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F-type ATP synthases are transmembrane enzymes, which play a central role in

themetabolism of all aerobic and photosynthetic cells and organisms, being the

major source of their ATP synthesis. Catalysis occurs via a rotary mechanism, in

which the free energy of a transmembrane electrochemical ion gradient is

converted into the free energy of ATP phosphorylation from ADP and Pi, and

vice versa. An ADP, tightly bound to one of the three catalytic sites on the stator

head, is associated with catalysis inhibition, which is relieved by the

transmembrane proton gradient and by ATP. By preventing wasteful ATP

hydrolysis in times of low osmotic energy and low ATP/ADP ratio, such

inhibition constitutes a classical regulatory feedback effect, likely to be an

integral component of in vivo regulation. The present miniview focuses on

an additional putative regulatory phenomenon, which has drawn so far little

attention, consisting in a substrate-induced tuning of the H+/ATP coupling ratio

during catalysis, whichmight represent an additional key to energy homeostasis

in the cell. Experimental pieces of evidence in support of such a phenomenon

are reviewed.
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1 Introduction

F-type ATP synthases (“ATP synthases” in the following) are highly conserved

transmembrane enzymes, found in most eubacteria, mitochondria and chloroplasts

(Boyer, 1997; Kinosita et al., 1998; Leslie and Walker, 2000; Junge and Nelson, 2015;

Kühlbrandt, 2019), where they represent the main source of ADP phosphorylation. They

convert the free energy of the transmembrane electrochemical H+-gradient (“H+-

gradient” in the following)—or Na+-gradient, in some organisms (Dimroth, 1990)—

into the free energy of ATP phosphorylation from ADP and Pi, and vice versa, as first

proposed by the chemiosmotic theory (Mitchell, 1961). They do so by a rotary

mechanism, in which, viewed from the hydrophobic transmembrane FO sector to the

hydrophilic F1 head, the rotor moves either clockwise (synthesis), or anti-clockwise

(hydrolysis) (Diez et al., 2004; Iino and Noji, 2006; Noji and Ueno, 2022).
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F1 contains a ring of three alternating α- and β-subunits,

the latter bearing the three catalytic sites, at which ATP

synthesis/hydrolysis occurs (Figure 1). The H+ translocate

within FO, at the interface between the hydrophobic stator

and rotor parts. The hydrophobic rotor part is a ring-shaped

oligomer of c-subunits, which, during synthesis, transmits the

torque to the hydrophilic rotor subunits γ and ε. The latters in

turn rotate within the central cavity of the α3β3-barrel, thus

inducing the cyclic conformational changes in the β-subunits,

which elicit substrate binding and product release. The

number of c-subunits varies in different organisms, from 8

in the bovine mitochondrial enzyme, to 17 in the

human pathogen Burkholderia pseudomallei (Kühlbrandt,

2019).

The rotary mechanism of F-type ATP synthases is shared

by the related type-A ATP synthases (Archaebacteria) and

type-V ATPases (vacuolar and other cellular membranes), the

latter functioning in vivo for ATP hydrolysis (Zubareva et al.,

2020). The three enzyme types also share some regulatory

features, in particular the non-competitive inhibition by low

ADP concentrations, which locks the enzyme in an inhibited

conformation (Vasilyeva and Forgac, 1998; Feniouk and

Yoshida, 2008; Sielaff et al., 2018; Zubareva et al., 2020). In

the F-type enzymes, the tightly bound ADP is released,

thus recovering the catalytic activity, at high ATP

concentrations or high H+-gradients (Lapashina and

Feniouk, 2018), by switching to a different conformation,

which is metastable in the absence of a H+-gradient

(Fischer et al., 2000, and references therein). By preventing

the thermodynamically favored ATP hydrolysis at low ATP/

ADP ratio and low H+-gradient, such regulation appears to be

functional for cellular energy conservation in times of energy

depletion.

