Online appendix for

Sticky price for declining risk? Business strategies with "behavioral" customers in the hotel industry

Nicola Lacetera Claudio A. Piga Lorenzo Zirulia

A Sample Statistics

Figure A.1: Predicted Percentage Cancellation Premia, by city and country: Europe

Notes: Four and Five-star hotels combined. All hotels affiliated with a chain.

Figure A.2: Predicted Percentage Cancellation Premia, by city and country: North America

Notes: Four and Five star hotels combined. All hotels affiliated with a chain.

Country:	FRANCE					UK				
Price:	NR and R	Only R	Only NR	All	NR and R	Only R	Only NR	All		
Days from										
stay:										
0-2	18,093	$51,\!800$	6,805	$76,\!698$	11,759	43,288	46,959	102,006		
3-4	66,515	$23,\!414$	5,006	$94,\!935$	44,936	$32,\!838$	3,814	$81,\!588$		
5-6	$78,\!395$	$18,\!946$	3,978	101,319	57,475	$26,\!594$	1,965	86,034		
7-9	$119,\!142$	$21,\!882$	7,096	148,120	93,521	26,718	3,004	$123,\!243$		
10-13	$144,\!860$	$24,\!175$	8,782	$177,\!817$	117,757	31,329	3,512	152,598		
14-20	262,027	$33,\!525$	$12,\!578$	308,130	199,371	$44,\!305$	4,537	248,213		
21-29	$312,\!682$	$30,\!645$	23,948	367,275	$253,\!968$	40,598	4,792	299,358		
30-39	300,520	$24,\!475$	$52,\!194$	377,189	$304,\!843$	40,245	$5,\!354$	350,442		
40-49	$253,\!915$	$21,\!834$	$73,\!913$	$349,\!662$	$300,\!670$	$36,\!197$	5,015	$341,\!882$		
50-59	$261,\!833$	$22,\!138$	$111,\!183$	$395,\!154$	$346,\!296$	38,789	$5,\!358$	390,443		
60+	$589,\!455$	$61,\!127$	$513,\!260$	1,163,842	1,009,415	$128,\!931$	$17,\!907$	$1,\!156,\!253$		
Total	$2,\!407,\!437$	333,961	818,743	$3,\!560,\!141$	2,740,011	489,832	$102,\!217$	3,332,060		
Country		CAN				TT				
Price:	NR and R	Only R	Only NR	A11	NR and R	Only R	Only NR	All		
		0111/10	01115 1110			0111/10	0111, 1110			
Days from										
0-2	8 971	29 450	44 529	82 950	8 894	67 804	129 459	206 157		
3-4	28 279	50,688	4 291	83 258	77404	170 598	120,100 14 510	262,107 262,512		
5-6	31,711	47.852	3,094	82,200 82,657	113 793	$154\ 126$	6 724	274643		
7-9	84.129	73,450	5.008	162.587	270.510	261.886	11.224	543.620		
10-13	116.807	101.622	6.440	224.869	392.225	363,713	14.310	770.248		
14-20	204.568	158.541	10.422	373.531	695.410	555.439	22.209	1.273.058		
21-29	269.265	203.056	14.025	486.346	889.878	687,479	27.158	1.604.515		
30-39	285,084	205,746	15,471	506.301	900,157	685,149	26,671	1,611,977		
40-49	250,942	178,212	13,807	442.961	773,777	587,711	23,125	1,384,613		
50-59	226,444	160,609	12,850	399,903	706,031	527,535	21,026	1,254,592		
60+	1,062,271	760,036	62,183	1,884,490	3,518,388	2,516,279	107,167	6,141,834		
Total	$2,\!568,\!471$	1,969,262	192,120	4,729,853	8,346,467	6,577,719	403,583	$15,\!327,\!769$		

Table A.1: Number of observations by combination of prices retrieved before the stay date

