, based on the E2T mission proposed for ESA M5 study [102] are shown in
Table 1. Additional science goals that can be investigated with the option #1 of in situ
exploration of a northern sea and/or the option #2 of radar sounding of the surface of
Titan and Enceladus SPT during multiple flybys or Titan’s orbiter are described in
Table 2 and Table 3 respectively.

3 Missions scenarios

3.1 Baseline mission scenario

The proposed baseline mission concept consists of a solar-electric powered spacecraft
performing multiple flybys of Titan and Enceladus while in orbit around Saturn. The
proposed baseline mission is based on the Explorer of Enceladus and Titan (E2T)
proposed as a medium-class mission led by ESA in collaboration with NASA in
response to ESA’s M5 Call [102]. The proposed baseline mission concept for this
White Paper is for a large class ESA mission (class L). The evaluated cost from ESA
review for E2T is 950 M€ that fit in a large mission budget constraint.

The baseline payload would consist of three scientific instruments: two time-of-
flight mass spectrometers and a high-resolution infrared camera, while the telecommu-
nication system would be utilized to perform gravity science. The baseline interplan-
etary transfer, cruise and flyby phases are all based on a proposed launch in 2029–2030
and therefore are included only as example trajectories. After the launch, the spacecraft
will transfer from geosynchronous transfer orbit (GTO) to a hyperbolic escape trajec-
tory and would pursue a gravity assist flyby of the Earth to help propel itself to the

Table 1 Science goals of baseline mission

Science summary

Science goals Science objectives

Origin and evolution of volatile-rich ocean
worlds, Enceladus and Titan

- Are Enceladus’ volatile compounds primordial or have they
been re-processed and if so, to what extent?

- What is the history and extent of volatile exchange on Titan?
- How has Titan’s organic-rich surface evolved?

Habitability and potential for life of ocean
worlds, Enceladus and Titan

- Is Enceladus’ aqueous interior an environment favorable to the
emergence of life?

- To what level of complexity has prebiotic chemistry evolved in
the Titan system?
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Saturn system. The cruise phase from Earth to Saturn would be 6 years long. After the
arrival in the Saturn system, the mission is divided in a first Enceladus science phase
and in a second Titan science phase. The spacecraft should perform at least 6 flybys of
Enceladus above the south polar terrain (SPT) and at least 17 flybys of Titan. To
prevent contamination of Enceladus science by Titan’s organics, E2T spacecraft will
perform close flybys of Enceladus at the beginning of the tour (Enceladus science
phase); distant flybys of Titan will be performed during the initial tour phase.

After the main Enceladus phase, close flybys of Titan with atmospheric sampling
will be performed (Titan science phase). During the Titan science phase, the spacecraft
will provide in situ sampling of the upper atmosphere at a minimum altitude from Titan
surface as low as 900 km using mass spectrometers. At the closest approach the
velocity of the spacecraft with respect to Titan’s surface will be ~7 km/s. Imaging data
would be collected during inbound and outbound segments of each flyby. The duration
of the tour from its arrival in the Saturn system to the end of the 17-flyby Titan phase is
about 3.5 years. Figure 3 shows a proposed interplanetary transfer to Saturn and Fig. 4
shows a proposed sample tour. Both Figs. 3 and 4 are based on a proposed E2T launch
of 2029–2030 [102]. Figure 5 shows the proposed configuration of the spacecraft for
the E2T project. While the baseline mission is conceived as a multiple flyby mission it

Table 2 Science goals of optional sea probe (lander) element

Science summary

Science goals Science objectives

Origin and evolution of Titan’s lakes
and seas

- How does the hydrological cycle work, and what is the role of the
lakes and seas? How have the seas and lakes evolved over time
(e.g., shorelines)?

- Constrain the depth of a Titan sea
- What is the lower atmosphere over the sea?
- Constrain sea-atmosphere interactions

Habitability and potential for life of
Titan’s lakes and seas

- What is the composition of the seas and lakes?- Are there any
prebiotic or biotic signature compositions?- What is the
composition of evaporites and what is their relation to the lakes and
seas?

Table 3 Science goals of optional Ice Penetrating Radar (IPR) element

Science summary

Science goals Science objectives

Interior structure and processes of
Enceladus and Titan

- What is the thickness of the surface organic material layer on Titan?
- How does ice thickness vary in Enceladus’ south polar terrain?
- Constrain brittle-ductile transition within Titan’s ice shell
- How do the surface and subsurface features correlate on Titan and

Enceladus?
- Constrain the extent of Enceladus’ ocean at SPT
- Constrain anomalous thermal emission beneath SPT
- What is the extent of surface and subsurface communication especially

in the polar regions of both Titan and Enceladus?

885Experimental Astronomy (2022) 54:877–910



can also include a final orbiter phase around Titan similar to the final orbiter phase of
the JUICE (JUpiter ICy moons Explorer) spacecraft around Ganymede in the
upcoming ESA JUICE mission.

3.2 Option 1: Titan Sea lander

The spacecraft will carry a scientific payload consisting of remote sensing instruments
and experiments aforementioned while if Option #1 is utilized the spacecraft will also
carry an Entry, Descent and Landing (EDL) module containing a sea lander equipped
with an instrument suite capable of carrying out in situ measurements of one of Titan’s
north polar seas. Figure 6 shows a proposed sea lander and entry vehicle. During the
descent, the probe will make in situ measurement of the atmosphere. Once a successful
splashdown has been achieved, the sea probe will be taking measurements sampling
both the liquid of the seas and the atmosphere above. Previous analysis for a mission
that considered the exploration of Titan using an orbiter, a lake-probe, and a balloon
demonstrated the feasibility of such mission (the Titan Saturn System Mission Study
TSSM, [28]) as did the study of the Titan Mare Explorer (TiME) [155] which was a
lake lander only mission to in-situ investigate one of the large north polar mare on
Titan. In addition, Mitri et al. [101] presented the science case for the exploration of
Titan and one of its seas with an orbiter and a lake probe. If Option #2 is utilized, the
spacecraft will carry a nadir-looking ice penetrating radar sounder (IPR).

The sea lander will sample Titan’s atmosphere obtaining temperature, wind, humid-
ity, and composition profiles during its descent. Once the sea lander is in the Titan sea,
it will make a number of measurements including bulk and trace composition of the sea

Fig. 3 Example interplanetary transfer to Saturn studied for E2T proposal based on a proposed launch in
2029–2030 [102]. Red arrows indicate electric propulsion thrust. Such a scenario could be used to design a
future transfer trajectory
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and lower atmosphere, and bathymetric and shoreline profiles; additionally, the shore-
line of the sea can be imaged during the descent. A possible instrument suite utilized by
a sea lander with associated science goals and measurements is shown in Table 4 [101].

