
22 November 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Lodi A., Tanneau M., Vielma J.-P. (2022). Disjunctive cuts in Mixed-Integer Conic Optimization.
MATHEMATICAL PROGRAMMING, 199(1-2), 671-719 [10.1007/s10107-022-01844-1].

Published Version:

Disjunctive cuts in Mixed-Integer Conic Optimization

Published:
DOI: http://doi.org/10.1007/s10107-022-01844-1

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/905151 since: 2024-03-01

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1007/s10107-022-01844-1
https://hdl.handle.net/11585/905151

Noname manuscript No.
(will be inserted by the editor)

Disjunctive cuts in Mixed-Integer Conic Optimization

Andrea Lodi · Mathieu Tanneau ·
Juan-Pablo Vielma

the date of receipt and acceptance should be inserted later

Abstract This paper studies disjunctive cutting planes in Mixed-Integer Conic
Programming. Building on conic duality, we formulate a cut-generating conic
program for separating disjunctive cuts, and investigate the impact of the nor-
malization condition on its resolution. In particular, we show that a careful
selection of normalization guarantees its solvability and conic strong duality.
Then, we highlight the shortcomings of separating conic-infeasible points in
an outer-approximation context, and propose conic extensions to the classical
lifting and monoidal strengthening procedures. Finally, we assess the compu-
tational behavior of various normalization conditions in terms of gap closed,
computing time and cut sparsity. In the process, we show that our approach is
competitive with the internal lift-and-project cuts of a state-of-the-art solver.

Keywords Mixed-Integer Convex Optimization · Disjunctive Cutting
Planes · Conic Optimization.

1 Introduction

Mixed-Integer Convex Optimization (MI-CONV) is a fundamental class of
Mixed-Integer Non-Linear Optimization problems with applications such as
risk management, non-linear physics (e.g., power systems and chemical en-
gineering) and logistics, just to mention a few. Because of such a relevance,
classical algorithms for Mixed-Integer Linear Optimization (MILP) have been
successfully extended to MI-CONV, like Branch and Bound [14] or Benders
decomposition [26]; others like the Outer Approximation scheme [22] have
been designed specifically for MI-CONV. In addition, several software tools

A. Lodi · M. Tanneau
CERC, Polytechnique Montréal - Canada Excellence Research Chair,
C.P. 6079, Succ. Centre-ville, Montral, H3C 3A7 QC, Canada

J.P. Vielma
MIT Sloan School of Management, Cambridge, MA

2 Andrea Lodi et al.

are available for solving general MI-CONV problems, see, e.g., the recent
comparison in [35]. Finally, some specific classes of MI-CONV problems, like
Mixed-Integer (Convex) Quadratically Constrained Quadratic Optimization
(MIQCQP) problems are now supported by the major commercial solvers.

Conic optimization is viewed as a more numerically stable and tractable
alternative to general convex optimization [11]. Both classes are equivalent:
conic optimization problems are convex, and any convex optimization prob-
lem can be written as a conic optimization problem [34]. Modeling tools such
as disciplined convex optimization [27] can provide conic formulations for most
–if not all– convex optimization problems that arise in practice [44]. In par-
ticular, [39] recently showed that all convex instances in MINLPLib can be
formulated as Mixed-Integer Conic Optimization (MI-CONIC) problems us-
ing only a handful of cones.

Nevertheless, the intrinsic difference between convex and conic optimiza-
tion lies in a problem’s algebraic description: in the former, constraints are
formulated as f(x) ≤ 0, where f is a convex function, whereas, in the latter,
they are expressed using conic inequalities of the form Ax− b ∈ K, where A is
a matrix, b is a vector and K is a cone (see [11] and Section 2). In particular,
conic formulations enable the use of conic duality theory, which underlies a
number of theoretical insights and practical tools. Major commercial solvers
have supported Mixed-Integer Second Order Cone Programming (MISOCP)
for some time, and more general MI-CONIC problems are now supported by
a number of solvers, e.g., Mosek and Pajarito [19,38,39].

This paper builds on two specific aspects that we consider fundamental for
solving MI-CONV problems. First, given that cutting planes are instrumental
to solving MILP, a number of authors have looked at various approaches to
compute cuts for MI-CONV problems and, nowadays, linear cutting planes are
part of the arsenal of some MI-CONV solvers. Despite this (partial) success,
some fundamental questions in this area are left unanswered. Second, recent
experience has shown that conic formulations of MI-CONV problems display
enviable properties that make them preferable, from the solving viewpoint, to
generic MI-CONV formulations [39,19].

In that context, motivated by the success of disjunctive cuts in MILP,
the paper focuses on computational aspects of disjunctive cuts for MI-CONIC
problems. In addition, we answer the (somehow) natural question of what
one can gain in terms of cutting planes by using a problem’s conic structure,
as well as several questions left open by previous works on the topic. In the
remainder of this section, we review the literature on the subject and outline
our main contributions.

1.1 Disjunctive cuts: the MILP case

Disjunctive cuts in MILP date back to Balas’ seminal work on disjunctive
programming [4] in the 70s, and became widely popular as their integration
into branch-and-cut frameworks [5,6] proved effective. Remarkably, disjunctive

Disjunctive cuts in Mixed-Integer Conic Optimization 3

cuts, split cuts in particular, encompass several classes of cutting planes, e.g.,
Chvatal-Gomory, Gomory Mixed-Integer and Mixed-Integer Rounding cuts.

A general approach for separating disjunctive cuts in MILP is the so-
called Cut-Generating Linear Program (CGLP) proposed by Balas [4,5]. The
CGLP leverages a characterization of valid inequalities for disjunctive sets
using Farkas multipliers, see Theorem 3.1 in [4]. Thus, it is formulated in a
higher-dimensional space, whose size is proportional to the number of dis-
junctive terms: for split cuts, which are two-term disjunctions, the CGLP is
roughly double the size of the original problem.

Computational aspects of the CGLP have been studied extensively, some
of which we mention here. Given a fractional point x̄ to separate, one can
project the CGLP onto the support of x̄, thereby reducing its size, and re-
cover a valid cut by lifting [5,6]. Split cuts obtained from solving the CGLP
can be improved upon using monoidal strengthening [7,6]. The normalization
condition in the CGLP has been shown to have a major impact on the quality
of the obtained cuts, and on overall performance [23,13,16,47,20]. In partic-
ular, Balas and Perregard [9], and later Bonami [13], show that, in the case
of split disjunctions, the CGLP can in fact be solved in the space of original
variables only, yielding substantial computational gains. Recent developments
include the efficient separation of cuts from multiple disjunctions [45,30].

1.2 Disjunctive cuts: the MI-CONV case

The work on disjunctive cutting planes for MI-CONV (re)started already in
the late 90s with two fundamental contributions [17,48]. More precisely, Ce-
ria and Soares [17] show that disjunctive convex problems can be formulated
as a single convex problem in a higher dimensional space, and hint that this
could serve to generate cutting planes using sub-gradient information at the
optimum. Around the same time, Stubbs and Mehrotra [48] make the separa-
tion of disjunctive cuts for MI-CONV explicit by (i) solving one Non-Linear
Programming (NLP) problem, and (ii) identifying a sub-gradient that yields a
violated cut. The latter is done by taking a gradient (under regularity assump-
tions), or by solving a linear system (under the assumption that the objective
function of the former problem is polyhedral). Those assumptions and the use
of perspective functions lead to differentiability issues that made the results of
the computational investigation in [48] numerically disappointing (according
to the authors themselves).

The numerical difficulties encountered in [48] have slowed down the devel-
opment of the area for a number of years –with the exception of [52]– until
the renewed interest and the practical approaches of the last decade [12,31].
More precisely, Kilinc et al. [31] note that “A simple strategy for generating
lift-and-project cuts for a MINLP problem is to solve a CGLP [...] based on
a given polyhedral outer approximation of the relaxed feasible region [...]. The
key question to be answered [...] is which points to use to define the polyhedral
relaxation.” (from [31], Sec. 3).

4 Andrea Lodi et al.

The distinction in how to answer the above question is the difference
between [52], [12], and [31]. Namely, Zhu and Kuno [52] build an outer-
approximation through the current fractional solution, and derive a cut by
solving the associated CGLP. However, this approach is not guaranteed to
find a violated cut if one exists, see Example 1 in [31]. Bonami [12] solves
one auxiliary NLP, and uses the solution to get an outer approximation that
provably yields a violated cut if any exists. Instead, Kilinc et al. [31] iteratively
refine an outer approximation by solving a sequence of LPs until a violated
cut, if any, is separated by solving the associated CGLP.

In a recent paper, Kronqvist and Misener [36] present a disjunctive-based
cut-strengthening technique for MI-CONV. Given an initial valid inequality,
and an “exclusive” selection constraint (i.e., x1 + ... + xk = 1, x ∈ {0, 1}k),
the procedure solves k convex problems to tighten the cut’s right-hand side
and the coefficients of the k binary variables. This approach relates to the
generalized disjunctive programming framework [49], for which cutting-plane
algorithms based on [48] have been proposed, see, e.g., [50].

The outer approximation approaches in [12,31] are, to the best of our
knowledge, the state of the art for the implementation of disjunctive cuts
for MI-CONV and, especially, for MIQCQPs, see e.g., their implementation in
CPLEX starting from version 12.6.2. However, despite the impressive practical
improvements with respect to the early attempts [48], questions were left on
the table, which we answer in the present paper.

1.3 Disjunctive cuts: the MI-CONIC case

Following the support of MISOCP problems by major commercial solvers in
the 2000s (MISOCP support appeared in CPLEX 9.0 and in Gurobi 5.0), the
last decade has seen a flourishing literature on cuts for MI-CONIC problems.

A large share of these works focus on cuts for MISOCP, or, equivalently,
for convex MIQCQP problems. Atamturk and Narayanan [2] introduce conic
Mixed-Integer Rounding (MIR) cuts for MISOCP problems. Modaresi et al
later show in [41,40] that conic MIR cuts are in fact linear split cuts in an
extended space, and compare the strength of families of conic MIR cuts to
that of non-linear split cuts. In a related work, Andersen and Jensen [1] study
intersection cuts in the MISOCP context, and obtain a closed-form formula for
the conic quadratic intersection cut. Belotti et al. [10] study the intersection
of a convex set and a two-term disjunction. They show that the convex hull is
described by a single conic inequality, for which an explicit formula is derived
in the conic quadratic case. In a similar fashion, two-term disjunctions on the
second-order cone are investigated in [33], and this approach is later extended
in [51].

More general approaches, i.e., not restricted to convex quadratic constraints,
include [18,3,21,34,42]. In [18], the authors study classes of cutting planes in
the MI-CONIC setting, including Chvatal-Gomory cuts and lift-and-project
cuts, and report limited experiments on mixed 0-1 semi-definite programming

Disjunctive cuts in Mixed-Integer Conic Optimization 5

instances. A generic lifting procedure for conic cuts is described in [3]. Dadush
et al. [21] show that the split closure of a strictly convex body is defined by a
finite number of disjunction, but is not necessarily polyhedral. Minimal valid
inequalities are introduced in [34], and are shown to be sufficient to describe the
convex hull of a disjunctive conic set. The lack of tractable algebraic represen-
tation for minimal inequalities then leads the author to consider the broader
class of sublinear inequalities, which are further studied in [32]. Finally, in-
tersection cuts for non-polyhedral sets and certain classes of disjunctions are
studied in [42].

Nevertheless, for the most part, these works remain theoretical contribu-
tions. Indeed, with the exception of [18,2,40], no computational results were
reported for any of these techniques and, to the best of our knowledge, none has
been implemented in optimization solvers. In fact, neither Mosek nor Gurobi1

generate cuts from non-linear information.

1.4 Contribution and outline

In this paper, we study linear disjunctive cutting planes for MI-CONIC prob-
lems. Our objective is to derive practical and numerically robust tools for
the separation of those cuts, and we show that conic formulations allow us
to achieve it. Specifically, we do so by extending Balas’ CGLP into a Cut-
Generating Conic Program (CGCP) (see also [18]). Our contributions are:

1. We study the role of the normalization condition in the CGCP, and propose
conic normalizations that guarantee strong duality. In doing so, we answer
some concerns that were raised in previous works. Namely,
– With respect to [12,18,36], we can select the right normalization to

overcome issues associated with potential lack of constraint qualifica-
tion.

– With respect to [31,36], since we use conic formulations, we do not need
(i) to pay attention at avoiding generating linearization cuts at points
outside the domain where the non-linear functions are known to be con-
vex, (ii) to deal with non-differentiable functions, and (iii) boundedness
assumptions on the value of the constraints and their gradients.

2. We draw attention to some limitations of separating conic-infeasible points
in an outer-approximation context, and propose algorithmic strategies to
alleviate them.

3. We introduce conic extensions of the lifting procedure for disjunctive cuts,
and of monoidal strengthening for split cuts.

4. We provide computational results on the effectiveness of the proposed ap-
proach, thereby showing the benefits of the conic representation, and com-
pare the practical effectiveness of several normalization conditions.

5. We make our implementation available2 under an open-source license.

1 Personal communication with Gurobi and Mosek developers.
2 Our code is released at https://github.com/mtanneau/CLaP

6 Andrea Lodi et al.

The remainder of the paper is structured as follows. In Section 2, we intro-
duce some required notation and background material on conic optimization,
and state a number of theoretical results on the characterization of valid in-
equalities for conic and disjunctive conic sets. Section 3 formalizes the CGCP
and its dual, and the theoretical properties of several normalization conditions
for the CGCP are discussed in Section 4. The separation of conic-infeasible
points is further investigated in Section 5, while classical lifting and strength-
ening techniques from MILP are extended to the conic setting in Section 6. In
Section 7, we analyze the practical behavior of different normalizations, and
show that our approach is competitive with CPLEX internal lift-and-project
cuts. Some concluding remarks are presented in Section 8.

2 Background

In this section, we introduce some notations, and recall a number of results
that are needed for our approach. We refer to [46] for a thorough overview
of convex analysis, and to [11] and [4] for results on conic optimization and
disjunctive programming, respectively.