Since every c-subunit bears one H+ binding site, and the

α3β3-barrel bears three catalytic sites, the rotary mechanism

implies that the maximum possible H+/ATP stoichiometry is

given by the number of c-subunit divided by three (Läuger,

1984; Junge, 1999; Watt et al., 2010). Bulk measurements in

the chloroplast and mitochondrial enzymes, near to the

thermodynamic equilibrium between the free energies of

FIGURE 1
Molecular model of the E. coli ATP synthase, determined by cryo-EM (Sobti et al., 2020, PDB entry 6oqr, with the complex in the ε-subunit “up”
state–see Section 3). On the left, the whole model is shown, on the right, the same model is clipped, to show the γ- (blue) and ε- (green) subunits
filling the inner cavity of the α3β3-barrel (α-subunit in yellow, β-subunit in red). The c10-oligomer (light blue), together with the γ- and ε-subunits, build
the rotor, while the stator is constituted by the α3β3-barrel and by the peripheral stalk (orange), composed by the δ-, b2-, and a-subunits. In the
clippedmodel, the ADP and Pi bound to the catalytic site of the β1 are visible (dark gray). The model was represented using USCF Chimera (Pettersen
et al., 2004).
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H+-gradient and ADP phosphorylation, have yielded values of

the effective number of H+ translocated for each ATP molecule

hydrolyzed/synthesized—the “H+/ATP coupling ratio”

(Läuger, 1984)—close to, but 10%–15% smaller than, their

respective c/β ratios (VanWalraven et al., 1996; Petersen et al.,

2012, but see Soga et al., 2017, for even closer values in Bacillus

PS3). Such less-than-c/β values are eventually consistent with

some internal energy dissipation within the molecular motor

(Martin et al., 2014; Hou and Wang, 2021), including, e.g., the

H+-gradient energy used for maintaining otherwise metastable

enzyme states (Turina et al., 2016), or the ATP binding/

hydrolysis energy used for other “priming” reactions (see

Section 3).

Since the rotary mechanism of the ATP synthase has been

experimentally shown (Noji et al., 1997), much attention has

been devoted to investigating, in single ATP synthase molecule

experiments, the remarkably high tightness featured by its

chemomechanical coupling (Kinosita et al., 2000, 2004;

Toyabe et al., 2011; Zimmermann and Seifert, 2012; Saita

et al., 2015). While such high efficiency in

chemomechanical coupling can indeed be considered an

evolutionary optimized feature of this “splendid molecular

machine” (Boyer, 1997), on the other hand, cellular systems

have also been shown to harbor sophisticated devices for fine-

tuning the overall energy conversion efficiency. The

mitochondria themselves are a prime example of regulated

H+-leak mechanisms, with the Uncoupling Protein 1 and the

ADP/ATP carrier considered to play the main role in the

regulation of thermogenesis and reactive oxygen species

production (Cadenas, 2018; Demine et al., 2019; Bertholet

and Kirichok, 2022), or with their permeability transition pore

deciding between cell life and death (Bernardi et al., 2021). The

close cousins V-type ATPases have been shown to work with

variable coupling ratios, proposed to be functional to variable

acidification needs (Davies et al., 1994; Müller and Taiz, 2002;

Kettner et al., 2003; Forgac, 2007; Saroussi and Nelson, 2009).

In addition, variable coupling ratios in the ATP synthase,

according to energy conditions, have been reported in whole

bacterial cells (Gober and Kashket, 1984; Vink et al., 1984;

Cook and Russell, 1994). Possibly, the marvel at the high

tightness of energy conversion within the ATP synthase has let

researchers in the field assume that its evolution, at a given c/β

stoichiometry, had only taken place towards the highest

possible coupling ratio. To my knowledge, very little

work has been devoted so far to investigating the

possibility that such coupling ratio could itself be subjected

to regulation.