The sea lander will relay data to the spacecraft, which will serve as the communi-
cations link between the probe and Earth. Direct-to-Earth (DTE) communication of the
sea lander is a possible complementary communication method. Lorenz and Newman
[75] have found that the seasonal geometry at Titan’s north pole allows DTE from the
seas until 2026 and after 2040. Given the opacity of Titan’s atmosphere, the use of a
solar powered generator for the sea-probe is infeasible if its operations need to last more
than a few hours. The sea lander portion of the proposed mission will be short-lived due
to technical constraints. Current technology dictates that the use of batteries will only
provide power to the sea lander on the order of hours; though this technology will likely
improve. The sea lander will not have propulsion capabilities rather it will be propelled
around the lake by winds and possible tides; Lorenz and Mann [76] have studied the
wind and wave conditions that a floating Titan sea lander might encounter. Testing of a

Fig. 4 Inertial representation of a sample tour based on a proposed 2029–2030 launch with two period- and
inclination-management Titan flybys followed by a science phase with 6 Enceladus flybys and 17 Titan flybys
[102]
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scale model of the proposed Titan Mare Explorer sea lander capsule has revealed
important data regarding potential science operations and lander-lake dynamics [77,
78]. Recent work proposes that a sea-lander could possibly not only float but also be able
to propel itself utilizing mechanical tensegrity structures [38]. The use of a radioisotopic
power generator for the sea probe could be requested to be the technology used, which
could significantly reduce the amount of plutonium fuel. The Advanced Stirling Radio-
isotopic Generator (ASRG), based on Stirling power conversion technology, offers a four-
fold reduction in the amount of plutonium fuel compared to radioisotope thermal gener-
ators (RTG) used in previous interplanetary missions [155]; while NASA has ended
funding for in-flight development of ASRG technology in 2013 due to budget cuts,
research continues on this technology and other radioisotope power systems in NASA
[120]. Additionally, the development of radioisotopic power using Americium (241Am)
currently being developed by ESA since 2008 is another possible option [4].

Fig. 5 Proposed configuration of the spacecraft for the E2T project. Top panel shows an enlarged view of the
spacecraft and below panel shows a close-up view of the spacecraft [102]

Fig. 6 Examples of a sea lander and entry vehicle. The left-hand panel shows front and back views of the sea
lander inside the entry vehicle while the right-hand panel shows the sea lander only. Credit: JPL
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3.3 Option 2: Radar sounder

The ice penetrating radar (IPR), following the heritage of JUICE RIME and Europa
Clipper REASON, would be capable of both shallow and deep sounding to characterize
the subsurface with a depth of 9 km and ~ 30 m vertical resolution at minimum. Both
RIME and REASON are to operate at a high frequency (HF) band with a center-
frequency of 9 MHz and possess bandwidths between 1 MHz and 3 MHz while
REASON operates at an additional VHF frequency with a center frequency of
60 MHz [14, 44]. An IPR can characterize structural, compositional, and thermal
variations occurring in the subsurface providing data that can correlate surface and
subsurface features and processes, deformation in the upper ice shell, as well as global

Table 4 Science objectives, measurements, and proposed techniques for option 1, the sea probe/lander [101]

Science objectives Measurements Approaches and
requirements

Lakes/seas Characterize one of Titan’s
northern seas and its
chemical composition
(astrobiological potential)

Sea composition, including low
and high mass hydrocarbons,
noble gases, and carbon
isotopes

Mass spectrometry

Low atmosphere physical
properties package
(temperature sensor,
barometer,
anemometer)

Exchange processes at the
sea-air interface to help con-
strain the methane cycle

Low-atmosphere physical
properties package
(temperature sensor,
barometer,
anemometer)

Presence and nature of waves
and currents

Physical properties
package

Surface Imaging (~250
μrad/pixel)

Properties of sea liquids
including turbidity and
dielectric constant

Sea physical properties
package (turbidity and
dielectric constant
measurements)

Sea depths to constrain basin
shape and sea volume

Sonar

Shoreline characteristics,
including evidence for past
changes in sea level

Surface Imaging (~250
μrad/pixel)

Surface Imaging (~250
μrad/pixel)

Atmosphere Determine Temperature,
Pressure, composition,
evaporation rate, and
physical properties that
characterize lake and
atmosphere interactions

Determine Temperature,
Pressure, composition,
evaporation rate, and
physical properties that
characterize lake and
atmosphere interactions

Mass spectrometry
Physical properties
package

Characterize the atmospheric
composition during probe
descent

Determine the composition Mass spectrometry
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and local surface age. In addition, an IPR can also investigate the ice-ocean interface at
Enceladus’ SPT and brittle-ductile transition on Titan constraining the thickness and
thermal evolution of the ice shells. An additional option for radar architecture could be
a multi-mode radar design suitable for both sounding and imaging to be operated in two
modes: a vertical sounder mode with similar capabilities as described above though
with different architecture, and a Synthetic Aperture Radar (SAR) imaging mode,
similar to Cassini [37], but with a higher resolution at tens of meters. The additional
SAR mode could be used for high-resolution imaging of the surface, complementing
the IR imaging, as well as for creating three-dimensional high-resolution bathymetric
maps of Titan seas and lakes and could permit investigation of any possible composi-
tional variation in space and time of the hydrocarbon liquid and/or sea floor properties.

4 Science case for the baseline mission scenario

In this section we discuss the science goals and themes for the proposed baseline mission
based on the E2T mission submitted to ESA in response to the M5 Call [102]. Discussion
of the science themes of the proposed mission options is discussed in Section 5.

4.1 Origin and evolution of volatile-rich ocean worlds, Enceladus and titan

The origin of volatiles currently present on Titan and Enceladus is still being debated.
New data are needed to determine if the volatile inventory is primordial, originating in
the solar nebula or in the Saturnian subnebula where it was possibly altered during the
accretion process or if the volatile inventory was produced in some secondary manner
that is still being debated (e.g., [3]). How photochemical processes on Titan and aqueous
alteration on Enceladus have affected the initial volatile inventory remains unknown.
Given that a late accretion scenario may explain the mass distribution and ice/rock ratio
of the mid-sized moons in the Saturn system, Enceladus may have formed less than 1
billion years ago, while Titan may have accreted early. This may have resulted in
significant differences in their initial volatile inventory and their subsequent evolution.