For X ⊆ Rn, we denote by int(X), ∂(X), cl(X), and conv(X) the interior,
boundary, closure, and convex hull of X , respectively. The Minkowski sum of
X ,Y ⊆ Rn is defined by

X + Y = {x+ y | x ∈ X , y ∈ Y} .

If ‖ · ‖ is a norm on Rn, its dual norm ‖ · ‖∗ is defined by

∀y ∈ Rn, ‖y‖∗ = sup
{
yTx

∣∣ ‖x‖ ≤ 1
}
. (1)

In all that follows, ‖ ·‖2 denotes the Euclidean norm on Rn. Finally, we denote
by e a vector of all ones, and by ej a vector whose jth coordinate is 1 and all
others are 0; the dimension of e and ej is always obvious from context.

2.1 Cones and conic duality

The set K ⊆ Rn is a cone if ∀(x, λ) ∈ K×R+, λx ∈ K, and it is irreducible if
it cannot be written as a cartesian product of cones. The dual cone of K ⊆ Rn
is

K∗ =
{
u ∈ Rn

∣∣ uTx ≥ 0,∀x ∈ K
}
, (2)

and K is self-dual if K = K∗. A cone K ⊆ Rn is pointed if K ∩ (−K) = {0},
i.e., if it does not contain a line that passes through the origin. Proper cones
are closed, convex, pointed cones with non-empty interior. If K is a proper
cone, then K∗ is also a proper cone, and any ρ ∈ intK induces a norm on K∗,
denoted by |·|ρ and defined by

|u|ρ = ρTu, ∀u ∈ K∗. (3)

Disjunctive cuts in Mixed-Integer Conic Optimization 7

Examples of proper cones include the non-negative orthant

Rn+ = {x ∈ Rn | x ≥ 0} ,

the second-order cone (SOC)

Ln =

{
x ∈ Rn

∣∣∣∣ x1 ≥
√
x2

2 + ...+ x2
n

}
,

the positive semi-definite (PSD) cone

Sn+ =
{
X ∈ Rn×n

∣∣ X = XT , λmin(X) ≥ 0
}
,

where λmin(X) is the smallest eigenvalue of X, and the exponential cone

E = cl
{

(x, y, z) ∈ R3
∣∣ x exp(x/y) ≤ z, y > 0

}
.

The non-negative orthant, SOC and SDP cone are also self-dual, while the
exponential cone is not.

A proper cone K induces a partial (resp. strict partial) ordering on Rn,
denoted �K (resp. �K) and defined by

∀(x, y) ∈ Rn × Rn, x �K y ⇔ x− y ∈ K, (4)

∀(x, y) ∈ Rn × Rn, x �K y ⇔ x− y ∈ int(K). (5)

In all that follows, we refer to Ax �K b (resp. Ax �K b) as a conic (resp. strict
conic) inequality. Consider the system

Ax �K b, (6)

where A ∈ Rm×n and K = K1 × ...×KN with Ki ⊂ Rmi ; correspondingly, for
y ∈ Rm, we write y = (y1, ..., yN). We follow the terminology of [25], and say
that system (6) is feasible if there exists x ∈ Rn such that Ax − b ∈ K, and
strongly feasible if there exists x ∈ Rn such that Ax− b ∈ K and (Ax− b)i ∈
int(Ki) for all non-polyhedral cones Ki, i.e., such that all non-polyhedral conic
inequalities are strictly satisfied. Similarly, system (6) is infeasible if it does not
admit any feasible solution, and strongly infeasible if, in addition, there exists
y ∈ K∗ such that AT y = 0 and bT y > 0. Furthermore, we say that system (6)
is weakly feasible if it is feasible but not strongly feasible, and weakly infeasible
if it is infeasible but not strongly infeasible. Finally, a system is well-posed if
it is either strongly feasible or strongly infeasible, and ill-posed otherwise.

Let us emphasize that well-posedness is an algebraic property, i.e., it is not
associated to a geometric set but to its algebraic representation through conic
inequalities. For instance, for n ≥ 3, both 0 �Rn+ x �Rn+ 0 and 0 �Ln x �Ln 0

describe the same set {0}, however, the former is well-posed and the latter is
not. Nevertheless, for brevity, we will refer to the well-posedness of a set X ,
only if there no ambiguity in its description with conic inequalities.

8 Andrea Lodi et al.

A conic optimization problem writes, in standard form,

(P) min
x

cTx (7a)

s.t. Ax = b, (7b)

x ∈ K, (7c)

where A ∈ Rm×n, b ∈ Rm, and K is a cone. The strong/weak (in)feasibility
and well-posedness of (P) refers to that of the system (Ax = b, x ∈ K). The
optimal value of (P) is opt(P) = inf

{
cTx

∣∣ Ax = b, x ∈ K
}

, and we say that
(P) is bounded if opt(P) ∈ R and solvable if, in addition, there exists a feasible
solution x∗ such that cTx∗ = opt(P). The dual of (P) is

(D) max
y,s

bT y (8a)

s.t. AT y + s = c, (8b)

s ∈ K∗, (8c)

and opt(D) = sup
{
bT y

∣∣ AT y + s = c, s ∈ K∗
}

. In particular, (D) is also a
conic optimization problem.

Theorem 1 (Conic duality theorem)

1. [Weak duality] opt(D) ≤ opt(P).

2. [Strong duality] If (P) (resp. (D)) is strongly feasible and bounded, then
(D) (resp. (P)) is solvable and opt(P) = opt(D).
If both (P) and (D) are strongly feasible, then both are solvable with same
optimal value.

Proof See Theorem 1.4.4 in [11]. ut

Conic duality extends the classical duality for linear programming, albeit
with a number of edge cases that lead to practical difficulties. For instance,
there may exist a positive duality gap even though both (P) and (D) are
solvable, as illustrated in Example 1.

Example 1 (Example 8.6, [44]) Consider the primal-dual pair

(P) min
x1,x2,x3

x3 (D) max
y1,y2

− y2

s.t. x2 ≥ x1, s.t. (y1,−y1, 1− y2) ∈ L3,

x3 ≥ −1, y1, y2 ≥ 0.

(x1, x2, x3) ∈ L3,

Primal-feasible solutions are of the form (x1, x1, 0), while dual-feasible solu-
tions are of the form (y1, 1). Thus, opt(P) = 0 and opt(D) = −1 < opt(P).

Disjunctive cuts in Mixed-Integer Conic Optimization 9

2.2 Valid inequalities

For (α, β) ∈ Rn × R, we say that αTx ≥ β is a valid inequality for X ⊆ Rn if

X ⊆
{
x ∈ Rn

∣∣ αTx ≥ β} ,
and a supporting hyperplane if, in addition, ∃ x̃ ∈ cl convX : αT x̃ = β. The
set of valid inequalities for X is denoted by X#, i.e.,

X# =
{

(α, β) ∈ Rn×R
∣∣ ∀x ∈ X , αTx ≥ β} . (9)

Note that X# is a closed, convex set, and that{
x ∈ Rn

∣∣ ∀(α, β) ∈ X#, αTx ≥ β
}

= cl conv(X). (10)

Furthermore, for X ,Y ⊆ Rn, we have

X ⊆ Y ⇒ Y# ⊆ X#,

(X ∪ Y)# = X# ∩ Y#.

We now focus on the case where X is described by conic inequalities, and
seek an algebraic description of X# using a finite number of conic inequal-
ities. Note that, although X# is described by an infinite number of linear
inequalities, as per Equation (9), this semi-infinite representation is not com-
putationally effective.

Theorem 2 (Conic theorem on alternatives) Consider the conic system

Ax �K b, (11)

where A ∈ Rm×n has full column rank and K is a proper cone.

1. If there exists y ∈ Rm such that

AT y = 0, bT y > 0, y ∈ K∗, (12)

then (11) has no solution.
2. If (12) has no solution, then (11) is almost solvable, i.e., for any ε > 0,

there exists b̃ ∈ Rm such that ‖b − b̃‖2 < ε and the system Ax �K b̃ is
solvable.

3. (12) is solvable if and only if (11) is not almost solvable.

Proof See Proposition 1.4.2 in [11]. ut

Theorem 3 (Valid inequalities) Let C = {x | Ax �K b} with A of full
column rank, and define

F =
{

(α, β)
∣∣ ∃u ∈ K∗ : α = ATu, β ≤ bTu

}
.

Then, clF ⊆ C# and, in addition,

1. if C 6= ∅, then clF = C#;

10 Andrea Lodi et al.

2. if C is well-posed, then F = C#.

Proof The inclusion F ⊆ C# is immediate from the definition of K∗, and it
follows that cl(F) ⊆ cl(C#) = C#. Case 2 is a direct consequence of conic
strong duality.

We now prove 1. Assume C 6= ∅, let (α, β) ∈ C#, and consider the systems

ATu = α, bTu ≥ β, u ∈ K∗; (13)

Ax �K tb, αTx < tβ, t ≥ 0. (14)

By Theorem 2, either (13) is almost solvable, or (14) is solvable. Let us prove
that the latter does not hold.

Let (x, t) be a solution to (14). On the one hand, if t > 0, letting x̄ = t−1x,
we have Ax̄ �K b, i.e., x̄ ∈ C, but αT x̄ < β, which contradicts (α, β) ∈ C#.
On the other hand, if t = 0, then we have Ax �K 0 and αTx < 0. Thus, for
x0 ∈ C and τ ≥ 0, we have

A(x0 + τx) �K b,

i.e., (x0 + τx) ∈ C. Furthermore, we have αT (x0 + τx) < β for large enough τ ,
which also contradicts (α, β) ∈ C#. Therefore, (14) is not solvable and (13) is
almost solvable.

Thus, for any ε > 0, there exists αε, βε and uε ∈ K∗ such that and

‖α− αε‖2 ≤ ε, ‖β − βε‖2 ≤ ε,

and

αε = ATuε, βε ≤ bTuε,

i.e., (αε, βε) ∈ F . Taking ε→ 0, we obtain that (α, β) ∈ clF . ut

We will refer to the multiplier u ∈ K∗ in Theorem 3 as a (conic) Farkas
multiplier, and we say that αTx ≥ β is obtained by Farkas aggregation if
α = ATu and β ≤ bTu for some u ∈ K∗.

Theorem 3 highlights a fundamental difference between the linear and non-
linear settings. In the linear case, F is polyhedral, thus, it is always closed and,
if C is non-empty, then all valid inequalities for C can be obtained by Farkas
aggregation. In the conic setting, however, this property may no longer hold,
i.e., there may exist valid inequalities that cannot be represented through
Farkas aggregation.

Example 2 Let C = {x | Ax �K 0} where

A =

1 0
0 1
1 0

 , K = L3,

Disjunctive cuts in Mixed-Integer Conic Optimization 11

i.e., C =
{

(x, y) ∈ R2
∣∣ (x, y, x) ∈ L3

}
. While A has full column rank and K is

proper, the system Ax �K 0 is not well-posed. It then is easy to verify that
C = {(x, 0) | x ≥ 0}, and that y ≥ 0 is a valid inequality for C.

However, for any u ∈ K∗ = L3, we have

ATu =

(
u1 + u3

u2

)
,

and u1 + u3 > 0 unless u2 = 0. Therefore, the system ATu = (0, 1), u ∈ K∗
has no solution, i.e., the valid inequality y ≥ 0 cannot be obtained by Farkas
aggregation.

Nevertheless, for t ≥ 0, let ut = (
√
t2 + 1,−t, 1), which yields the valid

inequality (
√
t2 + 1 − t)x + y ≥ 0. Then, as t → +∞, the term (

√
t2 + 1 − t)

becomes negligible and the inequality becomes, in the limit, y ≥ 0.

2.3 Disjunctive inequalities

We now consider disjunctive conic sets, i.e., sets of the form

D =

{
x ∈ Rn

∣∣∣∣∣
H∨
h=1

Dhx �Qh dh

}
(15)

=

H⋃
h=1

{x ∈ Rn | Dhx �Qh dh} , (16)

where H ∈ Z+ and, ∀h, Dh ∈ Rmh×n and Qh is a proper cone. We refer to
convD as the disjunctive hull and, for (α, β) ∈ D#, we say that αTx ≥ β is a
disjunctive inequality.

We focus on disjunctive conic sets and, again, we seek a tractable algebraic
characterization of valid inequalities for such sets. We begin by stating an
extension to the conic setting of Balas’ representation of the convex hull of a
union of polyhedra [4].

Theorem 4 (Characterization of the convex hull) Let

D =

H⋃
h=1

{x ∈ Rn | Dhx �Qh dh}︸ ︷︷ ︸
Dh

,

where, ∀h, Dh ∈ Rmh×n and Qh is a proper cone, and let

S =

x ∈ Rn

∣∣∣∣∣∣∣∣∣∣
∃(y1, ..., yH , z1, ..., zH) :

∑
h yh = x,

Dhyh �Qh zhdh, ∀h,
zh ≥ 0, ∀h,∑
h zh = 1, ∀h,

yh ∈ Rn, ∀h

 .

Then conv(D) ⊆ S and, in addition,

12 Andrea Lodi et al.

1. if ∀h,Dh 6= ∅, then S ⊆ cl conv(D);
2. if ∀h,Dh = Xh + W , where X1, ...,XH are non-empty, closed, bounded,

convex sets and W is a closed convex set, then

conv(D) = S = cl conv(D).

Proof See Proposition 3.3.5 in [11]. ut

Next, building on Farkas multipliers and the result of Theorem 3, we can
extend Balas’ characterization of valid disjunctive inequalities (Theorem 3.1
in [4]) to the conic setting.

Theorem 5 (Disjunctive inequalities) Let

D =

H⋃
h=1

{x ∈ Rn | Dhx �Qh dh}︸ ︷︷ ︸
Dh

,

where, ∀h, Dh ∈ Rmh×n and Qh is a proper cone, and

F =

H⋂
h=1

{
(α, β) ∈ Rn × R

∣∣ ∃uh ∈ Q∗h : (α = ATuh, β ≤ bTuh)
}︸ ︷︷ ︸

Fh

.