Purpose of the present work is to propose the existence of

a built-in mechanism able to modulate the H+/ATP

coupling ratio within the F-type ATP synthases, eventually

useful for in vivo energy homeostasis, by highlighting some

experimental evidence which is consistent with such

hypothesis.

2 Nucleotide- and ligand-induced
changes in the H+/ATP coupling ratio

2.1 Nucleotides

A change in coupling ratio, dependent on the ADP

concentration, has been reported and investigated in bacterial

ATP synthases (Turina et al., 2004; D’Alessandro et al., 2008).

Measurements were carried out in the hydrolysis direction,

progressively reducing the ADP concentration by an ADP

trap at constant ATP concentration, thereby observing a

corresponding reduction in the number of H+ pumped per

hydrolyzed ATP. In both tested bacterial species, the less-

coupled hydrolysis was inhibited by Fo inhibitors, oligomycin

in Rb. capsulatus, DCCD in E. coli. The data could be most easily

explained by the ATP synthase existing in, at least, two

interconvertible states, differing by their own coupling ratios,

with the higher coupling-ratio state (EC) favored by ADP

binding, and the lower coupling-ratio state (EU) favored by

ATP binding. ATP and ADP would compete for the same

site, the occupancy of which, with either nucleotide, would

determine the switch between the two conformations. That

site could thus constitute a direct regulatory “sensor” of the

cellular ATP/ADP ratio.

In D’Alessandro et al. (2011), D’Alessandro et al. (2017) two

ADP binding sites were identified by their different functional

effects and different apparent Kds, both in the sub-micromolar

range, the tighter site being associated with the change in

coupling ratio, and the other one with inhibition of ATP

hydrolysis. Given the high-affinity binding of ADP to one of

the three catalytic sites on E. coli F1 (Cingolani and Duncan,

2011), a possible scenario is that the two ADP binding sites can be

identified as the same catalytic site, showing different properties

in the two different enzyme conformations (EU and EC).

In a nutshell, the above scenario implies that EU is stabilized

by ATP and that EC is stabilized by ADP. We know that the

tightly bound ADP fully inhibits catalysis, and that an H+-

gradient is needed to release the tightly bound ADP and let

the (fully coupled) rotary catalysis take place for several

turnovers. Most likely, also the EU needs some triggering

event to get rid of the bound ATP, to be able to engage in its

less coupled, but still rotary, catalysis. ATP binding/hydrolysis to

another catalytic site could be such an event.

Previously, measurements of ATP hydrolysis in parallel with

H+ pumping by (Shigalowa et al., 1985; Strotmann et al., 1986)

had also supported the existence of an uncoupled form of the

ATP synthase. According to the authors, the data could be best

explained by postulating that a non-hydrolyzed ATP, bound to

the ATP synthase in place of a tightly bound ADP, would induce

a partially uncoupled ATP hydrolysis.

Interestingly, high concentrations of ATP were reported to

induce a partial uncoupling of the V-ATPase pump (Arai et al.,

1989; Shao and Forgac, 2004).
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2.2 Sulfite

The most evident effect of sulfite on the ATP synthase is a

strong increase of the hydrolysis activity, which has been

associated with the release of the inhibitory, tightly bound

ADP (Vasilyeva et al., 1982; Larson et al., 1989; Murataliev

and Boyer, 1992). While the presence of ATP could slowly

release the tightly bound ADP during catalysis, the presence

of sulfite significantly accelerated the ATP-dependent

reactivation of the ADP-inhibited complex. However, sulfite

was shown to inhibit ATP synthesis, in a way not readily

explained by competition with Pi (Pacheco-Moisés et al.,

2002) and, consistently with the latter inhibition, was also

shown to decrease the H+/ATP coupling ratio, as measured in

the hydrolysis direction, both in the V-type ATPase (Kibak et al.,

1993), and in the ATP synthase (Cappellini et al., 1997). The

sulfite-activated hydrolysis was still completely inhibited by FO
inhibitors, such as oligomycin, venturicidin, DCCD (Moyle and

Mitchell, 1975; Zhang et al., 1993; Cappellini et al., 1997;

Pacheco-Moisés et al., 2000; Pacheco-Moisés et al., 2002).