By combining in situ chemical analysis of Titan’s atmosphere and Enceladus’ plume
with observations of Enceladus’ plume dynamics and Titan’s surface geology, a future
mission can provide constraints on how these ocean worlds acquired their initial volatile
inventory and how it was subsequently modified during their evolution [84]; these inves-
tigations can improve our understanding of the nature of Saturn subnebula formation
conditions and its subsequent evolution as well as the conditions of the early solar nebula,
the nature of cometary and giant impacts, all of whichmight also help to predict the physical
and chemical properties of terrestrial planets and exoplanets beyond the Solar System.

4.2 Chemical constraints on the origin and evolution of titan and Enceladus

The origin and evolution of Titan’s methane still needs to be constrained. Whether
Titan’s methane is primordial likely through water-rock interactions in Titan’s interior
during its accretionary phase [3] or else delivered to Titan during its formation
processes [107] or by cometary impacts [42, 177] is a key open question. On Titan,
the Huygens probe detected a small argon abundance (36Ar) and a tentative amount of
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neon (22Ne) in its atmosphere [113, 155], but was unable to detect the corresponding
abundance of xenon and krypton. The presence of 22Ne (with 36Ar /22Ne ~ 1) was
unexpected as neon is not expected to be present in any significant amounts in
protosolar ices [113, 155] and may indicate water-rock interactions and outgassing
processes [161]. The non-detection of xenon and krypton supports the idea that Titan’s
methane was generated by serpentinization of primordial carbon monoxide and carbon
dioxide delivered by volatile depleted planetesimals originating from within Saturn’s
subnebula (e.g., [3]). Xenon and krypton would both have to be sequestered from the
atmosphere to support a primordial methane source. While xenon is soluble in liquid
hydrocarbons (solubility of 10−3 at 95 K) and could potentially be sequestered into
liquid reservoirs, argon and krypton cannot [25]. Therefore, the absence of measurable
atmospheric krypton requires either sequestration into non-liquid surface deposits, such
as clathrates [108], or depletion in the noble gas concentration of the planetesimals
[121]. Unlike the Cassini Ion and Neutral Mass Spectrometer (INMS), which was
developed in the 1990s, current and future spectrometers have the mass range and
sensitivity to accurately measure xenon. Measurement of the abundance of noble gases
in the upper atmosphere of Titan can discriminate between crustal carbon sequestration
and carbon delivery via depleted planetesimals.

The longevity of methane in Titan’s atmosphere is still a mystery. The value of 12C/
13C in Titan’s atmosphere has been used to conclude that methane outgassed ~107 years
ago [171] and is being lost via photolysis and atmospheric escape [170]. It is an open
question whether the current methane rich atmosphere is a unique event, whether it is in
a steady state where methane destruction and replenishment are in balance [67], or else
is a unique transient event and is in a non-steady state where methane is being actively
depleted or replenished. Indeed, the possibility that Titan did not always possess a
methane rich atmosphere seems to be supported by the fact that the amount of ethane
on Titan’s surface should be larger than the present inventory (this is further discussed
in the geological processes section below); though Wilson and Atreya [175] contend
that missing surface deposits may simply be reburied into Titan’s crust and Mousis and
Schmitt [106] have shown that it is possible for liquid ethane to react with a water-ice
and methane-clathrate crust to create ethane clathrates and release methane. Nixon et al.
[116], however, favor a model in which methane is not being replenished and suggest
atmospheric methane duration is likely between 300 Ma and 600 Ma given that Hörst
et al. [54] demonstrated that 300 Ma is necessary to create Titan’s current CO inventory
and recent surface age estimates based on cratering [110]. Mandt et al. [87] suggests
that methane’s presence in the atmosphere, assumed here to be due to outgassing, has
an upper limit of 470 Ma or else up to 940 Ma if the presumed methane outgassing rate
was large enough to overcome 12C/13C isotope fractionation resulting from
photochemistry and escape. Both the results of Mandt et al. [87] and Nixon et al.
[116] fall into the timeline suggested by interior models [160] which suggests that the
methane atmosphere is the result of an outgassing episode that occurred between
350 Ma and 1350 Ma.

On Titan, both simple (methane, ethane, and propane) and complex hydrocarbons
precipitate out of the atmosphere and onto the surface. Measuring the isotopic ratios
(14N/15N; 12C/13C; D/H; 16O/18O) and abundances of the simple alkanes (e.g., methane,
ethane, and propane) will constrain the formation and evolution of the methane cycle
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on Titan. Further measurements of radiogenic noble gases such as 40Ar and 22Ne,
which are typically markers of volatile elements from Titan’s interior can constrain
outgassing episodes. Detection of 40Ar and tentatively 22Ne in the atmosphere has
provided circumstantial evidence of water-rock interactions and methane outgassing
from the interior [114, 161]. Measurements of the composition and isotopic ratios of
Titan’s upper atmosphere in a future mission can be used to determine the age of
methane in the atmosphere and characterize outgassing history.

On Enceladus, Cassini measurements by INMS [172, 174] and the Ultraviolet
Imaging Spectrograph Subsystem (UVIS) [47, 48] showed that plume gas consists
primarily of water vapor with a few percent other volatiles (Fig. 7). In addition to H2O
as the dominant species, INMS was able to identify CO2 (0.6% ± 0.15%), CH4 (0.23%
± 0.06%), and NH3 (0.7% ± 0.2%) in the vapor plume as well as an unidentified species
with a mass-to-charge (m/z) ratio of 28, which is thought to be either CO, N2, C2H4, or
a combination of these compounds. The low mass resolution of Cassini INMS is
insufficient to separate these species, and the UVIS measurements can only provide
upper limits on N2 and CO abundance. Determining the abundance ratio between these
different species is, however, essential to constrain the origin of volatiles on Enceladus
and to assess whether they were reprocessed internally. A high CO/N2 ratio, for
instance, would suggest a cometary-like source with only a moderate modification of
the volatile inventory, whereas a low CO/N2 ratio would indicate a significant internal
reprocessing.

In addition to these main volatile species, during some Cassini flybys, the INMS
data also indicated the possible presence of trace quantities of C2H2, C3H8, C4,
methanol, formaldehyde, and hydrogen sulfide. Organic species above the INMS mass
range of 99 u are also present but could not be further constrained [174]. The
identification and the quantification of the abundances of these trace species remains
very uncertain due to the limitations of the mass spectrometer on board Cassini.