Then, F ⊂ D# and, in addition,

1. if ∀h,Dh 6= ∅, then D# =
⋂
h clFh;

2. if ∀h,Dh is well-posed and Dh has full column rank, then F = D#.

Proof Immediate from Theorem 3 and the fact that D# =
⋂
hD

#
h . ut

Example 3 Let

D =
{

(x, y) ∈ R2
∣∣ (x, y, x) ∈ L3

}
∪
{

(x, y) ∈ R2
∣∣ (−x, y, x) ∈ L3

}
.

Thus, D = {(x, 0)|x ∈ R}, and valid inequalities for D are of the form ±y ≥
±β for β ≤ 0. Building on Example 2, it follows that F = {(0, 0)} × R−.
Therefore, only the trivial inequality 0 ≥ −1 can be represented using finite
Farkas multipliers for each disjunctive term.

3 Cut separation

We consider an MI-CONIC problem of the form

(MICP) min
x

cTx (17a)

s.t. Ax = b (17b)

x ∈ K, (17c)

x ∈ Zp × Rn−p, (17d)

Disjunctive cuts in Mixed-Integer Conic Optimization 13

where A ∈ Rm×n, p ≤ n, and K is a proper cone. The continuous relaxation
of (MICP), denoted by (CP), is given by (17a)-(17c). The feasible sets of
(MICP) and (CP) are denoted by X and by C, respectively.

Let x̄ ∈ Rn be a point to separate. Since x̄ is typically obtained from solving
a relaxation of (MICP), we will assume that Ax̄ = b, i.e., all linear equality
constraints are satisfied. In particular, we will not assume that x̄ is conic-
feasible, i.e., we may have x̄ /∈ K, for instance when an outer-approximation
algorithm is used.

Consider the disjunctive set

D =

H⋃
h=1

Dh =

H⋃
h=1

{
x

∣∣∣∣ Ax = b, x ∈ K
Dhx �Qh dh

}
, (18)

where each Qh is a proper cone, and D ⊇ X . Valid inequalities for D are
referred to as disjunctive inequalities or, equivalently, as disjunctive cuts. For
(α, β) ∈ D#, the inequality αTx ≥ β is trivial if (α, β) ∈ C#, and non-trivial
otherwise. Following the terminology of [19], K∗ cuts are trivial inequalities of
the form uTx ≥ 0 for u ∈ K∗. Finally, a cut is violated if αT x̄ < β.

It is always possible, e.g., through the use of facial reduction techniques
[25], to describe each Dh by a well-posed system of conic inequalities. In addi-
tion, one may assume, after manual inspection, that ∀h,Dh 6= ∅. However, in
a cutting-plane context, systematically performing such reductions and verifi-
cations can quickly become intractable. Therefore, unless stated otherwise, we
make no assumption regarding the feasibility nor well-posedness of individual
disjunctive terms; we will show in Section 4 how to address such shortcomings
in a systematic way.

3.1 Separation problem

Consider the cut-generating conic problem (CGCP)

(CGCP) min
α,β,u,λ,v

αT x̄− β (19a)

s.t. α = ATuh + λh +DT
h vh, ∀h, (19b)

β ≤ bTuh + dTh vh, ∀h, (19c)

(uh, λh, vh) ∈ Rm ×K∗ ×Q∗h, ∀h, (19d)

which naturally extends Balas’ CGLP to the conic setting, see also [18]. In
particular, it is a conic programming problem, which can be solved by, e.g.,
an interior-point algorithm.

First, it follows from Theorem 5 that, if (α, β, u, λ, v) is feasible for (19),
then αTx ≥ β is a disjunctive inequality. Under the stronger assumption of
Case 2. in Theorem 5, every disjunctive inequality corresponds to a feasible
solution of the CGCP. In the absence of such assumptions, however, the ex-
act characterization of D# stated in Theorem 5 may not hold. For instance,

14 Andrea Lodi et al.

there may exist disjunctive inequalities that do not correspond to any feasible
solution of the CGCP; as illustrated by Example 3, it may even be that all
feasible solutions of the CGCP correspond to trivial inequalities of the form
0 ≥ β for some β ≤ 0.

Second, the feasible set of the CGCP is an unbounded cone, which contains
the origin. Thus, the CGCP is either unbounded or bounded with objective
value zero. In the former case, any unbounded ray yields a violated cut, while
in the latter, no violated cut is obtained. Note that unbounded problems can
lead to numerical issues for some interior-point algorithms. Therefore, it is
common practice to add a normalization condition to the CGCP, whose role
is further investigated in Section 4.

Third, the CGCP is strongly feasible. Indeed, let ūh = 0, v̄h ∈ intQ∗h,∀h.
Then, since K∗ has non-empty interior, there exists ᾱ such that

ᾱ �K∗ DT
h v̄h,∀h.

Finally, letting λ̄h = ᾱ − DT
h v̄h ∈ intK∗ and β̄ ≤ dTh v̄h,∀h, it follows that

(ᾱ, β̄, ū, λ̄, x̄) is strongly feasible for the CGCP.
Fourth, let (α, β, u, λ, v) be a feasible solution of the CGCP, and let

α̃ = α−ATu0; β̃ = β − bTu0; ũh = uh − u0,∀h = 1, ...,H; λ̃ = λ; ṽ = v, (20)

where u0 ∈ Rm. It is immediate to see that (α̃, β̃, ũ, λ̃, ṽ) is also feasible for the
CGCP, with identical objective value since Ax̄ = b. Therefore, without loss of
generality, one of the uh can be arbitrarily set to zero in the formulation of
the CGCP, thereby reducing its size. Furthermore, since C ⊆ {x | Ax = b}, it
follows that

C ∩
{
x
∣∣ αTx ≥ β} = C ∩

{
x
∣∣∣ α̃Tx ≥ β̃} , (21)

i.e., the two inequalities are equivalent in the sense that both cut off the same
portion of the continuous relaxation.

3.2 Membership problem

The dual problem of the CGCP is the membership conic problem (MCP)

(MCP) max
y,z

0 (22a)

s.t.
∑
h

yh = x̄, (22b)∑
h

zh = 1, (22c)

Ayh = zhb, ∀h, (22d)

Dhyh �Qh zhdh, ∀h, (22e)

(yh, zh) ∈ K × R+, ∀h, (22f)

Disjunctive cuts in Mixed-Integer Conic Optimization 15

which extends Bonami’s membership LP [15] to the conic setting.
A geometrical interpretation of the MCP is provided by Theorem 4. If all

disjunctive terms are non-empty and have identical recession cones, then (22)
is feasible if and only if x̄ ∈ conv(D). In the general case, however, the exact
characterization of convD given by Theorem 4 may no longer hold, and we
can only state that, if x̄ ∈ convD, then the MCP is feasible.

By weak duality, if the MCP is feasible, then the objective value of the
CGCP is bounded below. If, in addition, the MCP is strongly feasible, then
both the MCP and the CGCP are solvable with identical objective values.

4 The roles of normalization

This section focuses on the roles of the normalization condition in the CGCP.
On the one hand, through the lens of conic duality for the CGCP-MCP pair,
we investigate the impact of the normalization on the solvability of CGCP. On
the other hand, by characterizing optimal solutions of the normalized CGCP,
we assess the theoretical properties of the corresponding cuts.

The following normalization conditions are considered:

(i) the α normalization: ‖α‖∗ ≤ 1,
(ii) the polar normalization: γTα ≤ 1,
(iii) the standard normalization:

∑
h |λh|ρ + |vh|σh ≤ 1,

(iv) the trivial normalization:
∑
h |vh|σh ≤ 1,

(v) the uniform normalization:
∑
h |λh|ρ ≤ 1,

where γ ∈ Rn, ρ ∈ intK and σh ∈ intQh. While the first four normalizations
can be found in the MILP literature in an appropriate form, see, e.g., [23,30],
to the best of our knowledge, the proposed uniform normalization has never
been studied, even in the linear setting.

Throughout this section, the strengths and shortcomings of each normal-
ization are illustrated in a simple setting, described in Example 4 below.

Example 4 For R > 0, consider the MICP

min
x

− x1 − x2 (23)

s.t. x0 = R, (24)

x ∈ L3, (25)

x1, x2 ∈ Z, (26)

and the split disjunction (x1 ≤ 0) ∨ (x1 ≥ 1). Thus, we have

D1 =
{
x ∈ R3

∣∣ x ∈ L3, x0 = R, x1 ≤ 0
}
,

D2 =
{
x ∈ R3

∣∣ x ∈ L3, x0 = R, x1 ≥ 1
}
.

We consider the following three cases:

(a) R > 1: D1 and D2 are both strongly feasible;

16 Andrea Lodi et al.

x̄

(a) R = 1.1

x̄

(b) R = 1.0

x̄

(c) R = 0.9

Fig. 1: The three settings from Example 4, projected onto the x0 = 1 space.
The domain of the continuous relaxation is in gray, the split hull in orange,
and the split disjunction is indicated in black.

(b) R = 1: D1 is strongly feasible and D2 is weakly feasible;
(c) R < 1: D1 is strongly feasible and D2 = ∅.

Each of these settings is illustrated in Figure 1. Finally, unless specified other-
wise, x̄ is the solution of the continuous relaxation, i.e., x̄ = (R, R√

2
, R√

2
). All

CGCPs are solved as conic problems using Mosek 9.2 with default parameters.

4.1 α normalization

A straightforward way of bounding the CGCP is to restrict the magnitude of
α. This approach was considered in previous work on MI-CONV [17,48,31],
wherein authors considered restricting the `1, `∞ or `2 norm of α.

For a given norm ‖·‖, the CGCP then writes

min
α,β,λ,u,v

αT x̄− β (27a)

s.t. α = ATuh + λh +DT
h vh, ∀h, (27b)

β ≤ bTuh + dTh vh, ∀h, (27c)

(uh, λh, vh) ∈ Rm ×K∗ ×Q∗h, ∀h, (27d)

‖α‖∗ ≤ 1, (27e)

Disjunctive cuts in Mixed-Integer Conic Optimization 17

x̄

(a)

x̄

(b)

x̄

(c)

Fig. 2: Split cuts (in red) obtained with the α normalization.

Table 1: CGCP statistics for Example 4 and α normalization

Iter ‖α‖ ‖u1‖ ‖u2‖ ‖λ1‖ ‖λ2‖ ‖v1‖ ‖v2‖

(a) 8 1.0 0.8 2.0 1.2 2.9 0.5 1.3
(b) 67∗ 1.0 0.7 10958.8 1.0 15498.0 0.7 10958.1
(c) 8 1.0 0.0 13.7 0.0 19.3 1.0 12.6

∗: slow progress

and the corresponding MCP, up to a change of sign in the objective value, is

min
x,y,z

‖x̄− x‖ (28a)

s.t.
∑
h

yh = x, (28b)∑
h

zh = 1, (28c)

Ayh = zhb, ∀h, (28d)

Dhyh �Qh zhdh, ∀h, (28e)

(yh, zh) ∈ K × R+, ∀h. (28f)

Geometrically, the CGCP (27) looks for a deepest cut, i.e., one that max-
imizes the distance from x̄ to the hyperplane αTx = β, as measured by ‖·‖.
Correspondingly, the MCP (28) computes a projection of x̄ onto the set de-
fined by (28b)-(28f), with respect to ‖·‖. It is trivially feasible if at least one
of the disjunctive terms is non-empty, which is always the case if X 6= ∅. This
ensures that the CGCP (27) is never unbounded. If, in addition, each disjunc-
tive term is strongly feasible, then the MCP (28) is strongly feasible and both
the MCP and the CGCP are solvable.

Split cuts obtained with the α normalization in the context of Example
4 are illustrated in Figure 2; these results are obtained with the (self-dual)
`2 norm in (27e). Furthermore, some statistics regarding the resolution of the
CGCP are reported in Table 1, namely: the number of interior-point iterations
(Iter), and the magnitude of α, u, λ, v in the obtained CGCP solution.

18 Andrea Lodi et al.

In Example 4(a), the MCP is strongly feasible, no numerical trouble is
encountered, and the obtained cut is a supporting hyperplane of the split
hull. On the other hand, numerical issues are encountered in Example 4(b).
Indeed, as reported in Table 1, Mosek terminates due to slow progress after 67
iterations, albeit with a feasible solution, for which the magnitude of u2, λ2, v2

is very large. The corresponding cut is displayed in Figure 2b. Finally, in
Example 4(c), although D2 = ∅, the CGCP is solved without issue, thereby
showing that it is not necessary for the MCP to be strongly feasible for the
CGCP to be solvable.

Example 4(b) illustrates the numerical challenges that may arise when the
MCP is not strongly feasible. Indeed, in that case, the deepest cut writes
x1 + x2 ≤ 1, up to a positive scaling factor. However, although x1 + x2 ≤ 1 is
a valid inequality for D2, it is straightforward to see that it cannot be repre-
sented using finite Farkas multipliers: this corresponds to case 1 in Theorem
3. Thus, the CGCP has no optimal solution, and there exists a (diverging)
sequence of feasible solutions whose objective value becomes arbitrary close
to opt(CGCP), corresponding to a sequence of valid inequalities that, in the
limit, become equivalent to x1 +x2 ≤ 1. Hence, the solver eventually runs into
slow progress while the magnitude of u2, λ2, v2 becomes large, as observed in
Table 1.

Interestingly, all cuts displayed in Figure 2 are supporting hyperplanes of
the split hull. A slightly more general result is stated in Theorem 6.

Theorem 6 Assume that the CGCP (27) and the MCP (28) are solvable,
and let (α, β, u, λ, v) and (x, y, z) be corresponding optimal solutions. Then,

αTx = β.

Proof Let δ be the optimal value of the CGCP, i.e., δ = αT x̄ − β. Since the
CGCP is strongly feasible and bounded, by Theorem 1, strong duality holds.
Thus, we have δ = −‖x̄ − x‖. The case δ = 0 is trivial, so we assume δ < 0
and, thus, x 6= x̄.