The effects of sulfite can be interpreted in light of the scenario

put forward in Section 2.1. The contiguity of ADP and sulfite in

the tight ADP-binding site can be envisaged to mimic the

structure of an ATP, and therefore to trigger the EC → EU
conversion in the ADP-inhibited ATP synthase molecules. Such

sulfite-induced conversion would cause the observed decrease in

the H+/ATP ratio of hydrolysis, and the lower synthesis rate at

constant H+-gradient. The proposal by Moyle and Mitchell

(1975) and Pacheco-Moisés et al. (2000), that the sulfite-

induced active state is associated with structural modifications

of the enzyme, supports the above interpretation.

Other oxyanions, structurally similar to sulfite, have been less

investigated (Walker, 1994). Selenite is known to increase

hydrolysis (see, e.g., Jarman et al., 2021), and a systematic

investigation might show that it is uncoupling as well.

Carbonate has long been known to be activating for

hydrolysis, and more recently it has also been reported to

inhibit synthesis in submitochondrial particles (Lodeyro et al.,

2001). The structurally close chloroform was also reported to

change the H+/ATP ratio (Rottenberg, 1983).

2.3 ATP-Pi exchange

The ATP-Pi exchange is due to the ATP synthesis catalyzed

by the ATP synthase in the presence of Pi and of a high ATP/

ADP ratio, which induces an ATP-generated H+-gradient. It is

called that way since the newly formed ATP is detected as the

radioactive ATP generated when the only radioactive reagent at

the start of the reaction was Pi. Lodeyro et al. (2001) excluded the

possibility of an uncoupling effect of carbonate, based on their

finding that it activated the ATP-Pi exchange. An alternative

interpretation can be proposed on the basis of the EU ↔ EC

hypothesis, since the carbonate-induced higher EU/EC ratio

would decrease the rates under the experimental conditions

normally used for measuring ATP synthesis (low ATP/ADP

ratio), but could increase the H+-gradient, and thus the ATP

synthesis rates, during ATP-Pi exchange (high ATP/ADP ratio,

see below). Notice that sulfite has also been shown to increase the

rate of ATP-Pi exchange (Pacheco-Moisés et al., 2002).

Even though a high ATP/ADP ratio is a most frequent

condition in the cell, the experimentally observed ATP-Pi

exchange still represents an energetic conundrum for an ATP

synthase with a homogeneous H+/ATP ratio, since substantial

ATP synthesis is found under nearly prohibitive conditions for

such reaction (very high ATP/ADP ratio and low H+-gradient).

However, the co-occurrence of EC and EU during the ATP-Pi

exchange could represent an easy solution for that enigma, since

EU, if its lower H
+/ATP coupling ratio was due to a lower H+/ATP

stoichiometry (Section 4), would represent the steeper H+-

gradient producer, and EC the better H+-gradient consumer,

thus allowing substantial synthesis rates by concomitant

maximal measurable hydrolysis rates. The co-occurrence of

two different active conformations (EC and EU) would also

agree with the results obtained by (Shoshan and Shavit, 1979),

who showed that Fab fragments against F1 inhibited ATP-Pi

exchange, but not light-driven synthesis, implying that an

additional ATPase conformation (EU) played a major role

during ATP-Pi exchange, different from the one (EC)

catalyzing the light-driven synthesis.