Except for the measurement of D/H in H2O on Enceladus (which has large uncer-
tainty, [174]), no information is yet available for the isotopic ratio in Enceladus’ plume
gas. The baseline mission would determine the isotopic ratios (D/H, 12C/13C, 16O/18O,
14N/15N) in major gas compounds of Enceladus’ plume as well as 12C/13C in organics
contained in icy grains. Comparison of gas isotopic ratios (e.g., D/H in H2O and CH4,
12C/13C in CH4, CO2, and CO; 16O/18O in H2O, CO2, CO; 14N/15N in NH3 and N2) and
with Solar System standards will provide essential constraints on the origin of volatiles
and how they may have been internally reprocessed. Simultaneous precise
determination of isotopic ratios in N, H, C, and O-bearing species in Enceladus’ plume
and Titan’s atmosphere will permit a better determination of the initial reference values
and a quantification of the fractionation due to internal and atmospheric processes on
both moons.

Noble gases also provide essential information on how volatiles were delivered to
Enceladus and whether significant exchanges between the rock phase and water-ice
phase occurred during Enceladus’ evolution. The detection and quantification of 36Ar
and 38Ar will place fundamental constraints on the volatile delivery in the Saturn system.
A low 36Ar/N2 ratio, for instance, would indicate that N2 on Enceladus is not primordial,
like on Titan [114], and that the fraction of argon brought by cometary materials on
Enceladus is rather low. In addition to argon, if Ne, Kr, and Xe are present in detectable
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amounts, the baseline mission would be able to test whether primordial noble gases on
Enceladus were primarily brought by a chondritic phase or cometary ice phase, which
has implications for all the other primordial volatiles. The 40Ar/38Ar/36Ar as well as 20N/
21Ne/22Ne measured ratios will also allow for testing of how noble gases were extracted
from the rocky core. Abundance ratios between Ar/Kr and Ar/Xe, if Kr and Xe are
above detection limit, will offer an opportunity to test the influence of clathration storage
and decomposition in volatile exchanges through Enceladus’s ice shell.

The origin of methane detected in Enceladus’ plume is still uncertain. Methane,
ubiquitous in the interstellar medium was most likely embedded in the protosolar
nebula gas. The inflow of protosolar nebular gas into the Saturn subnebula may have
trapped methane in clathrates that were embedded in the planetesimals of Enceladus
during their formation. Alternatively, methane may have been produced via hydrother-
mal reactions in Enceladus’ interior. Mousis et al. [107] suggests that if the methane of
Enceladus originates from the solar nebula, then Xe/H2O and Kr/H2O ratios are
predicted to be equal to ∼7 × 10−7 and 7 × 10−6 in the satellite’s interior, respectively.
On the other hand, if the methane of Enceladus results from hydrothermal reactions,
then Kr/H2O should not exceed ∼10−10 and Xe/H2O should range between ∼1 × 10−7

and 7 × 10−7 in the satellite’s interior.

4.3 Compositional variability in Enceladus’ plume

The detection of salty ice grains [127, 128], the high solid-to-vapor ratio [65, 124], and
the observations of large particles in the lower part of the plume [52] all indicate that
the plume of Enceladus originates from a liquid source likely from the subsurface ocean
rather than from active melting within the outer ice shell. However, the abundance of

Fig. 7 Enceladus’ internal structure inferred from gravity, topography, and libration measurement provided by
the Cassini mission. A global subsurface ocean is present under the outer ice shell. The ice shell is believed to
be a few kilometers thin at the south polar region where the center of the geological activity is with the
formation of the plume formed by multi-jets. Image credit: NASA/JPL-Caltech
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the major gas species observed by Cassini suggests some contribution from the
surrounding cold icy crust should also be considered. Cassini observations show that
the plume is made up of ~100 discrete collimated jets as well as a broad, diffuse
component ([48], 2011; [125, 128]). The majority of plume material is found in the
distributed diffuse portion of the plume while only a small portion of gas and grains are
emitted from the jets [49, 128]. The saltiness of the ice grains and recent detection of
nanometer sized silica dust particles in E-ring stream particles [57, 59] all indicate their
origin is a location where alkaline high temperature hydrothermal reactions and likely
water-rock interactions are occurring.

Although the Cassini (Cosmic Dust Analyzer) CDA has constrained knowledge of
plume compositional stratigraphy, measurements of the absolute abundance and com-
position of organics, silicates, and salts are poorly constrained given the low spatial
resolution (10 km), low mass resolution, and limited mass range of the CDA. The
Cassini INMS provided only plume integrated spectra and is not able to separate gas
species with the same nominal mass. However, current high mass resolution, spec-
trometers have a resolution that is 50 times larger than that of Cassini INMS, and would
allow for the separation of isobaric interferences, for example separating 13C and 12CH
and CO and N2. Determining high-resolution spatial variations in composition is crucial
to establish whether the jets are fed by a common liquid reservoir or if jet sources are
disconnected, and if the local liquid sources interact with a heterogeneous material in
the icy shell. Variations in composition between the solid and gas phases as a function
of distance from jet sources can also provide information about how the less volatile
species condense on the grains, thus constraining the eruption mechanisms.

4.4 Geological constraints on Titan’s methane cycle and surface evolution

As discussed above, there is an open question on whether Titan’s methane-rich
atmosphere is being actively replenished, or if methane is being lost and Titan’s
methane may eventually be depleted [171]. Cryovolcanism has been suggested as a
mechanism by which methane and argon can be transported from Titan’s interior to its
surface (e.g., [72]). Cryovolcanic activity may also promote methane outgassing [160];
while methane clathrates are stable in Titan’s ice shell in the absence of destabilizing
thermal perturbations and/or pressure variation, variations in the thermal structure of
Titan’s outer ice shell during its evolution could have produced thermal destabilization
of methane clathrates generating outgassing events from the interior to the atmosphere
([160]; see also [32]). A number of candidate cryovolcanic features have been identi-
fied in Cassini observations [72]. High-resolution color images from the proposed
baseline mission would provide the data needed to determine the geneses of these
features. Stratigraphic relationships and crater counting will provide a means by which
the relative ages of these features may be constrained.