Let w = |δ|−1(x− x̄), i.e., x = x̄+ |δ|w and ‖w‖ = 1; in particular, we have
1 ≥ ‖α‖∗ ≥ αTw. It follows that

αTx− β = αT x̄+ |δ|αTw − β
= δ + |δ|αTw
= δ(1− αTw)

≤ 0.

Thus, αTx ≤ β.

Disjunctive cuts in Mixed-Integer Conic Optimization 19

Next, we have

αTx =
∑
h

αT yh

=
∑
h

uThAyh + λTh yh + vThDhyh

≥
∑
h

uTh (zhb) + vTh (zhdh)

≥
∑
h

zhβ

= β,

which concludes the proof. ut
Therefore, if all disjunctive terms are non-empty, then, by Theorem 4,

x ∈ cl convD, and the obtained inequality αTx ≥ β is indeed a supporting
hyperplane of the disjunctive hull.

4.2 Polar normalization

In the MILP setting, Balas and Perregard [45,8] first suggest normalizing the
CGLP with a single hyperplane of the form αT γ = 1. Doing so ensures that,
if the CGLP is feasible and bounded, then there exists an optimal solution
for which (α, β) is an extreme ray of (cl convD)

#
. This approach was then

followed in [16,47], and more recently in [20].
For γ ∈ Rn, the CGCP writes

min
α,β,u,v,λ

αT x̄− β (29a)

s.t. α = ATuh + λh +DT
h vh, ∀h, (29b)

β ≤ bTuh + dTh vh, ∀h, (29c)

(uh, λh, vh) ∈ Rm ×K∗ ×Q∗h, ∀h, (29d)

αT γ ≤ 1, (29e)

and the MCP is given by

min
y,z,η

η (30a)

s.t.
∑
h

yh = x̄+ ηγ, (30b)∑
h

zh = 1, (30c)

Ayh = zhb, ∀h, (30d)

Dhyh �Qh zhdh, ∀h, (30e)

(yh, zh) ∈ K × R+, ∀h, (30f)

η ≥ 0. (30g)

20 Andrea Lodi et al.

x̄

(a)

x̄

(b)

x̄

(c)

Fig. 3: Split cuts (in red) obtained with the polar normalization.

Table 2: CGCP statistics for Example 4 and polar normalization

Iter ‖α‖ ‖u1‖ ‖u2‖ ‖λ1‖ ‖λ2‖ ‖v1‖ ‖v2‖

(a) 8 1.2 0.0 1.1 1.1 2.7 0.5 1.2
(b) 66∗ 1.2 0.0 9912.6 1.0 14019.5 0.7 9912.6
(c) 8 1.6 0.0 20.5 0.0 28.9 1.6 18.8

∗: slow progress

It follows from Theorem 4 that, if there exists η ≥ 0 such that (x̄+ ηγ) ∈
convD, then the MCP (30) is feasible. This is always the case if γ = x∗ − x̄,
for some x∗ ∈ convD. If, in addition, each individual disjunction is strongly
feasible and x∗ is obtained as a convex combination of strongly feasible points,
then the MCP (30) is strongly feasible.

Split cuts obtained for Example 4 with the polar normalization are illus-
trated in Figure 3, and the corresponding CGCP statistics are reported in
Table 2. In each case, we set γ = x∗ − x̄, where x∗ = (R, 0, 0).

In all three cases, the obtained cut is identical to the one obtained with
the α normalization, although this is not the case in general. Furthermore, as
reported in Table 2, numerical issues are also encountered for Example 4(b),
for the same reasons as for the α normalization: the CGCP is not solvable,
and Mosek terminates with slow progress while the magnitude of u2, λ2, v2

diverges.
Similar to the α-normalization, if all disjunctive terms are non-empty, then

cuts obtained with the polar normalization are also supporting hyperplanes of
the disjunctive hull, as expressed by Theorem 7.

Theorem 7 Assume that the CGCP (29) and the MCP (30) are solvable,
and let (α, β, u, λ, v) and (η, y, z) be corresponding optimal solutions. Then,

αT (x̄+ ηγ) = β.

Proof By conic strong duality, we have αT x̄ − β = −η. If the optimal value
of the CGCP is 0, then the result is trivial. Similarly, if αT γ ≤ 0, then the
optimal value of the CGCP must be 0 and the result is trivial.

Disjunctive cuts in Mixed-Integer Conic Optimization 21

We now assume that αT γ > 0 and opt(CGCP) < 0. Since (α, β, u, λ, v) is
optimal for the CGCP, we must have αT γ = 1. Then,

αT x̄− β = −η
= −(αT γ)η,

i.e., αT (x̄+ ηγ) = β. ut

4.3 Standard normalization

One of the most common normalizations in the MILP setting is the so-called
standard normalization [4,9,23]. Here, we introduce its conic generalization∑

h

|λh|ρ + |vh|σh ≤ 1, (31)

where ρ ∈ intK and σh ∈ intQh. When all cones K,Q1, ...,QH are non-
negative orthants, (31) indeed generalizes both the standard normalization
for MILP and its Euclidean normalization variant [23], by setting ρ and σ
appropriately.

The CGCP then writes

min
α,β,u,v,λ

αT x̄− β (32a)

s.t. α = ATuh + λh +DT
h vh, ∀h, (32b)

β ≤ bTuh + dTh vh, ∀h, (32c)

(uh, λh, vh) ∈ Rm ×K∗ ×Q∗h, ∀h, (32d)∑
h

|λh|ρ + |vh|σh ≤ 1. (32e)

Note that (32e) consists of a single linear inequality in the λ, v space, and that
it explicitly bounds their magnitude.

Up to a change of sign in the objective value, the MCP is

min
y,z,η

η (33a)

s.t.
∑
h

yh = x̄, (33b)∑
h

zh = 1, (33c)

Ayh = zhb, ∀h, (33d)

Dhyh + ησh �Qh zhdh, ∀h, (33e)

(yh + ηρ, zh) ∈ K × R+, ∀h, (33f)

η ≥ 0. (33g)

22 Andrea Lodi et al.

x̄

(a)

x̄

(b)

x̄

(c)

Fig. 4: Split cuts (in red) obtained with the standard normalization.

The dual counterpart of the standard normalization corresponds to penalizing
the violation of the original conic constraints (22f) and (22e), through the
artificial slack variable η in (33f) and (33e). As shown in Theorem 8, this
ensures that the MCP is strongly feasible.

Theorem 8 The CGCP (32) and the MCP (33) are strongly feasible.

Proof It was shown in Section 3.1 that the un-normalized CGCP (19) admits
a strongly feasible solution. Scaling this point appropriately yields a strongly
feasible solution for the CGCP (32).

We now show that the MCP (33) is strongly feasible. Let yh = 1
H x̄ and

zh = 1
H , ∀h. Then, since K,Q1, ...,QH are proper cones and ρ ∈ intK, σh ∈

intQh, there exists ηh ≥ 0 and τh ≥ 0 such that

∀h, yh + ηhρ �K 0,

∀h, Dhyh + τhσh �Qh dh.

Letting η = max(η1, ..., ηH , τ1, ..., τH) then yields a strongly feasible point
(y, z, η), which concludes the proof. ut

A direct consequence of Theorem 8 is that both the CGCP (32) and the
MCP (33) are solvable, and that conic strong duality holds. Importantly, aside
from the assumption Ax̄ = b, this result does not depend on x̄, nor on the
well-posedness of individual disjunctions.

Split cuts obtained with the standard normalization are illustrated in Fig-
ure 4, and the corresponding CGCP statistics are reported in Table 3. On the
one hand, Table 3 illustrate the good numerical behavior of the CGCP (32),
a direct consequence of having enforced strong feasibility of the MCP. On the
other hand, the obtained cuts are not as strong as the ones obtained with
the α or polar normalizations. Indeed, in general, the cut obtained with the
standard normalization may not be a supported hyperplane of the disjunctive
hull.

Disjunctive cuts in Mixed-Integer Conic Optimization 23

Table 3: CGCP statistics for Example 4 and standard normalization

Iter ‖α‖ ‖u1‖ ‖u2‖ ‖λ1‖ ‖λ2‖ ‖v1‖ ‖v2‖

(a) 8 0.4 0.0 0.2 0.3 0.6 0.1 0.2
(b) 8 0.3 0.0 0.2 0.3 0.6 0.1 0.2
(c) 7 0.3 0.0 0.3 0.3 0.6 0.1 0.2

4.4 Trivial normalization

The trivial normalization is obtained by setting ρ = 0 in the standard normal-
ization. The separation problem then writes

min
α,β,u,v,λ

αT x̄− β (34a)

s.t. α = ATuh + λh +DT
h vh, ∀h, (34b)

β ≤ bTuh + dTh vh, ∀h, (34c)

(uh, λh, vh) ∈ Rm ×K∗ ×Q∗h, ∀h, (34d)∑
h

|vh|σh ≤ 1. (34e)

Note that, for a split disjunction (−πTx ≥ −π0)∨ (πTx ≥ π0 + 1) and σh = 1,
(34e) reduces to

v1 + v2 ≤ 1, (35)

which is the so-called trivial normalization [23] in the MILP setting. In partic-
ular, Gomory Mixed-Integer cuts correspond to optimal solutions of the CGLP
with trivial normalization.

Up to a change of sign in the objective value, the MCP writes

min
y,z,η

η (36a)

s.t.
∑
h

yh = x̄, (36b)∑
h

zh = 1, (36c)

Ayh = zhb, ∀h, (36d)

(yh, zh) ∈ K × R+, ∀h, (36e)

Dhyh + ησh �Qh zhdh, ∀h, (36f)

η ≥ 0. (36g)

Theorem 9 The MCP (36) is

1. strongly infeasible if and only if x̄ is infeasible for (CP);
2. strongly feasible if and only if x̄ is strongly feasible for (CP);
3. weakly feasible if and only if x̄ is weakly feasible for (CP).

24 Andrea Lodi et al.

Proof Since x̄ is either infeasible, strongly feasible or weakly feasible for (CP),
and that these are mutually exclusive alternatives, it suffices to prove that the
above conditions are sufficient; necessity follows immediately by contraposi-
tion. For simplicity, we assume that K is an irreducible, non-polyhedral cone.
The general case is treated similarly.

1. Assume x̄ /∈ C, i.e., x̄ /∈ K since we assumed that Ax̄ = b. Consequently,
there exists s ∈ K∗ such that sT x̄ < 0 and, since K is a proper cone, we can
assume without loss of generality that s ∈ intK∗. Thus, setting

(α, β) = (s, 0)

(uh, λh, vh) = (0, s, 0), ∀h,

yields a strongly feasible solution of the CGCP (34), which is also an un-
bounded ray. Therefore, the MCP is strongly infeasible.

2, 3. We first show that, if x̄ is feasible for (CP), then the MCP is feasible.
Let

ỹh = H−1x̄, ∀h,
z̃h = H−1, ∀h.

It is then immediate that Aỹh = z̃hb, ỹh ∈ K, and
∑
h z̃h = 1. Then, since

σh ∈ intQh, there exists ηh ≥ 0 such that

Dhyh + ηhσh �Qh zhdh.

Letting η̃ = maxh{ηh}, it follows that (ỹ, z̃, η̃) is feasible for the MCP.

If x̄ ∈ intK, then we also have ỹh ∈ intK, and thus (ỹ, z̃, η̃) is strongly
feasible for the MCP, which proves 2. Reciprocally, let (y, z, η) be a strongly
feasible solution of MCP. In particular, we have yh ∈ intK. Then,

x̄ =
∑
h

yh ∈ intK,

i.e., x̄ is strongly feasible for (CP), thereby proving 3. by contraposition. ut

Theorem 9 motivates the following remarks. First, case 1. typically arises in
the context of outer-approximation algorithms, wherein fractional points gen-
erally violate non-linear conic constraints. Then, the CGCP (34) is unbounded,
and the normalization (34e) imposes |vh|σh = 0,∀h in any unbounded ray, i.e.,
vh = 0 and the obtained cut is always a trivial inequality. Thus, the trivial nor-
malization is not suited for use within outer approximation-based algorithms.

Second, conic-infeasible points are not encountered in non-linear branch-
and-bound algorithms. However, solving (CP) yields a fractional point x̄ ∈ ∂C
that is weakly feasible, unless all non-linear conic constraints are inactive at
the optimum. Although the current fractional point x̄ may become strongly
feasible after several rounds of cuts, or deeper in the branch-and-bound tree,
our experience is that case 2. rarely occurs in practice.

Disjunctive cuts in Mixed-Integer Conic Optimization 25

x̄

(a)

x̄

(b)

x̄

(c)

Fig. 5: Split cuts (in red) obtained with the trivial normalization.

Table 4: CGCP statistics for Example 4 and trivial normalization

Iter ‖α‖ ‖u1‖ ‖u2‖ ‖λ1‖ ‖λ2‖ ‖v1‖ ‖v2‖

(a) 37∗ 6189.7 0.0 0.7 6189.6 6190.6 0.2 0.8
(b) 49∗ 6814.2 0.0 0.7 6814.0 6815.0 0.3 0.7
(c) 72∗ 6364.4 0.0 0.7 6364.2 6365.2 0.4 0.6

∗: slow progress

Third, case 3. corresponds to the setting of Example 4. Split cuts obtained
with the trivial normalization are displayed in Figure 5, and the corresponding
CGCP statistics are reported in Table 4. Remarkably, all three cuts appear
to be K∗ cuts, while numerical issues, namely, slow convergence, are system-
atically encountered. Here, the MCP (36) is weakly feasible and the CGCP
(34) is bounded but not solvable. Thus, there exists a diverging sequence of
close-to-optimal solution, thereby causing slow convergence. In addition, since
(34e) bounds the value of v1, v2, the iterates become equivalent to a K∗ cut as
the magnitude of λ increases, which explains the cuts obtained in Figure 5.

Note that the CGCP (34) may be solvable even though x̄ is weakly feasible.
However, our experience suggests that this rarely happens, and that most cases
are similar to Example 4, leading to numerical issues and weak cuts.