Country:	FRANCE					UK	
Stars:	3	4	5		3	4	5
Days from				_			
stay:							
0-2	96.5	186.4	485.3		87.2	154.9	425.3
3-4	104.5	205.7	524.1		90.4	169.0	453.1
5-6	109.9	212.3	530.1		91.7	172.7	458.3
7-9	111.9	212.3	530.4		92.8	173.8	458.1
10-13	111.0	212.9	534.4		93.3	174.2	451.9
14-20	112.1	214.3	519.0		95.9	181.1	452.4
21-29	112.5	214.8	520.5		97.5	184.3	450.5
30-39	113.0	214.7	523.3		96.9	181.9	448.8
40-49	114.9	217.4	532.4		98.0	183.9	452.3
50-59	115.8	223.2	541.6		98.6	185.3	454.0
60+	119.4	234.8	557.3		97.3	178.1	445.4
Country:	C	ANAD.	А			USA	
Stars:	3	4	5		3	4	5
Days from							
stay:							
0-2	174.1	257.7	565.1		158.8	284.0	751.5
3-4	182.0	299.0	529.9		185.0	315.2	731.6
5-6	186.2	309.5	534.9		195.8	328.8	742.0
7-9	184.6	301.4	529.3		195.5	323.4	754.8
10-13	184.5	301.5	529.1		197.8	325.2	774.8
14-20	188.0	307.0	530.6		203.3	333.4	789.8
21-29	189.7	307.2	533.2		205.1	331.9	781.4
30-39	192.1	312.4	540.6		212.0	340.4	790.8
40-49	190.8	309.9	535.9		211.6	335.4	786.6
50-59	190.0	308.1	536.0		214.5	336.9	783.9
60 +	196.1	315.2	554.6		217.5	333.1	762.6

Table A.2: Mean price of rooms with cancellation, by stars and country

Notes: Two-star hotels in France and UK not included to save space, but available on request. Prices expressed in local currency.

Country:	FRANCE						UK						
Stars:	ć	3	2	4	ļ	5		ę	3	2	4	ļ	5
Weekend:	No	Yes	No	Yes	No	Yes		No	Yes	No	Yes	No	Yes
Days from stay:													
0-2	14.0	15.0	11.5	11.4	10.7	11.3		12.4	12.4	15.6	16.5	12.6	11.9
3-4	13.1	14.2	13.1	13.3	11.1	11.6		12.6	12.6	13.8	14.4	12.2	11.8
5-6	12.9	13.2	13.2	13.4	11.2	11.5		12.3	12.3	13.4	13.8	12.1	11.7
7-9	12.5	13.4	13.0	13.4	11.8	12.2		12.1	12.9	13.2	13.6	12.6	12.0
10-13	12.8	13.4	13.2	13.4	11.9	12.0		12.2	12.7	13.0	13.6	12.5	12.4
14-20	13.8	14.4	14.9	15.6	13.3	13.4		12.3	12.6	12.9	13.2	12.8	12.8
21-29	14.5	15.2	15.5	16.5	13.3	13.7		12.5	12.8	13.1	13.2	12.9	13.1
30-39	15.6	16.6	15.5	16.6	13.2	13.6		12.6	13.2	12.9	13.5	12.8	13.1
40-49	15.6	16.1	15.6	16.2	13.0	13.4		12.5	12.8	12.7	12.9	12.7	12.5
50-59	15.0	16.0	15.2	16.2	12.9	13.3		12.4	12.9	12.4	12.6	12.4	12.2
60 plus	14.3	14.7	14.8	15.2	12.6	13.1		12.5	12.8	12.4	12.4	12.5	12.1
Country:			CAN	ADA						US	SA		
Stars:	•	3	2	4	í	5		e	3	2	4	í	5
Weekend:	No	Yes	No	Yes	No	Yes		No	Yes	No	Yes	No	Yes
Days from stay:													
0-2	12.9	13.4	13.2	14.7	15.9	16.0		13.0	14.1	12.9	12.8	15.0	16.7
3-4	12.6	13.2	11.7	12.2	14.4	14.0		12.5	12.8	12.3	13.3	13.8	13.9
5-6	12.2	12.8	11.1	11.9	14.3	14.0		12.0	11.9	11.6	12.4	13.8	13.0
7-9	11.8	11.9	11.4	11.6	14.2	14.1		11.2	11.4	11.8	12.5	13.1	13.0
10-13	11.9	12.2	11.5	11.6	13.9	13.8		11.1	11.3	11.6	12.5	13.4	13.6
14-20	12.0	12.3	12.0	12.3	13.8	13.9		11.2	11.5	11.2	12.0	13.6	13.7
21-29	11.9	12.1	12.0	12.4	13.9	14.1		11.2	11.4	11.3	11.9	13.7	13.9
30-39	12.0	12.2	12.1	12.4	14.1	13.9		11.2	11.6	11.4	12.2	13.7	14.2
40-49	11.9	12.3	12.1	12.6	14.0	14.2		11.3	11.6	11.4	12.0	13.6	14.1
50-59	11.8	12.1	12.1	12.3	14.0	13.9		11.2	11.5	11.2	11.9	13.5	13.9
60 plus	11.8	12.2	12.0	12.0	13.9	14.0		11.0	11.3	10.9	11.6	13.9	14.2