A related question to the age of Titan’s atmosphere is whether Titan’s climate is
changing. At present, most of the observed liquid methane is located in the north polar
region [1]. There have been suggestions, however, that organic seas may have existed
in Titan’s tropics [85, 104], and/or in broad depressions in the south [1, 52]. Models
suggest Titan’s methane distribution varies on seasonal timescales (e.g., Hayes [155,
168]) or Milankovitch timescales [1]. Alternative models suggest that methane is being
depleted and Titan’s atmosphere is drying out [104]. High-resolution images of the
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margins and interiors of these basins will allow us to determine whether they once held
seas. Identification of impact features or aeolian processes within these basins will help
to constrain the timing of their desiccation.

In addition to their inherent scientific interest, Titan’s dunes also serve as a witness
plate to climatic evolution. Larger dune forms take longer to form than smaller dune
forms. In Earth’s Namib desert, these differing timescales result in large, longitudinal
dunes that adhere to the overall wind conditions from the Pleistocene 20,000 years ago,
while smaller superposing dunes (sometimes called rake dunes, or flanking dunes) have
responded to the winds during our current interglacial period accordingly. On Titan, a
high-resolution infrared camera could resolve these potential smaller dunes on top of
the known longitudinal dunes and will therefore reveal if Titan’s recent climate has
been stable or if it has changed over the past few Ma. titan’s geology is unique in that
liquid and solid organics likely play key roles in many of the observed processes. As
these processes play an important role in the modification of organics on Titan, both
physically and chemically, understanding them is crucial for determining the complex
chemistry that likely occurs on this moon. Furthermore, study of Titan’s geology
allows us to investigate processes that are also common on Earth, but in drastically
different environmental conditions, providing a unique way to gain insight into the
processes that shaped the Earth and pre-Noachian Mars.

Observations of Titan suggest the landscape is significantly modified by liquid
organics (e.g., [17]). Fluvial erosion is observed at all latitudes, with a variety of
morphologies suggesting a range of controls and fluvial processes [17]. High-
resolution color imaging will provide insight into the nature of this erosion: whether
it is predominantly pluvial or sapping in nature and whether it is dominated by
mechanical erosion or dissolution. Dissolution processes are suspected to control the
landscape of Titan’s labyrinth terrains [26] and may also be responsible for the
formation of the polar sharp-edged depressions [50], though a new model suggests
that the sharp-edged depressions with raised rims may be craters formed by explosions
of subsurface pressurized nitrogen during colder methane-depleted periods in Titan’s
past [103]. High-resolution imaging will allow direct testing of these hypotheses in the
proposed baseline mission.

Both fluvial and aeolian processes likely produce and transport sediments on Titan.
Dunes are observed across Titan’s equator [86, 132] while a variety of fluvial sediment
deposits can be identified in SAR data [10, 17]. Detailed imagery of the margins of the
dune fields will allow us to determine the source and fate of sands on Titan. High-
resolution images will also help determine whether the observed fluvial features are
river valleys or channels (see [17]) providing key information in obtaining accurate
discharge estimates needed to model sediment transport [16] as well as provide insight
into the primary erosion processes acting on crater rims, which are likely composed of a
mixture of organics and water ice [111, 112, 143]. Finally, improved imaging will
provide insight into the nature of erosion that exists in Titan’s mid-latitudes, a region
that shows little variability in Cassini observations.

Of great interest in understanding the evolution of Titan’s surface is determining the
nature of the observed geologic units, including their mechanical and chemical prop-
erties. Fluvial processes, the degree to which mechanical vs dissolution dominates and
the existence of sapping, reflect the material properties of the surface and therefore can
be used as a powerful tool to investigate the properties of the surface. The baseline
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mission imaging would also allow us to investigate the strength of the surface materials
by constraining the maximum slopes supported by different geologic units. High-
resolution detailed color and stereo imaging of the boundaries of units will also allow
investigation of the morphology, topography, and spectral relationship across unit
boundaries.

4.5 Habitability and potential for life in ocean worlds, Enceladus and titan

Ocean worlds, such as Titan and Enceladus, are objects of wide astrobiological interest
because water is one of the key prerequisites for life, in addition to nutrients and
energy. Additionally, the organic surface environment of Titan provides an ideal, and in
many ways unique setting to investigate the prebiotic chemistry that may have led to
the emergence of life on the Earth. Water on ocean worlds in the outer Solar System is
found underneath the surface of insulating ice shells, which regulate heat and chemical
transport.

The dissipation of energy from tidal flexing, combined with radiogenic energy from
these moons’ interior provide the energy to sustain these oceans. The presence of
antifreeze elements, such as salts or ammonia, suggested by mass spectrometric
measurements on Titan and Enceladus [113, 174] and accretion models [81, 105]
may also play an important role in sustaining these subsurface oceans. Subsurface
oceans are known to exist on both Titan and Enceladus based on Cassini-Huygens
mission gravity, shape, and libration data [61–63, 93, 101, 157], compositional in situ
measurements and thermal evolution models [98, 159, 160]. Enceladus is unique in that
communication of this water is known to exist between the surface and the subsurface
and, quite conveniently, this water is ejected into space for easy in situ Sampling. titan
provides its own unique environment in which a rich array of complex organics exists
on the surface and may interact with the subsurface ocean via cryovolcanic activity or,
alternatively, with transient liquid water at the surface following impact events.

Because the presence of a subsurface ocean decouples the interior from the outer ice
shell, there is a much larger ice shell deflection and thus enhanced tidal heating and
stresses in the shell; therefore tectonic features are much more likely on ocean worlds
[99, 115] than on icy satellites without subsurface oceans. Surface geological activity
may also lead to transport of surface organic material emplaced via precipitation from
the atmosphere (e.G. titan) or lodged in the surface as a result of cometary impacts into
subsurface oceans. Titan’s alkanological cycle and the associated meteorology creates a
global distribution of trace species, evident in the formation and dynamics of clouds
and an extensive photochemical haze in Titan’s atmosphere, which affects the dynam-
ics of how, when, and where organic material settles on the surface and possibly
interacts with the subsurface as seen in Fig. 8.

In addition, cometary impacts could deliver key organics such as glycine, the
simplest amino acid which has been detected on both comet 67P/Churyumov-
Gerasimenko from in situ sampling by ESA’s Rosetta mission and on comet 81P/
Wild-2 from samples returned by NASA’s Stardust mission. Neish et al. [109] sug-
gested that transient liquid water environments, created by impact melts could be an
incubator for the deposited aerosols to create prebiotic chemistry. Further it is likely
that such impact melt pools could be stable for 102–104 years [118].
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This process could be circular; Tobie et al. [161] suggests that some of the species
now present in Titan’s atmosphere may have originally been dissolved in the subsur-
face. On smaller ocean worlds such as Europa and Enceladus, the ocean may be in
direct contact with the silicate core providing a means of water-rocks interactions [63,
96]. Recent detection of nanometer silica dust particles in Saturn’s E-ring is indicative
of an origin where alkaline high-temperature water-rock interactions is occurring [59].
The enormous heat output in the south polar terrain, associated with liquid water in
contact with rocks, favors prebiotic processes, providing both an energy source and
mineral surfaces for catalyzing chemical reactions.