4.5 Uniform normalization

The uniform normalization is obtained by setting σh = 0 in the standard
normalization.

26 Andrea Lodi et al.

The CGCP then writes

min
α,β,u,v,λ

αT x̄− β (37a)

s.t. α = ATuh + λh +DT
h vh, ∀h, (37b)

β ≤ bTuh + dTh vh, ∀h, (37c)

(uh, λh, vh) ∈ Rm ×K∗ ×Q∗h, ∀h, (37d)∑
h

|λh|ρ ≤ 1, (37e)

and, up to a change of sign in the objective, the MCP is

min
y,z,η

η (38a)

s.t.
∑
h

yh = x̄, (38b)∑
h

zh = 1, (38c)

Ayh = zhb, ∀h, (38d)

(yh + ηρ, zh) ∈ K × R+, ∀h, (38e)

Dhyh �Qh zhdh, ∀h, (38f)

η ≥ 0. (38g)

As illustrated by Example 5, in general, the MCP (38) may not be feasible.

Example 5 Let

C =
{

(x1, x2) ∈ R2
+ | x1 + x2 = 1

}
,

and consider the disjunction

{x1 ≥ 0,−x1 ≥ 0} ∨ {x1 ≥ 1,−x1 ≥ −1} .

Constraints (38d) and (38f) first yield

y1 =

(
0
z1

)
, y2 =

(
z2

1− z2

)
,

which, combined with (38c) and (38b), yields x̄ = (1− z1, z1) for 0 ≤ z1 ≤ 1.
Therefore, if x̄ = (−1, 2), then the MCP (38) is infeasible.

Nevertheless, the following results demonstrate that, for certain classes
of disjunctions, namely split disjunctions, strong feasibility in the MCP is
guaranteed.

Lemma 1 If

x̄ ∈ conv

(⋃
h

{x | Ax = b,Dhx �Qh dh}

)
,

then the MCP (38) is feasible.

Disjunctive cuts in Mixed-Integer Conic Optimization 27

Proof Immediate from Theorem 4. ut

Lemma 2 Assume that ∀h, Qh is polyhedral. Then, the MCP (38) is strongly
feasible if and only if it is feasible.

Proof Strong feasibility implies feasibility. Reciprocally, if (x, y, z, η) is feasible
for the MCP (38), then (x, y, z, η+ε) is strongly feasible for any ε > 0, because
ρ ∈ intK. ut

Theorem 10 If X 6= ∅ and D is a split disjunction, i.e.,

D =

{
x

∣∣∣∣ Ax = b, x ∈ K
πTx ≤ π0

}
∪
{
x

∣∣∣∣ Ax = b, x ∈ K
πTx ≥ π0 + 1

}
,

then the MCP (38) is strongly feasible.

Proof Let

S = conv
({
x
∣∣ Ax = b, πTx ≤ π0

}
∪
{
x
∣∣ Ax = b, πTx ≥ π0 + 1

})
.

First, assume there exists ξ ∈ Rn such that Aξ = 0 and πT ξ 6= 0; without
loss of generality, we can assume that πT ξ = 1. Then, let t ≥ 0 such that

πT (x̄− tξ) ≤ π0,

πT (x̄+ tξ) ≥ π0 + 1.

In particular, A(x̄± tξ) = b and x̄ = 1
2 (x̄+ tξ) + 1

2 (x̄− tξ). Thus, x̄ ∈ S, and
it follows from Lemma 1 that the MCP (38) is feasible.

Now assume that ∀ξ ∈ ker(A), πT ξ = 0. On the one hand, if π0 < πT x̄ <
π0 + 1, then S = ∅ and thus X is empty, which would contradict the X 6= ∅
assumption. Thus, either πT x̄ ≤ π0 or πT x̄ ≥ π0 + 1, i.e., x̄ ∈ S and the
MCP is feasible by Lemma 1. Note that this latter case would never occur in
practice, since one would always consider a split such that π0 < πT x̄ < π0 + 1.

The result then follows from Lemma 2. ut

Similar to the standard normalization, a consequence of Theorem 10 is
that, when considering split disjunctions, the CGCP (37) and the MCP (38)
are solvable with identical objective value. This is confirmed by the results of
Table 2, which reports statistics for the CGCP in Example 4: no numerical
issue is encountered. The corresponding split cuts are displayed in Figure 6,
and are similar to the cuts obtained with the standard normalization. Likewise,
cuts obtained with the uniform normalization are not, in general, supporting
hyperplanes of the disjunctive hull.

28 Andrea Lodi et al.

x̄

(a)

x̄

(b)

x̄

(c)

Fig. 6: Split cuts obtained with the uniform normalization. The continuous
relaxation is in gray, the split hull in orange, and the obtained cut is in red.

Table 5: CGCP statistics for Example 4 and uniform normalization

Iter ‖α‖ ‖u1‖ ‖u2‖ ‖λ1‖ ‖λ2‖ ‖v1‖ ‖v2‖

(a) 8 0.5 0.0 0.3 0.5 0.9 0.2 0.3
(b) 8 0.5 0.0 0.4 0.4 1.0 0.2 0.4
(c) 8 0.4 0.0 0.5 0.3 1.1 0.3 0.5

5 Separating conic-infeasible points

When (MICP) (17) is solved by outer-approximation, the fractional point x̄
may not satisfy all conic constraints. In preliminary experiments, wherein lift-
and-project cuts were separated by rounds in a callback, a large proportion
–often higher than 90%– of the cuts yielded by the CGCP turned out to be
K∗ cuts, which is obviously detrimental to performance. To the best of our
knowledge, despite the popularity and performance of outer-approximation
algorithms, this behavior has not been studied in the literature. Therefore, in
this section, we will assume that Ax̄ = b, but x̄ /∈ K.

Let (α, β, u, λ, v) be a solution of the CGCP, and assume that vh = 0 for
some h ∈ {1, ...,H}. Thus, we have

α = ATuh + λh, (39)

β ≤ bTuh, (40)

and αTx ≥ β is a trivial inequality. In addition, as noted in Section 3.1, the
inequality λThx ≥ 0 has the same violation, and cuts off the same portion of the
continuous relaxation as αTx ≥ β. This observation, which does not depend
on the normalization condition, allows the a posteriori detection of K∗ cuts,
by checking the value of the v multipliers.

Once a K∗ cut is identified, it can be disaggregated. Assume that K =
K1 × ... × KN ; correspondingly, for λ ∈ K∗, we write λ = (λ1, ..., λN) where
each λi ∈ K∗i . Then, the K∗ cut λTx ≥ 0 is disaggregated as

λTi xi ≥ 0, i = 1, ..., N. (41)

Disjunctive cuts in Mixed-Integer Conic Optimization 29

This yields more numerous, but sparser, K∗ cuts, and results in tighter poly-
hedral approximations which, in turn, improves the performance of outer-
approximation algorithms [19].

We now derive sufficient conditions that provide an a priori indication
that a K∗ cut will be generated. Unless stated otherwise, we only consider the
CGCP with standard normalization. Define

η̄ = min
η≥0
{η | x̄+ ηρ ∈ K} , (42)

τ̄h = min
τ≥0
{τ | Dhx̄+ τσh �Qh dh} , ∀h, (43)

and let ξ = x̄ + η̄ρ and λ̄ ∈ K∗ such that λ̄T ξ = 0,
∣∣λ̄∣∣

ρ
= 1. Such a λ̄ always

exists because ξ ∈ ∂K, and can be obtained from, e.g., an optimal solution of
the dual of (42). Also note that λ̄T x̄ = −η̄.

Theorem 11 Define α̃ and λ̃ by α̃ = λ̃h = H−1λ̄, ∀h.
If ∀h, η̄ ≥ H−1τ̄h, then (α̃, 0, 0, λ̃, 0) is optimal for CGCP.

Proof Let α̃, λ̃ be defined as above. It immediately follows that (α̃, 0, 0, λ̃, 0) is
feasible for CGCP with objective value −H−1η̄. Next, we show it is optimal
by exhibiting a feasible solution of MCP with the same objective value.

Let yh = 1
H x̄, zh = 1

H , and η = η̄
H . We have Ayh = zhb,∀h, and yh + ηρ =

1
H (x̄+ η̄ρ) ∈ K. Finally,

Dhyh + ησh = H−1 (Dhx̄+ η̄σh)

�Qh H−1dh

= zhdh.

Thus, (y, z, η) is feasible for the MCP (33) and its objective value is H−1η̄,
which concludes the proof. ut

Theorem 11 shows that, if x̄ is “sufficiently” conic-infeasible, as measured
by the magnitude of η̄, then there exists a K∗ cut that is an optimal solution
of the CGCP. Note that there is no guarantee that this optimal solution is
unique –in general, it is not– nor that all CGCP-optimal solutions are K∗
cuts. Nevertheless, we have observed that, whenever the condition of Theorem
11 was met, the obtained solution was indeed a K∗ cut.

This suggests several strategies to avoid generating K∗ cuts when solv-
ing the CGCP. First, one can check the value of η̄ and, if large enough as per
Theorem 11, avoid solving the CGCP and add an optimal K∗ cut directly. Nev-
ertheless, our initial experiments suggest that only a small number of cases are
captured by Theorem 11. Second, one can increase the magnitude of ρ, thus
reducing the value of η̄, to the point where the assumptions of Theorem 11 no
longer hold. Note that, as the magnitude of ρ becomes arbitrarily large, the
standard normalization becomes equivalent to the uniform normalization of
Section 4.5. Third, instead of imposing a normalization condition, one could

30 Andrea Lodi et al.

fix the cut violation to a positive value, e.g., 1, and optimize a different ob-
jective; the feasibility of the CGCP is then guaranteed by the fact that x̄ is
conic-infeasible. This approach directly relates to the reverse-polar CGLP in-
troduced in [47]. Finally, one can simply try to avoid conic-infeasible points
in the first place, for instance by refining the outer-approximation before cuts
are separated.

6 Cut lifting and strengthening

In this section, we present conic extensions of the classical lifting and strength-
ening procedures in MILP. For simplicity, we will assume that K = K1 × K2

where Ki ⊆ Rni , i = 1, 2. Correspondingly, we write

A =
[
A1 A2

]
, Dh =

[
D1,h D2,h

]
, λh =

[
λ1,h

λ2,h

]
, α =

[
α1

α2

]
, x̄ =

[
x̄1

x̄2

]
,

and, for ease of reading, we use the convention that λi = (λi,1, ..., λi,H) for
i = 1, 2. Finally, we assume that x̄2 = 0.

6.1 Cut lifting

In MILP, one can formulate the CGLP in a reduced space, by projecting out
the null components of x̄, then recover a valid cut in the original space by a
lifting procedure, see, e.g., [6]. The same technique is applied to mixed-binary
conic problems in [18], although it is then limited to linear constraints. In
contrast, here, the approach is generalized to arbitrary MICP problems and
disjunctions, and to projecting out non-linear conic constraints.

Recall that x̄2 = 0, and consider the reduced CGCP

min αT1 x̄1 − β (44a)

s.t. α1 = AT1 uh + λ1,h +DT
1,hvh, ∀h, (44b)

β ≤ bTuh − vTh dh, ∀h, (44c)

(uh, λ1,h, vh) ∈ Rm ×K∗1 ×Q∗h, ∀h. (44d)

All the normalization conditions considered in Section 4 can be adapted to
the reduced CGCP, namely by normalizing only the α1, λ1, v components as
appropriate. For instance, the α normalization would write ‖α1‖∗ ≤ 1, and
the uniform normalization

∑
h |λ1,h|ρ1 ≤ 1, for ρ1 ∈ intK1.

Any solution (α, β, u, λ, v) that is feasible for the CGCP yields a feasible
solution (α1, β, u, λ1, v) for the reduced CGCP. In addition, since x̄2 = 0, the
corresponding objective values are the same. Reciprocally, a feasible solution
for the CGCP can be obtained from a feasible solution of the reduced CGCP
as shown in Lemma 3.

Disjunctive cuts in Mixed-Integer Conic Optimization 31

Lemma 3 Let (α1, β, u, λ1, v) be feasible for the reduced CGCP (44). Let

α2 �K∗
2
AT2 uh +DT

h,2vh, ∀h,

and, ∀h, let λ2,h = α2−AT2 uh−DT
2,hv2. Then, (α, β, u, λ, v) is feasible for the

CGCP (19) and αT x̄− β = αT1 x̄1 − β.

The proof of Lemma 3 is immediate. Note that the objective value is unaffected
only because x̄ = 0: if x̄2 6= 0, then the lifted inequality may not be violated.

The choice of α2 in Lemma 3 is not unique, especially if K∗2 possesses
high-dimensional faces. Nevertheless, a reasonable requirement is to impose
that α2 be minimal with respect to �K∗

2
, i.e., that there does not exist a

valid α̃2 �K∗
2
α2. Indeed, if α2 is not �K∗

2
-minimal, then αTx ≥ β is trivially

dominated by α̃Tx ≥ β, see also [34].
A �K∗

2
-minimal α2 is obtained by solving the lifting conic problem (LCP)

(LCP) min
α2

ρT2 α2 (45a)

s.t. α2 �K∗
2
AT2 uh +DT

h,2vh, ∀h, (45b)

where ρ2 ∈ intK2, and denote by λ2,h ∈ K∗2 the (conic) slack associated to
(45b). First, since K2 is a proper cone, the LCP is strongly feasible. Second,
we have

ρT2 α2 = ρT2 λ2,h + ρT2
(
AT2 uh +DT

h,2vh
)
, ∀h, (46)

thereby showing that the objective value of the LCP is bounded below. In
addition, let (α2, λ2) be a feasible solution for the LCP with objective value
Z. It then follows that

∀h,
∣∣∣λ̃2,h

∣∣∣
ρ2
≤ Z − ρT2

(
AT2 uh +DT

h,2vh
)

(47)

in any feasible solution (α̃2, λ̃2) with objective value Z̃ ≤ Z. Equation (47)
implicitly bounds the magnitude of λ2, thereby ensuring that the LCP is solv-
able. Finally, if α2 and α̃2 are feasible and α̃2 �K∗

2
α2, then ρT2 α̃2 < ρT2 α2 and

α2 cannot be an optimal solution. Thus, any optimal solution of the LCP is
�K∗

2
-minimal.