Table A.3: Mean percentage cancellation premia by stars, days of the week and country

Notes: Two-star hotels in France and UK not included to save space, but available on request.

Country:	FRANCE		Country:	CAN		ADA	
Chain:	Y	es	Chain:	Ν	0	Y	es
Weekend:	No	Yes	Weekend:	No	Yes	No	Yes
City:			City:				
Toulouse	16.4	17.6	Calgary	11.9	12.0	11.9	12.1
St.Etienne	16.6	17.2	Montreal	11.6	11.5	12.0	12.3
Paris	13.0	13.4	Toronto	12.2	12.2	11.7	12.1
Nice	12.6	12.3	Vancouver	14.7	14.7	15.1	15.1
Marseille	15.7	16.0	Winnipeg	13.0	13.9	11.2	11.7
Lyon	15.6	16.5					
Lille	16.9	17.6					
Lens	16.0	15.4					
Bordeaux	15.5	16.0					
Country:	U	K	Country:		U	S	
Country: Chain:	U Ye	K es	Country: Chain:	Ν	U lo	S Y	es
Country: Chain: Weekend:	U Ye No	K es Yes	Country: Chain: Weekend:	N No	U Io Yes	S Y No	es Yes
Country: Chain: Weekend: City:	U Yo No	K es Yes	Country: Chain: Weekend: City:	NoN	U Io Yes	S Y No	es Yes
Country: Chain: Weekend: City: Birmingham	U Yo No 11.2	Kes Yes 11.7	Country: Chain: Weekend: City: Atlanta	No 13.9	U Yes 13.5	S No 11.4	Yes 11.6
Country: Chain: Weekend: City: Birmingham Cambridge	U Yo No 11.2 11.9	K es Yes 11.7 12.3	Country: Chain: Weekend: City: Atlanta Boston	No 13.9 10.7	U Yes 13.5 10.7	S No 11.4 11.5	Yes 11.6 11.8
Country: Chain: Weekend: City: Birmingham Cambridge Cardiff	U Yo No 11.2 11.9 12.6	K es Yes 11.7 12.3 12.6	Country: Chain: Weekend: City: Atlanta Boston Chicago	No 13.9 10.7 13.2	U Yes 13.5 10.7 13.1	S No 11.4 11.5 12.3	Yes 11.6 11.8 12.5
Country: Chain: Weekend: City: Birmingham Cambridge Cardiff Edinburgh	U Yo No 11.2 11.9 12.6 12.3	K es 11.7 12.3 12.6 12.4	Country: Chain: Weekend: City: Atlanta Boston Chicago Houston	No 13.9 10.7 13.2 12.4	U Yes 13.5 10.7 13.1 12.2	S Y No 11.4 11.5 12.3 12.3	Yes 11.6 11.8 12.5 12.8
Country: Chain: Weekend: City: Birmingham Cambridge Cardiff Edinburgh Leeds	U Ye No 11.2 11.9 12.6 12.3 12.0	K es Yes 11.7 12.3 12.6 12.4 12.5	Country: Chain: Weekend: City: Atlanta Boston Chicago Houston Los Angeles	No 13.9 10.7 13.2 12.4 12.4	U Yes 13.5 10.7 13.1 12.2 12.4	S Y No 11.4 11.5 12.3 12.3 11.5 12.3 11.5 12.3 11.5 12.3 11.5 12.3 11.5 12.3 11.5 12.3 11.5 1	Yes 11.6 11.8 12.5 12.8 12.5