2.4 Ca2+

The ATP synthesis/hydrolysis, catalyzed by the ATP

synthase, requires Mg2+. When Mg2+ is substituted by Ca2+,

the synthesis is inhibited, while the hydrolysis remains high,

and still sensitive to the FO-inhibitors DCCD, oligomycin and

venturicidin, but it becomes uncoupled fromH+-translocation, as

reported by several groups (e.g., Pick and Weiss, 1988; Strid and

Nyrén, 1989; Casadio and Melandri, 1996; Papageorgiou et al.,

1998). Uncoupling by Ca2+ has also been reported in V-type

ATPases (Crider and Xie, 2003). The hydrolysis of CaATP was

later shown capable of sustaining the rotary motions of the γ-

subunit in single molecule detection, with a rate comparable to

that induced by MgATP (Tucker et al., 2004). More recently, in

purified and reconstituted bovine ATP synthase, Urbani et al.

(2019) showed that Ca2+ causes channel-like dissipation of the

ATP hydrolysis-induced H+-gradient, and does so even more in

the presence of activators of the permeability transition pore.

Similar as proposed for sulfite (Section 2.2), the underlying

reasons for Ca2+-uncoupling might be related to the ADP/ATP

occupancy of the high-affinity catalytic site. Both by direct

binding experiments (Maldonado et al., 1998) and by

measuring the extent of water oxygen incorporation into

released ATP (Kohlbrenner and Boyer, 1983), the same
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conclusion was reached, that Ca2+ in place of Mg2+ strongly

accelerated ADP release from the high-affinity catalytic site on

the enzyme. The EC ↔ EU interconversion would then be

significantly shifted by Ca2+ toward the less coupled EU.

2.5 Other ligands

The human hormon 17β-Estradiol (E2) was found to directly

bind to a subunit of the mitochondrial ATP synthase (Zheng and

Ramirez, 1999) and to inhibit ATP synthesis (Massart et al.,

2002). More recently, in simultaneous measurements of H+-

gradient and ATP synthesis, Moreno et al. (2013) have

reported that E2 decreased the H+/ATP ratio in the synthesis

direction, and that such an effect was dependent on the presence

of non-hydrolyzed ATP. As proposed above (Sections 2.1–2.4),

such decrease could be due to a shift of the EC ↔ EU equilibrium

toward the less coupled EU, induced by E2 binding to the enzyme.

Interestingly, the mitochondrial ATP synthase has also been

reported to be a target for several phytoestrogens, such as

quercetin, resveratrol, curcumin (Zheng and Ramirez, 2000),

for the anorexigenic peptides enterostatin (Berger et al., 2002;

Lindqvist et al., 2008) and Angt_Human [448–462] (Sasaki et al.,

2022), as well as for the anti-apoptotic peptide Bcl-xL, whose

binding to the β-subunit was reported to decrease an ATP-

dependent ion leak within the ATP synthase (Alavian et al.,

2011).

The phytotoxin tentoxin showed also an interesting behavior,

reminiscent of that of sulfite. At low concentrations, it was

reported to increase the affinity of the non-hydrolyzable ATP

analog AMPPNP for the high-affinity nucleotide-binding site

(Selman and Selman-Reimer, 1979), thus blocking the enzyme,

but then favoring the EU conformation at higher concentrations.

Consistently, higher tentoxin concentrations reactivated

hydrolysis and rotation (Meiss et al., 2008), and at a lower

H+/ATP ratio (Sigalat et al., 1995).

3 Nucleotide-induced changes in the
ATP synthase conformation under
unisite conditions

When the ratio between substrates and ATP synthase is less

than one, catalysis has been shown to occur at the high-affinity

site, both in synthesis and hydrolysis direction—the so-called

“unisite” catalysis, which is several orders of magnitude slower

than multisite steady-state catalysis (Penefsky and Cross, 1991).

Though unisite catalysis has often been considered a step

cooperatively integrated to each turnover of the multisite

catalysis, it has also been shown to take place in the absence

of rotation (García and Capaldi, 1998), a result in agreement with

those of Bullough et al. (1987), and with a recent cryo-EM study,

which indicates that unisite catalysis is an initial reaction that is

distinguished from steady-state rotary catalysis (Nakano et al.,

2022). In addition, Sakaki et al. (2005) measured the same

rotation rates from mM down to nM ATP concentrations,

without detecting any transition from multisite to unisite rates.