Whenever K2 is not irreducible, the LCP can be decomposed per conic
component, yielding smaller problems. In the linear case, taking K2 = R+, the
LCP reduces to

α2 = max
h

{
AT2 uh +DT

2,hvh
}
,

which is the classical lifting procedure for disjunctive cuts in MILP [23].
Lemma 3 does not account for the normalization constraint in the CGCP.

Although the lifting procedure does not modify the objective value, in general,
the lifted solution (α, β, u, λ, v) is not an optimal solution of the normalized
original CGCP. Thus, the reduction in the size of the CGCP, and the associated
computational gains, come at the expense of potentially weaker cuts.

32 Andrea Lodi et al.

6.2 Cut strengthening

Balas and Jeroslow’s original derivation of monoidal strengthening for disjunc-
tive cuts [7] exploited the non-negativity and integrality of individual variables
to strengthen the corresponding cut coefficients. Since, in general, a conic con-
straint may involve several variables, it is not clear whether and how one can
extend this approach to the conic setting. Thus, we restrict our attention to
split cuts, and propose a conic extension of monoidal strengthening that builds
on the geometric idea of Wolsey’s proof of Theorem 2.2 in [6].

For simplicity, we consider the pure integer case. Given a split disjunction
(πTx ≤ π0) ∨ (πTx ≥ π0 + 1), the CGCP writes

min αT x̄− β
s.t. α1 = ATu1 + λ1 − v1π

α2 = ATu2 + λ2 + v2π

β ≤ bTu1 − v1π0

β ≤ bTu2 + v2(π0 + 1)

λ1, λ2 ∈ K∗, v1, v2 ≥ 0.

Lemma 4 Let (α, β, u, λ, v) be feasible for the CGCP, and let α̃2 and δπ ∈ Zn2

such that

α̃2 �K∗
2
AT2 u1 − v1(π2 + δπ),

α̃2 �K∗
2
AT2 u2 + v2(π2 + δπ).

Then, α̃Tx ≥ β is a valid inequality for the disjunctive set

D̃ =

{
x

∣∣∣∣ Ax = b, x ∈ K
π̃Tx ≤ π0

}
∪
{
x

∣∣∣∣ Ax = b, x ∈ K
π̃Tx ≥ π0 + 1

}
,

where α̃ = (α1, α̃2) and π̃ = (π1, π2 + δπ).

In the mixed-integer case, one simply needs to set to zero, in Lemma 4, the
components of δπ that correspond to continuous variables. Since δπ ∈ Zn2 , we
have π̃ ∈ Zn, and (π̃Tx ≤ π0) ∨ (π̃Tx ≥ π0 + 1) is a valid disjunction for X .
Thus, the strengthened inequality is valid for X . Furthermore, because x̄2 = 0,
strengthening does not affect the cut violation: if the original cut is violated,
so is the strengthened one. This may not hold if x̄2 6= 0, i.e., the strengthened
inequality might not be violated.

Similar to the lifting case, a reasonable requirement is for α̃2 to be minimal
with respect to �K∗

2
. Following the same approach as in Section 6.1, we obtain

the Cut-Strengthening Problem

(CSP) min
α̃2,δπ

ρT2 α̃2 (48a)

s.t. α̃2 �K∗
2
AT2 u1 − v1(π2 + δπ), (48b)

α̃2 �K∗
2
AT2 u2 + v2(π2 + δπ), (48c)

δπ ∈ Zn2 . (48d)

Disjunctive cuts in Mixed-Integer Conic Optimization 33

Similar to the LCP, the CSP can be decomposed per conic component,
so that its resolution remains tractable. Furthermore, in the linear case with
K2 = R+, the CSP reduces to

α̃2 = max
δ∈Z

{
min

(
AT2 u1 − v1δ, A

T
2 u2 + v2δ

)}
,

which is the classical monoidal strengthening of Balas and Jeroslow [7].

7 Computational results

In this section, we investigate the practical behavior of the normalization con-
ditions of Section 4 along two lines: the progression of the gap closed, and
the characteristics of the obtained cuts. Indeed, the choice of normalization
impacts the numerical stability and computational efficiency of solving the
CGCP, thereby affecting the rate at which gap is closed, in terms of both time
and number of rounds.

Several solvers, e.g., CPLEX, Gurobi and Mosek, support classes of MI-
CONIC problems. Nevertheless, to the best of our knowledge, CPLEX is the
only one that exploits non-linear information when generating lift-and-project
cuts. Thus, we use CPLEX as a baseline, and restrict our comparison to MIS-
OCP instances, which is the only class of non-linear MI-CONIC problems
supported by CPLEX.

7.1 Instances

We select an initial testset of 114 MISOCP instances from the CBLIB [24]
collection. Each instance is first reformulated in the standard form (17) and,
to address a limitation in the CPLEX Julia wrapper, all rotated second-order
cone constraints are reformulated as second-order cone constraints.

Each instance is solved using the CPLEX outer-approximation algorithm
on a single thread, and all other parameters are left to their default value.
Instances with a root gap smaller than 1% are removed from the testset, as
well as those for which no integer-feasible solution was found by CPLEX after
one hour of computing time. This yields a testset of 106 instances, divided into
7 groups. Table 6 reports, for each group, the number of instances (#Inst) in
that group, and the average number of: variables, integer variables, constraints,
non-polyhedral cones, and non-zero coefficients.

7.2 Implementation details

Our implementation3 is coded in Julia. All solvers, namely, CPLEX 20.1 [29],
Gurobi 9.1.1 [28] and Mosek 9.2 [43], are accessed through the solver-agnostic

3 Code available at https://github.com/mtanneau/CLaP

34 Andrea Lodi et al.

Table 6: Instance statistics

Group #Inst Variables Integers Constraints Cones Nz coeff.

clay 12 829 35 659 80 1711
flay 10 535 28 408 4 1121
slay 14 1217 92 936 14 2653
fmo 41 619 48 479 15 1841
sssd 16 694 153 546 18 1414
tls 5 708 147 541 26 2066
uflquad 8 37568 22 30203 3750 71341

All 106 3518 69 2809 304 7057

interface MathOptInterface [37]. Experiments are carried out on an Intel
Xeon Gold 6142@2.60GHz CPU, 512GB RAM machine running Linux. With
the exception of Table 6, all reported averages are shifted geometric means
with a shift of 1.

Baseline. We use CPLEX internal lift-and-project cut generation at the root
node as a baseline.

For each instance, we run CPLEX outer-approximation algorithm on a
single thread, no presolve, no heuristics, and all cuts de-activated with the
exception of lift-and-project cuts which are set to the most aggressive setting.
The CutsFactor parameter is set to 1030, thereby removing any limit on the
number of cuts that can be added to the formulation, and the maximum
number of cutting plane passes is set to 200. Finally, the node limit is set to
zero, i.e., only the root node is explored, and we set a time limit of 1 hour.

Each CPLEX “cut pass” consists4 of one round of cuts, plus additional
components such as heuristics and reduced cost fixing. Cut generation stops
as soon as no violated cuts are found, or all violated cuts are rejected. Since
we deactivate heuristics and presolve, it is fair to assume that, in the present
setting, one CPLEX pass corresponds to one round of cuts. Nevertheless, due
to CPLEX internal work limits, e.g., numerical tolerances on a cut’s coeffi-
cients, early termination may occur even though violated cuts were identified.
Whether or not this is the case cannot be inferred from the CPLEX log.

Cut separation. Cuts are separated by rounds in a callback, and submitted
to CPLEX as user cuts. Before this happens, CPLEX automatically adds a
number of K∗ cuts (denoted by “cone linearizations” in the CPLEX log),
thereby making the initial dual bound equivalent to that of the continuous
conic relaxation. Then, each round proceeds as follows.

First, x̄ is cleaned, i.e, we set x̄j = 0 for all j such that |x̄j | ≤ 10−7, and
η̄ is computed as per Equations (42). If η̄ is greater than a conic-feasibility
tolerance εK > 0, the current outer-approximation is refined by adding violated
K∗ cuts. This refinement step is cheap, and it is repeated until η̄ ≤ εK, up to a

4 Personal communication with CPLEX developers.

Disjunctive cuts in Mixed-Integer Conic Optimization 35

maximum of 50 times. Large values for εK increase the likelihood of generating
K∗ cuts from the CGCP, while small values can lead to an adverse tailing-off
effect within the refinement process; following initial tests, we set εK = 0.05.

Second, for each fractional coordinate of x̄, the CGCP is formed and solved
to generate a lift-and-project cut. We do not project the CGCP onto the
support of x̄, i.e., no lifting is performed. For the standard normalization, the
sufficient conditions of Theorem 11 are checked first and, if met, K∗ cuts are
added and no CGCP is solved. If no CGCP solution is available, or if the
objective value of the CGCP is greater than −10−4, no cut is generated and
we proceed to the next fractional coordinate.

Third, the values of v1 and v2 are checked to identify K∗ cuts, which are
disaggregated and added to the formulation. Otherwise, the cut is strengthened
following the procedure of Section 6.2. For stability, strengthening is performed
only if |v1|+ |v2| ≥ 10−4. Then, also for numerical stability, we set αj to zero
for every j such that |αj | ≤ 10−7. Similarly, if |β| ≤ 10−8, the cut’s right-hand
side is set to zero. Finally, the cut is passed to the solver.

Compact CGCP. Lift-and-project cuts are obtained from elementary split dis-
junctions, i.e., disjunctions of the form

(
−πTx ≥ π0

)
∨
(
πTx ≥ π0 + 1

)
,

where π0 ∈ Z and π = ej for given j ∈ {1, ..., p}. When formulating the CGCP,
we set u1 to zero, and substitute out α and β. This yields the compact CGCP

min
u,λ,v

x̄Tλ1 − (πT x̄− π0)v1 + t1

s.t. ATu2 + (λ2 − λ1) + (v1 + v2)π = 0

bTu2 + (t1 − t2) + (v1 + v2)π0 + v2 = 0

λ1, λ2 ∈ K∗,
v1, v2 ≥ 0

t1, t2 ≥ 0,

where t1, t2 are non-negative slacks associated with constraints (19c). The
relation α = λ1 − v1π allows to formulate the normalization condition in the
λ, v space.

In practice, the equality constraints Ax̄ = b are satisfied only up to nu-
merical tolerances. This can cause the CGCP to be unbounded whenever the
u multipliers are not bounded. We have observed that setting u1 to zero,
and writing the objective as in the compact CGCP above, greatly improve
the numerical stability of the CGCP, especially when x̄ is obtained from an
interior-point method.

36 Andrea Lodi et al.

Other details. Cuts that are generated are never added to the CGCP formula-
tion, i.e., we only separate rank-1 lift-and-project cuts. All CGCPs are solved
with Gurobi, which we found to be more robust here. We use the barrier al-
gorithm with a single thread, no presolve, and we disable the computation of
dual variables by setting the QCPDual parameter to 0.

We implement a simple procedure to identify implied-integer variables. If
a variable y appears in a constraint of the form aTx ± y = b, where b ∈
Z, all coefficients of a are integers, and x is a vector of integer or implied-
integer variables, then y is an implied-integer variable. This step is repeated
until no additional implied-integer variable is detected. Then, when generating
cuts, the coefficients of implied-integer variables can be strengthened using the
technique of Section 6.2. Unless specified otherwise, we always report results
for the strengthened cuts.

Since we use an outer-approximation algorithm, we do not include the
trivial normalization in our experiments. The α normalization is formulated
using the `2 norm. For the polar normalization, we take γ = x∗ − x̄, where x∗

is the best integer solution obtained by CPLEX after one hour of computing
time. As per Section 4.2, this ensures that the MCP (30) is at least (weakly)
feasible. While our focus is on the behavior of the cut-generation process, note
that the present setting is artificial, since x∗ –or any integer-feasible solution,
may not be available at the root. How to choose γ in practice remains an open
research avenue. Finally, for the standard and uniform normalization, and the
computation of η̄ in Equation (42), we set ρ = (ρ1, ..., ρN), where

ρi =

 1 if Ki = R+

−1 if Ki = R−
(1, 0, 0) if Ki = L3

,

and, since we only consider split cuts, we take σ1 = σ2 = 1.

7.3 Gap closed and computing time

Recall that, in our approach, each round may include the separation of K∗
cuts to refine the current outer approximation. To the best of our knowledge,
CPLEX may also refine the outer approximation in a similar way, but we do
not know when this is triggered and how often it occurs in practice. In addition,
total computing times include the time of building the CGCP, which typically
represent 30 to 40% of total time, and up to 90% for uflquad instances.
These large building times are in part due to limitations of the Gurobi Julia
wrapper, and could be significantly reduced by using a lower-level interface.
Thus, direct comparisons of computing times between the CPLEX baseline and
our CGCP-based approaches should be cautious, as there is significant room
for improvement in the latter. Other reported metrics, such as gap closed and
cut sparsity, are not subject to performance variability unless a time limit is
reached, which only happened for some of the larger uflquad instances.