Titan and Enceladus have already demonstrated remarkable astrobiological potential
as evidenced by observations of Titan’s complex atmosphere and methane cycle,
analogous to Earth’s water cycle, and Enceladus’ cyrovolcanic plume spewing rich
organics from the subsurface out into space. Studies of the nature of these organics
could tell us whether or not they are biogenic. For instance, part of the CH4 detected in
the plume of Enceladus may result from methanogens analogous to those occurring in
anaerobic chemosynthetic ecosystems on Earth [91, 152]. A powerful method to
distinguish between biogenic and abiogenic CH4 is to analyze the difference in carbon
isotope, 12C/13C, between CH4 and a potential source of C, most likely CO2 on
Enceladus and Titan, and to analyze the pattern of carbon isotopes in other
hydrocarbons, such as C2H6, C2H4, C2H2, C3H8 etc. [91, 142]. The abundances of
other non-methane hydrocarbons relative to methane could also be used to distinguish
between biological and other sources [91, 92]. The detection of amino acids could
provide additional evidence for active biogenic processes. Even though amino acids
can be produced, both biologically and via aqueous alteration of refractory organics,
their distribution pattern can confirm if they are of biological origin [34]. Indeed, low
molecular weight amino acids, such as glycine and alanine, are kinetically favorable

Fig. 8 Titan’s methanological cycle [133]
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and therefore dominate any mixture of amino acids synthesized by abiotic process,
whereas amino acids resulting from biotic process show a more varied distribution
dominated by the protein amino acids in roughly equal proportions [34].

By searching for abnormal isotopic ratios and mass distribution of organic mole-
cules, including amino acids, the proposed baseline mission can determine what
chemical processes control the formation and evolution of complex organics on Titan
and will test whether biotic processes are currently occurring inside Enceladus. The
analysis of salts and minerals embedded in icy grains and their possible distribution
throughout the plume will also provide crucial constraints on the nature of hydrother-
mal activity occurring in Enceladus’ deep interior and on how it connects with the
plume activity. The observations of Titan’s surface will also reveal if active exchange
processes with the interior is currently occurring and whether complex organics are
potentially in contact with fresh water.

4.6 Evidence for prebiotic and biotic chemical processes on titan and Enceladus

Unlike the other ocean worlds in the Solar System, Titan has a substantial atmosphere,
consisting of approximately 95% nitrogen and 5% methane with trace quantities of
hydrogen and its by-products such as hydrocarbons (e.g. ethane, acetylene, propane,
and diacetylene) and nitriles, (e.g. hydrogen cyanide (HCN), cyanoacetylene (HC3N),
and cyanogen (C2N2)). Somewhat more complex molecules such as vinyl and
ethylcyanide follow from these simpler units. In Titan’s upper atmosphere, Cassini
has detected large organic molecules with high molecular masses over 100 u. In situ
measurements by the Cassini Plasma Spectrometer (CAPS) detected heavy positive
ions (cations) up to 400 u [31] and heavy negative ions (anions) with masses up to
10,000 u [23] in Titan’s ionosphere. Whereas Cassini INMS only had the ability to
detect cations, current high-resolution mass spectrometer technology can detect both
cations and anions with much better mass resolution than Cassini INMS, and even
better mass resolution than Cassini CAPS. It is thought that these heavy negative ions,
along with other heavy molecules found in the upper atmosphere, are likely the
precursors of aerosols that make up Titan’s signature orange haze, possibly even
precipitating to the surface [164]. While the identities of these molecules are still
unknown, their presence suggests a complex atmosphere that could hold the precursors
for biological molecules such as those found on Earth. The ability to detect prebiotic
molecules in Titan’s atmosphere is currently limited by the mass range of the Cassini
INMS to the two smallest biological amino acids, glycine (75 u) and alanine (89 u), and
the limited mass resolution precludes any firm identification. However, Cassini INMS
detected mass spectra fragments for positive ions at masses of 76 u and 90 u, which
may be consistent with protonated glycine and alanine, respectively [55, 169]. Exper-
imental results from a Titan atmosphere simulation experiment found 18 molecules that
could correspond to amino acids and nucleotide bases [55]. The proposed baseline
mission would use high-resolution mass spectrometry to measure heavy neutral and
ionic constituents up to 1000 u, and the elemental chemistry of low-mass organic
macromolecules and aerosols in Titan’s upper atmosphere as well as monitor neutral-
ionic chemical coupling processes.

The plume emanating from Enceladus’ south pole probably contains the most
accessible samples from an extra-terrestrial liquid water environment in the Solar
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System. The plume is mainly composed of water vapor and other gases: 0.91% H2O,
0.04% N2, 0.032% CO2, 0.016% CH4 [172]. In addition, complex macromolecular
organic species with masses exceeding 200 u, were detected in the plume emissions
suggesting the presence of a thin organic-rich film on the upper layer of the ocean
[130]. The presence of CO2, CH4, and N2 can constrain the oxidation state of
Enceladus’ hydrothermal system during its evolution. The minor gas constituents in
the plume are indicative of high-temperature oxidation-reduction (redox) reactions in
Enceladus’ interior possibly a result of decay of short-lived radionucleides [138]. In
addition, H2 production and escape may be a result of redox reactions. Further the high
temperatures and H2 escape may have led to the oxidation of NH3 to N2 [39].
Enceladus’ redox state may have or have had similarities with terrestrial submarine
hydrothermal systems. Detection and inventory of reduced and oxidized species in the
plume material (e.g., NH3/N2 ratio, H2 abundance, reduced versus oxidized organic
species) can constrain the redox state and evolution of Enceladus’ hydrothermal
system.

Cassini CDA measurements identified three types of grains in the plume and
Saturn’s E-ring. Type I and Type II grains are both salt-poor (Fig. 9). Type I ice grains
are nearly pure-water ice while Type II grains also possess silicates and organic
compounds and Type III is salt-rich (0.5–2.0% by mass) [127, 128]. The salinity of
these particles suggests they originate in a place where likely water-rock interactions
are taking place.