Country: Chain: Weekend: City: Birmingham Cambridge Cardiff Edinburgh Leeds Liverpool	U Ye No 11.2 11.9 12.6 12.3 12.0 12.9	K es Yes 11.7 12.3 12.6 12.4 12.5 13.2	Country: Chain: Weekend: City: Atlanta Boston Chicago Houston Los Angeles Minneapolis	No 13.9 10.7 13.2 12.4 12.4 10.7	U Yes 13.5 10.7 13.1 12.2 12.4 10.7	$\frac{Y}{No}$ 11.4 11.5 12.3 12.3 11.5 12.0	Yes 11.6 11.8 12.5 12.8 12.5 12.4
Country: Chain: Weekend: City: Birmingham Cambridge Cardiff Edinburgh Leeds Liverpool London	U Ye No 11.2 11.9 12.6 12.3 12.0 12.9 13.6	K es Yes 11.7 12.3 12.6 12.4 12.5 13.2 13.7	Country: Chain: Weekend: City: Atlanta Boston Chicago Houston Los Angeles Minneapolis Miami	No 13.9 10.7 13.2 12.4 12.4 10.7 13.6	U Yes 13.5 10.7 13.1 12.2 12.4 10.7 13.9	S Y No 11.4 11.5 12.3 12.3 11.5 12.0 10.5	Yes 11.6 11.8 12.5 12.8 12.5 12.4 10.4
Country: Chain: Weekend: City: Birmingham Cambridge Cardiff Edinburgh Leeds Liverpool London Manchester	$\begin{array}{c} U\\ Y_{0}\\ No\\ \hline \\ 11.2\\ 11.9\\ 12.6\\ 12.3\\ 12.0\\ 12.9\\ 13.6\\ 11.9\\ \end{array}$	K es Yes 11.7 12.3 12.6 12.4 12.5 13.2 13.7 12.0	Country: Chain: Weekend: City: Atlanta Boston Chicago Houston Los Angeles Minneapolis Miami New York	No 13.9 10.7 13.2 12.4 12.4 10.7 13.6 12.1	U Yes 13.5 10.7 13.1 12.2 12.4 10.7 13.9 12.2	$S \\ Y \\ No \\ \hline 11.4 \\ 11.5 \\ 12.3 \\ 12.3 \\ 11.5 \\ 12.0 \\ 10.5 \\ 10.2 \\ \hline 10.2$	Yes 11.6 11.8 12.5 12.8 12.5 12.4 10.4 11.3
Country: Chain: Weekend: City: Birmingham Cambridge Cardiff Edinburgh Leeds Liverpool London Manchester Nottingham	U Ye No 11.2 11.9 12.6 12.3 12.0 12.9 13.6 11.9 12.1	K es Yes 11.7 12.3 12.6 12.4 12.5 13.2 13.7 12.0 12.6	Country: Chain: Weekend: City: Atlanta Boston Chicago Houston Los Angeles Minneapolis Miami New York Portland	No 13.9 10.7 13.2 12.4 12.4 10.7 13.6 12.1 12.6	U Yes 13.5 10.7 13.1 12.2 12.4 10.7 13.9 12.2 12.3	S Y No 11.4 11.5 12.3 12.3 11.5 12.0 10.5 10.2 12.6	Yes 11.6 11.8 12.5 12.8 12.5 12.4 10.4 11.3 13.4
Country: Chain: Weekend: City: Birmingham Cambridge Cardiff Edinburgh Leeds Liverpool London Manchester Nottingham Oxford	U Ye No 11.2 11.9 12.6 12.3 12.0 12.9 13.6 11.9 12.1 12.6	K es Yes 11.7 12.3 12.6 12.4 12.5 13.2 13.7 12.0 12.6 12.3	Country: Chain: Weekend: City: Atlanta Boston Chicago Houston Los Angeles Minneapolis Miami New York Portland Seattle	No 13.9 10.7 13.2 12.4 12.4 10.7 13.6 12.1 12.6 13.0	U Yes 13.5 10.7 13.1 12.2 12.4 10.7 13.9 12.2 12.3 13.1	S Y No 11.4 11.5 12.3 12.3 11.5 12.0 10.5 10.2 12.6 10.4	Yes 11.6 11.8 12.5 12.8 12.5 12.4 10.4 11.3 13.4 11.1