Disjunctive cuts in Mixed-Integer Conic Optimization 37

Table 7: Completed cut rounds and CPU time

CPLEX Alpha Polar Standard Uniform

Group #rd CPU T/rd #rd CPU T/rd #rd CPU T/rd #rd CPU T/rd #rd CPU T/rd

clay 133 22.8 0.2 200 284.5 1.6 76 94.6 1.4 200 232.9 1.3 192 207.3 1.3
flay 16 0.8 0.1 155 68.4 0.8 62 20.1 0.5 138 32.8 0.4 144 32.9 0.4
slay 19 3.9 0.3 145 727.9 6.1 89 86.1 1.5 175 277.5 2.2 109 141.3 1.8
fmo 91 10.0 0.1 200 342.2 1.9 188 204.3 1.3 130 95.4 0.8 123 77.3 0.7
sssd 29 2.5 0.1 182 412.7 2.4 21 24.5 1.3 22 28.0 1.4 20 23.4 1.3
tls 127 29.4 0.4 140 379.9 3.8 136 178.8 1.8 141 310.8 2.8 149 269.5 2.6
uflquad 126 491.6 5.1 1 1209.6 1209.6 1 173.0 173.0 27 3192.1 127.4 27 3171.4 126.6

All 58 9.7 0.3 128 362.0 4.1 70 96.2 2.1 98 126.5 1.9 89 101.9 1.8

Table 7 reports, for each group of instances and normalization/baseline,
the average number of completed cut rounds before termination (#rd), the
average total computing time in seconds (CPU) –which includes time spent
within CPLEX, and the average time per round (T/rd). For instance, across
the clay group of instances, CPLEX performs an average of 133 rounds of
cuts in 22.8s, yielding an average time of 0.2s per round. Overall, with the
exception of fmo instances, the polar normalization performs markedly fewer
rounds than the other normalizations. This is due to numerical issues in the
CGCP that lead to premature termination of the cut-generation. Furthermore,
the time per cut round is very similar for the standard and uniform normal-
izations, followed closely by the polar normalization, and all three are about
2x faster than the alpha normalization. Indeed, the alpha normalization (27e)
with `2 norm is nonlinear and, as highlighted in Section 4.1, the CGCP (27)
may not be solvable, thus causing slow convergence and more interior-point it-
erations. Finally, CPLEX performs fewer rounds of cuts than our CGCP-based
approaches, most likely because of some internal stopping criterion.

Next, Tables 8 and 9 report the percent gap closed after up to 10 and
200 rounds of cuts, respectively. Each table includes results with monoidal
strengthening (S) and without (NS); to the best of our knowledge, CPLEX
systematically applies strengthening. The percent gap closed is measured as

Gap = 100× Z∗ − ZCP
ZMICP − ZCP

,

where ZCP , ZMICP , Z
∗ are the optimal value of the continuous conic relax-

ation, the objective value of the best known integer solution, and the current
lower bound after adding cuts, respectively. The conic relaxations are solved
with Mosek, after removing all integer constraints.

First, while the use of strengthening almost always improves the gap closed,
its effect vary across normalization and instances. For standard and uniform
normalizations, strengthening is more useful in the first 10 rounds, and its
effect vanishes as more rounds are performed. Indeed, gap closed with and
without strengthening are virtually identical after 200 rounds, except for tls

and uflquad instances where strengthening roughly doubles the gap closed.
For alpha and polar normalizations, we observe substantial improvements in
gap closed for sssd and tls instances. In particular, the average gap closed
on sssd instances with the alpha (resp. polar) normalization jumps from 0.1%

38 Andrea Lodi et al.

Table 8: Gap closed with and without strengthening - 10 rounds

CPLEX Alpha Polar Standard Uniform

Group NS S NS S NS S NS S NS S

clay - 2.1 0.0 0.0 0.0 0.0 9.0 9.7 3.3 3.3
flay - 0.3 0.9 0.5 0.0 0.0 1.2 1.2 3.0 2.2
slay - 3.6 0.8 0.4 0.0 0.0 9.1 9.3 10.6 11.3
fmo - 6.9 0.0 0.0 0.0 0.0 23.8 23.7 24.2 24.3
sssd - 46.2 0.1 42.5 0.3 88.1 94.6 95.6 97.7 97.6
tls - 8.2 1.8 3.1 1.6 2.6 4.7 5.3 5.1 6.2
uflquad - 0.6 0.0 0.0 0.0 0.0 10.0 20.2 15.7 21.8

All - 5.5 0.2 1.0 0.1 1.1 16.0 17.2 16.5 16.8

Table 9: Gap closed with and without strengthening - 200 rounds

CPLEX Alpha Polar Standard Uniform

Group NS S NS S NS S NS S NS S

clay - 21.6 0.0 0.0 0.0 1.0 21.6 27.2 27.3 27.3
flay - 7.3 2.6 2.6 0.4 0.4 6.5 9.6 39.7 39.7
slay - 14.5 13.7 16.5 0.6 1.4 79.4 79.7 84.3 84.1
fmo - 24.4 0.0 0.0 0.2 0.3 24.5 24.5 24.5 24.5
sssd - 95.1 11.6 96.2 7.2 97.6 99.4 99.4 99.4 99.4
tls - 20.0 2.9 4.2 3.4 12.3 8.6 15.4 9.0 15.8
uflquad - 5.0 0.0 0.0 0.0 0.0 14.8 28.4 22.9 31.0

All - 22.0 1.5 2.6 0.7 2.1 28.5 32.7 36.1 37.8

(resp. 0.3%) to 42.5% (resp. 88.1%) after 10 rounds, and from 11.6% (resp.
7.2%) to 96.2% (resp. 97.6%) after 200 rounds. Overall, given that perform-
ing 200 rounds is unlikely in practice, these results suggest that, by default,
strengthening should always be applied.

Second, the standard and uniform normalizations display similar perfor-
mance. This is with the exception of flay instances, for which the uniform nor-
malization closes significantly more gap than all other approaches. Although
the standard normalization closes slightly more gap after 10 rounds, namely,
17.2% against 16.8%, the uniform normalization performs best overall after 200
rounds, with an average 37.8% gap closed across all instances. Furthermore,
no numerical issues were recorded for either normalization, thereby demon-
strating the benefits of ensuring strong feasibility of both CGCP and MCP.

Third and last, the standard and uniform normalizations are competitive
with CPLEX in terms of gap closed. Indeed, both normalizations close signif-
icantly more gap than CPLEX after 10 and 200 rounds, notably on slay and
uflquad instances, as well as flay instances for the uniform normalization.
Only for tls instances are they outperformed by CPLEX. In particular, we
note that both CGCP-based approaches close over three times more gap than
CPLEX in the first 10 rounds. This behavior is encouraging, since closing more
gap early is a desirable feature in practice.

Disjunctive cuts in Mixed-Integer Conic Optimization 39

Fig. 7: Instance slay07h: gap closed per round (top) and time (bottom)

Finally, Figures 7, 8 and 9 illustrate the progression of the gap closed
for instances slay07h, sssd-weak-15-4 and tls4, respectively. Each figure
displays, for each normalization and the baseline, the percent gap closed as a
function of the number of rounds, and of computing time. Again, recall that
a direct comparison of computing times between our approach and CPLEX is
not meaningful, thus, we focus on general trends.

Overall, Figures 7, 8 and 9 corroborate the previous observations from Ta-
bles 7-9: the α normalization is the slowest, while the standard and uniform
normalizations display similar progressions and allow to close more gap than
CPLEX in the first few rounds. We also observe in Figure 8 that, when the

40 Andrea Lodi et al.

Fig. 8: Instance sssd-weak-15-4: gap closed per round (top) and time (bot-
tom). The polar normalization was terminated after two rounds.

polar normalization does not run into numerical issues, it can match the per-
formance of standard and uniform normalizations in terms of gap closed in
the first few rounds.

7.4 Cut sparsity

We now study, for each normalization, the characteristics of the cuts obtained
from solving the CGCP. Relevant statistics are reported after 10 and 200
rounds, in Table 10 and Table 11, respectively. For each normalization, we

Disjunctive cuts in Mixed-Integer Conic Optimization 41

Fig. 9: Instance tls4: gap closed per round (top) and time (bottom)

report the geometric mean of the total number of disaggregated K∗ cuts (K∗)
and of lift-and-project cuts (L&P). We also report the geometric mean of the
density of lift-and-project cuts (%nz), measured as the percentage of non-zero
coefficients per cut; the density of K∗ cuts is not reported because they are
always disaggregated. Here, K∗ cuts refer specifically to cuts obtained from the
CGCP that were identified as K∗ cuts, i.e., we do not consider those added in
the refinement steps. For example, the first row of Table 10 indicates that, for
clay instances and after 10 rounds, the CGCP with standard normalization
yielded an average of 349 disaggregated K∗ cuts, and 88 lift-and-project cuts
with an average density of 3.7%.

42 Andrea Lodi et al.

Table 10: Cut statistics - 10 rounds

Alpha Polar Standard Uniform

Group K∗ L&P %nz K∗ L&P %nz K∗ L&P %nz K∗ L&P %nz

clay 0 134 45.6 0 60 19.0 349 88 3.7 40 104 1.5
flay 0 119 27.6 0 62 29.1 12 112 3.5 12 111 2.3
slay 0 255 27.2 0 182 41.0 20 186 2.6 9 210 1.7
fmo 24 247 35.5 74 228 35.7 88 230 1.6 65 231 1.2
sssd 0 275 16.4 0 243 29.1 169 119 6.3 150 135 6.4
tls 871 301 13.2 2755 284 20.4 199 162 6.5 155 189 6.7
uflquad 0 21 33.9 0 21 55.6 226 57 0.5 158 65 0.4

All 4 184 29.2 7 144 32.5 87 150 2.6 52 162 2.0

Table 11: Cut statistics - 200 rounds

Alpha Polar Standard Uniform

Group K∗ L&P %nz K∗ L&P %nz K∗ L&P %nz K∗ L&P %nz

clay 0 2560 45.6 0 645 17.2 7809 1569 5.4 3256 2006 2.5
flay 0 1836 24.7 0 529 28.2 411 1512 3.8 286 1894 3.2
slay 0 5477 21.3 0 1742 40.5 2987 2485 5.6 645 2109 4.8
fmo 1034 5124 33.7 3118 4365 37.1 444 2593 3.8 312 2292 3.0
sssd 0 5558 10.3 0 524 30.6 298 321 11.4 272 313 11.2
tls 15413 3966 10.0 33458 4451 16.5 3131 2006 7.2 2957 2385 7.2
uflquad 0 21 33.9 0 21 55.6 576 232 0.3 391 273 0.3

All 22 2872 25.3 36 1242 32.4 826 1391 4.5 493 1386 3.6

First, cuts obtained with the alpha and polar normalization are signifi-
cantly denser than those obtained with the standard and uniform normaliza-
tions. Here, the former two yield cuts with an average of 25% to 32% non-
zero coefficients, roughly an order of magnitude higher than the latter. The
difference is most striking for uflquad instances, where cuts obtained with
alpha and polar normalization are over 100x denser than those obtained with
standard and uniform normalizations. Furthermore, cuts obtained with the
uniform normalization are slightly sparser than with standard normalization,
with 2.0% and 3.6% non-zero coefficients after 10 and 200 rounds for the for-
mer, compared to 2.6% and 4.5% for the latter. Interestingly, the average cut
density after 200 rounds is almost twice as large as after 10 rounds, indicat-
ing that cuts become denser in the later rounds. Recall that denser cuts are
less desirable, as they have an adverse effect on performance: they slow down
the resolution of the current continuous relaxation, and are more prone to
numerical errors.

Second, the CGCP with alpha and polar normalization almost never yields
K∗ cuts, except for fmo and tls instances. Interestingly, tls instances appear
more prone to K∗ cuts across all normalizations, with the effect most striking
for the polar normalization. Besides, fewer K∗ cuts are obtained with the
uniform normalization than with the standard normalization. This behavior

Disjunctive cuts in Mixed-Integer Conic Optimization 43

Table 12: Gap closed by refinement K∗ cuts and CGCP cuts (200 rounds)

Alpha Polar Standard Uniform

Group Ref. CGCP Ref. CGCP Ref. CGCP Ref. CGCP

clay 0.0 0.0 0.0 1.0 0.2 27.1 0.0 27.3
flay 0.3 2.6 0.0 0.4 0.6 9.3 1.9 37.6
slay 8.2 10.5 0.4 1.3 20.0 56.6 27.1 53.2
fmo 0.0 0.0 0.2 0.2 2.0 22.7 2.3 22.6
sssd 11.1 76.8 9.6 73.7 0.0 99.4 0.2 98.9
tls 1.3 2.0 2.8 8.1 2.7 10.7 2.7 11.1
uflquad 0.0 0.0 0.0 0.0 0.7 27.4 2.3 26.7

All 1.1 2.2 0.7 1.8 1.7 29.6 2.3 33.3

is consistent with the theoretical analysis of each normalization, as well as
the remarks in Section 5. Indeed, recall that cuts obtained with alpha and
polar normalization are supporting hyperplanes of the disjunctive hull, while,
in general, cuts obtained with standard and uniform normalization are not.

We conclude the analysis by reporting, in Table 12, the proportion of gap
closed when adding K∗ cuts obtained during the refinement steps (Ref.), and
by CGCP-generated cuts (CGCP). This is done by tracking the progress of the
lower bound after each refinement step and after each round of lift-and-project
cuts. Note that the latter include both strengthened “true” lift-and-project
cuts, and any disaggregated K∗ obtained when solving the CGCP. Also recall
that the gap closed is measured against the continuous conic relaxation. Thus,
neither refinement-based nor CGCP-based K∗ would close any gap on their
own, since all are redundant with the original conic constraints. The present
results only indicate that, at some point in the solving process when the current
fractional solution would violate the conic constraints, tightening the outer-
approximation may result in a dual bound increase. Unsurprisingly, CGCP-
based cuts always close more gap than refinement-based K∗ cuts, although, for
slay instances, refinement-based K∗ cuts do close a relatively large proportion
of the gap. This underlines the importance of carefully managing the quality
of the outer-approximation throughout the cut-generation process.

8 Conclusion

Motivated by the impact of the disjunctive framework in MILP and the recent
success of conic formulations for MI-CONV, we have investigated the compu-
tational aspects of disjunctive cuts in MI-CONIC. Building on conic duality,
we have extended Balas’ cut-generating linear program into a cut-generating
conic program, and studied the fundamental role of the normalization condi-
tion in its resolution. In doing so, we have answered several relevant questions,
especially from the numerical standpoint, left open by previous developments
in the area, and have raised new ones.