In (Turina and Capaldi, 1994), the kinetics of unisite catalysis

was found to match the kinetics of the emission changes of a

fluorescent probe, attached to a site-directed cysteine in the γ-

subunit as a reporter of conformational changes. The kinetics

analysis indicated at least two conformations, one of which

induced by ATP binding to the high-affinity catalytic site, the

other one induced by the ensuing ADP still bound at the same

site after hydrolysis.

Based on the above results, the unisite catalysis can be

hypothesized to constitute a “priming” reaction, which sets

the stage for the subsequent rotary catalysis. Such a priming

reaction at the high affinity site would generate either an ATP-

bound or an ADP-bound conformation. Those two

conformations may be taken to coincide with EU and EC,

respectively, since they are similarly induced by the ATP or

ADP occupancy of the high-affinity site.

Cryo-EM studies in the presence or absence of multisite

nucleotides (Sobti et al., 2019, 2020) showed that, after exposure

to ATP, the E. coli enzyme adopts a different conformation, with

a catalytic subunit (βDP) changing from open to closed, and the ε-

subunit C-terminal domain (εCTD) converting from the “up” to

the “down” state. Conversely, exposure to ADP induced only a

partial closure of the βDP subunit, and maintained the εCTD “up”

state. Interestingly, in crosslinking studies, an “up” conformation

of the bacterial enzyme was reported to retain synthesis but to be

inhibited in hydrolysis, while the “down” conformation retained

both (Tsunoda et al., 2001; Suzuki et al., 2003). The transition

between the two forms was determined by the H+-gradient and

by the ATP/ADP ratio (Suzuki et al., 2003). Though the εCTD-

less enzyme retained the nucleotide-dependent uncoupling

(D’Alessandro et al., 2017), suggesting that the εCTD is not

the primary motor of the EC ↔ EU change, such two largely

different εCTD states imply two largely different ATP synthase

conformations even in the εCTD-less enzyme.

4 Leak, slip, or lower H+/ATP
stoichiometry?

The lower H+/ATP coupling ratio of EU could be due to a leak

(a passive H+ channel), to more frequent slippage (a stochastic

“deviation” from the usual coupled reaction pathway), or to a

different coupling mechanism, featuring a lower H+/ATP

stoichiometry—or to a combination of the three. Leak or

higher slippage would mean that energy dissipation within EU
is significantly higher than energy dissipation within EC. Possibly,

only the case of a lower H+/ATP stoichiometry, which does not

necessarily involve a higher energy dissipation in EU, could

succeed in explaining the mystery of ATP-Pi exchange
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(Section 2.3). A variable H+/ATP stoichiometry, on top of a

slippage, has been reported in V-ATPases, which was able to

explain the very steep H+-gradient found in the vacuoles of lemon

fruit (Müller and Taiz, 2002). Future experimental work might

confirm the V-ATPase result and eventually find similar evidence

in the ATP synthase as well.

5 Conclusion

In the present work, some functional evidence is reviewed,

indicating that the ATP synthase might adopt two different

conformations, characterized by different H+/ATP coupling

ratios, and that the ATP or ADP occupancy of its high-

affinity catalytic site may be the key for the conformational

switch (Section 2). In addition, structural evidence is

reviewed, which supports the existence of two largely different

conformations, according to the ATP or ADP occupancy of the

high-affinity catalytic site (Section 3). Future work may confirm

or not the idea that those two ATP synthase conformations

differently couple nucleotide synthesis/hydrolysis with H+-

translocation through FO. Should such modulation by the

ATP/ADP ratio of the coupling degree between the two main

energy currencies in the cell—ATP and the transmembrane H+-

gradient—be confirmed, it would open yet another new

perspective on the subtlety and elegance of both ATP

synthase and of metabolism regulation.
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