In addition, E-ring stream particles were identified as nanometer-sized SiO2 (silica)
dust particles that were initially embedded in plume ice grains [59]. These particles
indicate an origin at locations where alkaline high temperature (>90 °C) hydrothermal
rock-water reactions are taking place [59]. Hsu et al. [59] further suggests that a
convective ocean is required to have silica nanoparticles transported from hydrothermal
sites at the rocky core up to the surface of the ocean where they can be incorporated into
icy plume grains. To confirm this hypothesis of current hydrothermal activity on
Enceladus, a direct detection of silica and other minerals within ejected ice grains is
required. SiO2 nano-particles detected in Saturn’s E-ring can now be much better
investigated and quantified by a high-resolution mass spectrometer with a higher
dynamic range (106–108). In addition, with high resolution mass spectrometry in the
proposed baseline mission it would also be possible to search for signatures of on-going
hydrothermal activities from possible detection of native H2 and He.

4.7 Physical dynamics in Enceladus’ plume and Titan’s upper atmosphere

The total heat emission at the south polar “tiger stripes” is at least 5 GW (possibly up to
15 GW, [56]), and in some of the hot spots where jets emanate, the surface tempera-
tures are as high as 200 K [41]. Cassini observations show that the plume is made up of
~100 discrete collimated jets as well as a diffuse distributed component [48, 49, 125,
128]. The majority of plume material can be found in the distributed diffuse portion of
the plume, which likely originates from elongated fissures along Enceladus’ tiger
stripes while only a small portion of gas and grains are emitted from the jets [49,
128]. CDA measurements demonstrate that the majority of salt-poor grains tend to be
ejected through the jets and at faster speeds while larger salt-rich grains tend to be
ejected more slowly through the distributed portion of the plume [128]. Ice-to-vapor
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ratios can constrain how Enceladus’ plume material is formed and transported to the
surface. For example, ice-to-vapor ratios >0.1–0.2 would exclude plume generation
mechanisms which require a large amount of ice grains to be condensed from vapor [65,
124]. However, this ratio is poorly constrained with estimates ranging from 0.05 [136] to
0.4 [124] to 0.35–0.7 [65]. Imaging and spectral data from the proposed baseline
mission could help constrain this important ratio. Cassini ISS images used to track
plume brightness variation, which is proportional to the amount of grains in the plume,
with the orbital position of Enceladus foundmore ice grains are emitted when Enceladus
is near its farthest point from Saturn (apocenter). It is not understood if the plume vapor
has such a variation. This temporal variation of the plume indicates that it is tidally
driven but could also be due to possible physical libration [60, 68]. Kite and Rubin [68]
have suggested that the tiger stripe fissures are interspersed with vertical pipe-like tubes
with wide spacing that extend from the surface to the subsurface water. This mechanism
allows tidal forces to turn water motion into heat, generating enough power to produce
eruptions in a sustained manner. High spatial resolution thermal emissions maps could
be used to constrain the amount of energy dissipated between the tiger stripes.

4.8 Geological evidence for interior-surface communication on titan

Geological features such as tectonic and putative cryovolcanic are the reflection of
interior processes and may indicate communication between atmosphere, surface and

Fig. 9 Composition of salt-poor (Type I and II) and salt-rich (Type III) particles in Saturn’s E-ring and
Enceladus’ plume [128]
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subsurface enabling prebiotic or abiotic processes. Titan’s surface offers a wealth of
geological processes with which to constrain the extent that Titan’s surface chemically
communicates with its water-rich interior, in particular possible cryovolcanism and
tectonics. Also of great importance to habitability are the transient H2O melt sheets and
flows associated with impacts (e.g. Selk impact crater; [144]). On Titan, several
features with volcanic landforms, lengthy flows, tall mountains, and large caldera-
like depressions, have been identified as possible cryovolcanic sites. At present, the
Hotei Regio flows and the Sotra Patera region, which includes Sotra Patera, an elliptical
deep depression on Titan, Mohini Fluctus, a lengthy flow feature, and Doom and
Erebor Montes, two volcanic edifices, are considered to host the strongest candidates
for cyrovolcanism on Titan [72]. High resolution mapping (at minimum, 30 m/pixel
with digital terrain mapping (DTM) vertical resolution of 10 m) of regions that are
candidates for cryovolcanic activity could improve the ability to distinguish
cryovolcanic features.

A variety of mountainous topography has been observed on Titan [24, 131]. The
observed morphologies of many of Titan’s mountains suggest contractional tectonism
[70, 99]. This is somewhat surprising, however, in that most tectonic landforms
observed on other ocean worlds and icy satellites in the outer Solar System appear to
be extensional in nature. Understanding the tectonic regime of Titan is fundamental in
understanding the transport of material between the moon’s organic-rich surface and
subsurface ocean and will also provide insight into the evolution of the other ocean
worlds. We will test the hypothesis that Titan’s mountains are formed by contraction by
mapping the faults driving mountain formation in topographic context. A future
mission can test the hypothesis that Titan’s mountains are formed by contraction by
mapping the faults driving mountain formation in topographic context by using the
shape of the fault outcrop draped against topography to measure the faults’ dip, which
will be ~30 degrees to the horizontal for compressive mountains and ~ 60 degrees for
extensional mountains.

In addition to cryovolcanism and tectonism, which may transport water to Titan’s
surface, impact craters likely have created transient liquid-water environments on
Titan’s surface. Because of Titan’s dense atmosphere, models suggest that melt sheets
and flows associated with impact craters may remain liquid for 104–106 years [2, 158],
though the stability of such lakes is questioned [140, 178] and detailed imaging of the
floors of young craters is needed to constrain these models.