44 Andrea Lodi et al.

8.1 What we have learned...

From a theoretical standpoint, we have shown that the normalization condition
in the CGCP impacts not only the theoretical properties of the obtained cuts,
but also whether the CGCP is solvable in the first place. The latter has direct
consequences for the numerical robustness of the CGCP resolution. In par-
ticular, we have introduced conic normalizations that guarantee conic strong
duality, without any assumptions on the well-posedness of the considered dis-
junctions. Furthermore, we have identified the risk of generating K∗ cuts when
separating conic-infeasible points, and suggested several strategies to alleviate
it. Finally, we have proposed extensions of lifting and cut strengthening to the
conic setting, which provide further computational benefits.

From a computational standpoint, we have investigated the practical be-
havior of several normalization conditions, on a diverse set of instances. These
experiments indicate that our CGCP-based cut separation is competitive with
a state-of-the-art MI-CONIC solver, being able to close more gap in the early
stages. In particular, the numerical robustness of the standard and uniform
normalization translates in faster separation and more gap closed. Further-
more, carefully managing the outer approximation, so as to avoid large viola-
tions of conic constraints, appears critical to the cut generation performance.
Finally, while the impact of cut strengthening varies between families of in-
stances and the normalization being used, it is always beneficial, especially in
the early rounds.

8.2 ... and what lies ahead

Several theoretical questions are left open. First, while we only consider linear
cutting planes, whether conic cuts can be separated efficiently in the general
case, and how to best integrate them within existing MI-CONIC algorithms,
remains an open question. Second, dominance relations between valid inequal-
ities were introduced in, e.g, [34,32]. Characterizing optimal solutions of the
normalized CGCP in that perspective may offer further insight on the impor-
tance of normalization. Third, a unifying framework that generalizes monoidal
strengthening to the MI-CONIC setting could further improve the practical
effectiveness of disjunctive cuts. Recent developments in duality theory and
cut-generating functions for MI-CONIC could offer the tools for doing so.

Computational experience with cuts in MI-CONIC remains scarce, and
further research in that direction is needed. Decades of experience in MILP
indicate that classes of disjunctive cuts with fast separation rules, e.g., Go-
mory Mixed-Integer cuts and Mixed-Integer Rounding cuts, yield the greatest
computational benefits. Similar strategies for MI-CONIC would undoubtedly
be beneficial. In a similar fashion, Fischetti et al. [23] have shown that scaling
impacts the cuts yielded by the CGLP with standard normalization: there is
no indication that MI-CONIC should be any different. Finally, the CGCP form
allows to experiment with a number of algorithmic techniques for separating

Disjunctive cuts in Mixed-Integer Conic Optimization 45

disjunctive cuts, whose practical effectiveness will most likely be problem-
specific.

Acknowledgements The second author was supported by an FRQNT excellence doctoral
scholarship, and a Mitacs Globalink research award. We thank Pierre Bonami, Andrea Tra-
montani and Sven Wiese for several helpful discussions on the topic, as well as the anonymous
referees for their comments and suggestions that helped improve the paper.

References

1. Andersen, K., Jensen, A.N.: Intersection cuts for mixed integer conic quadratic sets.
In: M. Goemans, J. Correa (eds.) Integer Programming and Combinatorial Opti-
mization, pp. 37–48. Springer Berlin Heidelberg, Berlin, Heidelberg (2013). DOI
10.1007/978-3-642-36694-9\ 4

2. Atamtürk, A., Narayanan, V.: Conic mixed-integer rounding cuts. Mathematical Pro-
gramming 122(1), 1–20 (2010). DOI 10.1007/s10107-008-0239-4

3. Atamtürk, A., Narayanan, V.: Lifting for conic mixed-integer programming. Mathe-
matical Programming 126(2), 351–363 (2011). DOI 10.1007/s10107-009-0282-9

4. Balas, E.: Disjunctive programming. In: P. Hammer, E. Johnson, B. Korte (eds.) Dis-
crete Optimization II, Annals of Discrete Mathematics, vol. 5, pp. 3 – 51. Elsevier
(1979). DOI 10.1016/S0167-5060(08)70342-X

5. Balas, E., Ceria, S., Cornuéjols, G.: A lift-and-project cutting plane algorithm for
mixed 0–1 programs. Mathematical Programming 58(1), 295–324 (1993). DOI
10.1007/BF01581273

6. Balas, E., Ceria, S., Cornujols, G.: Mixed 0-1 Programming by Lift-and-Project in a
Branch-and-Cut Framework. Management Science (1996). DOI 10.1287/mnsc.42.9.1229

7. Balas, E., Jeroslow, R.G.: Strengthening cuts for mixed integer programs. European
Journal of Operational Research 4(4), 224–234 (1980). DOI 10.1016/0377-2217(80)
90106-X

8. Balas, E., Perregaard, M.: Lift-and-project for mixed 0-1 programming: recent progress.
Discrete Applied Mathematics 123(1), 129 – 154 (2002). DOI 10.1016/S0166-218X(01)
00340-7

9. Balas, E., Perregaard, M.: A precise correspondence between lift-and-project cuts, sim-
ple disjunctive cuts, and mixed integer Gomory cuts for 0-1 programming. Mathematical
Programming 94(2), 221–245 (2003). DOI 10.1007/s10107-002-0317-y

10. Belotti, P., Góez, J.C., Pólik, I., Ralphs, T.K., Terlaky, T.: A conic representation of the
convex hull of disjunctive sets and conic cuts for integer second order cone optimization.
In: Numerical Analysis and Optimization, pp. 1–35. Springer (2015)

11. Ben-Tal, A., Nemirovski, A.: Lectures on Modern Convex Optimization. Society for
Industrial and Applied Mathematics (2001). DOI 10.1137/1.9780898718829

12. Bonami, P.: Lift-and-project cuts for mixed integer convex programs. In: O. Günlük,
G.J. Woeginger (eds.) Integer Programming and Combinatoral Optimization, pp. 52–64.
Springer Berlin Heidelberg, Berlin, Heidelberg (2011). URL https://link.springer.

com/chapter/10.1007/978-3-642-20807-2_5

13. Bonami, P.: On optimizing over lift-and-project closures. Mathematical Programming
Computation 4(2), 151–179 (2012). DOI 10.1007/s12532-012-0037-0

14. Bonami, P., Biegler, L.T., Conn, A.R., Cornuéjols, G., Grossmann, I.E., Laird, C.D.,
Lee, J., Lodi, A., Margot, F., Sawaya, N., et al.: An algorithmic framework for convex
mixed integer nonlinear programs. Discrete Optimization 5(2), 186–204 (2008)

15. Bonami, P., Linderoth, J., Lodi, A.: Disjunctive cuts for mixed integer nonlinear pro-
gramming problems. Prog Combin Optim 18, 521–541 (2011)

16. Cadoux, F., Lemarchal, C.: Reflections on generating (disjunctive) cuts. EURO Journal
on Computational Optimization 1(1), 51–69 (2013). DOI 10.1007/s13675-012-0006-4

17. Ceria, S., Soares, J.: Convex programming for disjunctive convex optimization. Math-
ematical Programming 86(3), 595–614 (1999). DOI 10.1007/s101070050106

46 Andrea Lodi et al.

18. Çezik, M., Iyengar, G.: Cuts for mixed 0-1 conic programming. Mathematical Program-
ming 104(1), 179–202 (2005). DOI 10.1007/s10107-005-0578-3

19. Coey, C., Lubin, M., Vielma, J.P.: Outer approximation with conic certificates for mixed-
integer convex problems. Mathematical Programming Computation 12, 249–293 (2020)

20. Conforti, M., Wolsey, L.A.: Facet separation with one linear program. Mathematical
Programming 178(1), 361–380 (2019). DOI 10.1007/s10107-018-1299-8

21. Dadush, D., Dey, S., Vielma, J.: The split closure of a strictly convex body. Operations
Research Letters 39(2), 121 – 126 (2011). DOI https://doi.org/10.1016/j.orl.2011.02.002

22. Duran, M.A., Grossmann, I.E.: An outer-approximation algorithm for a class of mixed-
integer nonlinear programs. Mathematical Programming 36(3), 307–339 (1986). DOI
10.1007/BF02592064

23. Fischetti, M., Lodi, A., Tramontani, A.: On the separation of disjunctive cuts. Mathe-
matical Programming 128(1), 205–230 (2011). DOI 10.1007/s10107-009-0300-y

24. Friberg, H.A.: Cblib 2014: a benchmark library for conic mixed-integer and continuous
optimization. Mathematical Programming Computation 8(2), 191–214 (2016). DOI
10.1007/s12532-015-0092-4

25. Friberg, H.A.: Facial reduction heuristics and the motivational example of mixed-integer
conic optimization. Tech. rep. (2016). URL http://www.optimization-online.org/DB\

_FILE/2016/02/5324.pdf

26. Geoffrion, A.M.: Elements of large-scale mathematical programming. Management Sci-
ence 16(11), 676–691 (1970)

27. Grant, M., Boyd, S., Ye, Y.: Disciplined convex programming. In: L. Liberti, N. Maculan
(eds.) Global Optimization, Nonconvex Optimization and Its Applications, vol. 84, pp.
155–210. Springer US (2006)

28. Gurobi Optimization, L.: Gurobi optimizer reference manual (2018). URL https://

www.gurobi.com

29. IBM: IBM ILOG CPLEX Optimization Studio. URL https://www.ibm.com/products/

ilog-cplex-optimization-studio

30. Kazachkov, A.: Non-Recursive Cut Generation. Ph.D. thesis, Carnegie Mellon Univer-
sity (2018). DOI 10.1184/R1/6720881.v1

31. Kılınç, M.R., Linderoth, J., Luedtke, J.: Lift-and-project cuts for convex mixed integer
nonlinear programs. Mathematical Programming Computation 9(4), 499–526 (2017).
DOI 10.1007/s12532-017-0118-1

32. Kılınç-Karzan, F., Steffy, D.E.: On sublinear inequalities for mixed integer conic
programs. Mathematical Programming 159(1), 585–605 (2016). DOI 10.1007/
s10107-015-0968-0

33. Kılınç-Karzan, F., Yıldız, S.: Two-term disjunctions on the second-order cone. Math-
ematical Programming 154(1-2), 463–491 (2015). DOI https://doi.org/10.1007/
s10107-015-0903-4

34. Kilin-Karzan, F.: On Minimal Valid Inequalities for Mixed Integer Conic Programs.
Mathematics of Operations Research 41(2), 477–510 (2015). DOI 10.1287/moor.2015.
0737

35. Kronqvist, J., Bernal, D.E., Lundell, A., Grossmann, I.E.: A review and comparison
of solvers for convex MINLP. Optimization and Engineering 20(2), 397–455 (2019).
DOI 10.1007/s11081-018-9411-8

36. Kronqvist, J., Misener, R.: A disjunctive cut strengthening technique for convex minlp.
Optimization and Engineering pp. 1–31 (2020)

37. Legat, B., Dowson, O., Garcia, J.D., Lubin, M.: MathOptInterface: a data structure for
mathematical optimization problems (2020)

38. Lubin, M., Yamangil, E., Bent, R., Vielma, J.P.: Extended Formulations in Mixed-
Integer Convex Programming. In: Q. Louveaux, M. Skutella (eds.) Proceedings of
the 18th Conference on Integer Programming and Combinatorial Optimization (IPCO
2016), Lecture Notes in Computer Science, vol. 9682, pp. 102–113 (2016)

39. Lubin, M., Yamangil, E., Bent, R., Vielma, J.P.: Polyhedral approximation in mixed-
integer convex optimization. Mathematical Programming 172(1), 139–168 (2018). DOI
10.1007/s10107-017-1191-y

40. Modaresi, S.: Valid inequalities and reformulation techniques for mixed integer nonlinear
programming. Ph.D. thesis, University of Pittsburgh (2016)

Disjunctive cuts in Mixed-Integer Conic Optimization 47

41. Modaresi, S., Kılınç, M.R., Vielma, J.P.: Split cuts and extended formulations for mixed
integer conic quadratic programming. Operations Research Letters 43(1), 10 – 15
(2015). DOI 10.1016/j.orl.2014.10.006

42. Modaresi, S., Kılınç, M.R., Vielma, J.P.: Intersection cuts for nonlinear integer pro-
gramming: convexification techniques for structured sets. Mathematical Programming
155(1), 575–611 (2016). DOI 10.1007/s10107-015-0866-5

43. MOSEK ApS: The MOSEK Optimization Suite. URL https://www.mosek.com/

44. MOSEK ApS: Mosek modeling cookbook (2020). URL https://docs.mosek.com/

modeling-cookbook/index.html

45. Perregaard, M., Balas, E.: Generating cuts from multiple-term disjunctions. In:
K. Aardal, B. Gerards (eds.) Integer Programming and Combinatorial Optimization,
pp. 348–360. Springer Berlin Heidelberg, Berlin, Heidelberg (2001)

46. Rockafellar, R.T.: Convex analysis, vol. 28. Princeton university press (1970)
47. Serra, T.: Reformulating the disjunctive cut generating linear program. Annals of Op-

erations Research (2020). DOI 10.1007/s10479-020-03709-2
48. Stubbs, R.A., Mehrotra, S.: A branch-and-cut method for 0-1 mixed convex program-

ming. Mathematical Programming 86(3), 515–532 (1999). DOI 10.1007/s101070050103
49. Trespalacios, F., Grossmann, I.E.: Review of Mixed-Integer Nonlinear and Generalized

Disjunctive Programming Methods (2014). URL https://onlinelibrary.wiley.com/

doi/abs/10.1002/cite.201400037

50. Trespalacios, F., Grossmann, I.E.: Cutting plane algorithm for convex generalized dis-
junctive programs. INFORMS Journal on Computing 28(2), 209–222 (2016). DOI
10.1287/ijoc.2015.0669

51. Yildiz, S., Cornujols, G.: Disjunctive cuts for cross-sections of the second-order cone.
Operations Research Letters 43(4), 432–437 (2015). DOI 10.1016/j.orl.2015.06.001

52. Zhu, Y., Kuno, T.: A disjunctive cutting-plane-based branch-and-cut algorithm for 0- 1
mixed-integer convex nonlinear programs. Industrial & engineering chemistry research
45(1), 187–196 (2006)