5 Science case for the option 1 and 2 mission scenarios

5.1 In situ Titan Sea probe/lander

Titan presents approximately 600 standing bodies of liquid hydrocarbons at the polar
regions forming seas and lakes [73, 154] which are found poleward of 55° latitude and
cover 1.2% of the surface that has been observed (~50%) by Cassini’s instruments [50,
52]. Seasonal asymmetry likely due to Saturn’s current orbital configuration [1] has
resulted in the majority of lakes, filled and empty, being located in the north pole while
empty and paleo-lakes predominate in the south pole. In the north, 87% of the area of
observed liquid deposits are contained within the three largest lakes, Ligeia, Kraken,
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and Punga Mare, which are similar in size to the Great Lakes (USA). This hemispheric
asymmetry of lakes and seas yields a net transport of volatiles (methane, ethane) from
the south to the north; however, as the orbital parameters shift the net flux of
northward-bound volatiles is expected to slow and eventually reverse, resulting in a
larger southern hemispheric liquid distribution in ~35 kyr. If this hypothesis is correct,
the distribution of liquid deposits on Titan is expected to move between the poles with a
period of ~50 kyr in a process analogous to Croll-Milankovitch cycles on Earth. In situ
measurement and comparison between the relative abundance of volatiles that are
mobile over these timescales (e.g., methane, ethane) versus those that are involatile
(e.g., propane, benzene), can be used to test this hypothesis and understand volatile
transport on thousand years timescale. Volatile transport over shorter timescales (diur-
nal, tidal, and seasonal) can be investigated via in situ measurements of the methane
evaporation rate and associated meteorological conditions (e.g., wind speed, tempera-
ture, humidity). These measurements can be used to ground-truth methane transport
predictions from global climate models (e.g., [95, 137, 162]). Cassini RADAR altim-
etry results have been used to determine the depth and constrain the composition of the
Ligeia Mare [88] and Winnepeg Lacus [89] at the north pole and Ontario Lacus at the
south pole [90]. In situ sounding of one of the northern seas can be used to confirm the
depth and composition of Ligeia Mare or else to determine the depth of the Kraken
Mare, Titan’s largest sea, thus improving our understanding of the total volume of
liquid available for interaction with the atmosphere. The inventory of methane in
Titan’s Mare, which requires knowledge of both depth and composition, will provide
a lower limit on the length of time that the lakes can sustain methane in Titan’s
atmosphere [97] and help to quantify the required rate of methane resupply from the
interior and/or crust. Similarly, the absolute abundance of methane photolysis products
(e.g., ethane, propane) will determine a lower limit for the length of time that methane
has been abundant enough to drive photolysis in the upper atmosphere and deposit its
products onto the surface and, ultimately, into the lakes and seas.

Similar to the Earth’s oceans, Titan’s seas record a history of their parent body’s
origin and evolution. Specifically, the noble gas and isotopic composition of the sea can
provide information regarding the origin of Titan’s atmosphere, reveal the extent of
communication with the interior, potentially constrain the conditions in the Saturn
system during formation, and refine estimates of the methane outgassing history.
Titan’s lakes and seas collect organic material both directly, through atmospheric
precipitation of photolysis products, and indirectly, through aeolian or fluvial transport
of surface materials (e.g., river systems flowing into the Mare). As a result, the lakes
and seas represent the most complete record of Titan’s organic complexity and present
a natural laboratory for studying prebiotic organic chemistry [82]. Titan’s environment
is similar to conditions on Earth four billion years ago and presents an opportunity to
study active systems involving several key compounds of prebiotic chemistry [29, 133,
139]. Noble gas measurements and, isotopic ratios can also be used to decipher the
history of Titan’s atmosphere. For example, the 13C/12C ratio of methane was used by
Niemann et al. [114] to conclude that methane last outgassed from the interior
~107 years ago. However, this calculation assumes that the exposed methane
reservoir has an isotopic composition that is in equilibrium with the atmosphere. If
the carbon isotope ratio of hydrocarbons in Titan’s lakes and seas were found to be
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different than in the atmosphere, it would imply chemical alteration of the isotopic
composition and indicate a different timescale for the history of methane-outgassing.

In summary, in situ exploration of Titan’s lakes and seas will address fundamental
questions involving the origin, evolution, and history of both Titan and the broader
Saturnian system. The study of Titan’s organic chemistry has direct applicability to our
understanding of early prebiotic chemistry on Earth, allowing the investigation of
reactions and timescales inaccessible to terrestrial labs.

5.2 Ice penetrating radar (IPR)

The ice penetrating radar (IPR) would be capable of both shallow and deep sounding to
characterize the subsurface with a depth of 9 km and ~ 30 m vertical resolution at
minimum. An IPR can characterize structural, compositional, and thermal variations
occurring in the subsurface providing data that can correlate surface and subsurface
features and processes, deformation in the upper ice shell, as well as global and local
surface age. On Titan, radar sounder observations with a penetration depth up to ~9 km
with a vertical resolution of ~30 m, similar to JUICE RIME and Europa Clipper
REASON, could directly determine the relict brittle-ductile transition of the ice shell
revealing its thermal state, thus constraining its ice shell thickness and thermal evolu-
tion. Liu et al. [70] suggests that subsurface liquid hydrocarbons could enable contrac-
tional structures to form on Titan without the necessity of large stresses. An IPR would
be able to detect any near surface pockets of liquid. In addition, an IPR would also
investigate the ice-ocean interface at Enceladus’ SPT and its variability in the SPT.

An additional option for radar architecture could be a multi-mode radar design
suitable for both sounding and imaging to be operated in two modes: a vertical sounder
mode, with similar capabilities as described above but with different architecture, and a
Synthetic Aperture Radar (SAR) imaging mode, similar to Cassini’s, but with higher
resolution at tens of meters. The additional SAR mode could be used for high-
resolution imaging of the surface, complementing the IR imaging, as well as for
creating three dimensional high resolution bathymetric maps of Titan seas and lakes
and could permit investigation of any possible composition variation in space and time
of the hydrocarbon liquid and/or sea floor properties.

6 Conclusions

A return to the Saturn system with a focus on Titan and Enceladus offers an ideal
opportunity to further our knowledge of ocean worlds, a crucial component of ESA’s
Voyage 2050 plan. The NASA/ESA/ASI Cassini-Huygens and subsequent interplanetary
missions have shown that oceans are common in the Solar System and that extra-terrestrial
lakes and seas exist, even if in a different form with respect to terrestrial analogues. These
two Saturnian moons offer ideal laboratories to study potentially habitable prebiotic envi-
ronments, understand the processes that shaped ancient Earth and pre-Noachian Mars and
further our knowledge of Solar System evolution. In addition, in-situ exploration of Titan’s
lakes offers an unprecedent opportunity to excite public imagination and interest in space
exploration and science. A deeper exploration of the Saturn system will also complement
upcomingmissions to the outer Solar System, includingESA’s JUICEmission andNASA’s
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Clipper mission to the Jupiter system andNASA’s Dragonfly mission to Titan’s Selk crater.
In conclusion, further exploration of Titan and Enceladus offers an opportunity to answer
many key scientific questions and stimulate public imagination and interest.
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