Table A.4: Mean percentage cancellation premia by stars, days of the week and city

Notes: Hotels in France and UK are all chain affiliated. Statistics for some UK cities not included to save space, but available on request.

B Solving the model

In this section, we report the results and corresponding proofs that lead to Proposition 1.

B.1 The optimal tariff menu: the general case

The following lemmas simplify the firm's profit maximization problem:

Lemma B.1 Suppose that PC_{ω} is satisfied for a type ω selecting p_{NR} . Then $IC_{\omega'}$ implies $PC_{\omega'}$ for all types ω displaying $c_{\omega'} > c_{\omega}$.

Proof If $U_{\omega}^{NR} \ge 0$, then $c_{\omega} \ge p_{NR}$. It follows that $U_{\omega'}^{NR} \ge 0$ because $c_{\omega'} > c_{\omega} \ge p_{NR}$. If type ω' selects p_R , then $U_{\omega'}^R \ge U_{\omega'}^{NR} \ge 0$.

Lemma B.2 Suppose that type θS ($\theta = L, H$) selects p_R . Then type θN selects p_R as well, as long as $\pi_{\theta} < 1$.

Proof The proof is by contradiction. Suppose that $U_{\theta S}^R \ge U_{\theta S}^{NR}$ and $U_{\theta N}^{NR} \ge U_{\theta N}^R$. The two conditions can be re-written as:

$$\pi_{\theta} \left[u(v_{\theta} - p_{NR}) - u(v_{\theta} - p_{R}) - u(-p_{NR}) \right] \leq -u(-p_{NR});$$

$$g(\pi_{\theta}) \left[u(v_{L} - p_{NR}) - u(v_{\theta} - p_{R}) - u(-p_{NR}) \right] \geq -u(-p_{NR}).$$

Because $\pi_{\theta} > g(\pi_{\theta})$, the two inequalities are incompatible.

Lemma B.3 Suppose that type LS (LN) selects p_R . Then type HS (HN) selects p_R as well. **Proof** Let us consider the case of sophisticated types first. The proof is by contradiction. Suppose that $U_{LS}^R \ge U_{LS}^{NR}$ and $U_{HS}^{NR} \ge U_{HS}^R$. The two conditions can be re-written as

$$\pi_L \left[u(v_\theta - p_{NR}) - u(v_L - p_R) \right] \le -(1 - \pi_L)u(-p_{NR}) < -(1 - \pi_H)u(-p_{NR});$$

$$\pi_H \left[u(v_H - p_{NR}) - u(v_H - p_R) \right] \ge -(1 - \pi_H)u(-p_{NR}).$$

Due to the concavity of $u(\circ)$, $u(v_H - p_{NR}) - u(v_H - p_R) < u(v_L - p_{NR}) - u(v_L - p_R)$. Therefore, the two inequalities are incompatible. The proof for naive types is obtained substituting $g(\pi_{\theta})$ to π_{θ} .

Lemma B.1 shows that the reservation price for a non-refundable tariff identifies an ordering over type exclusion when such a tariff is part of the equilibrium menu: if type ω is served in equilibrium, then all types ω' for which $c_{\omega'} > c_{\omega}$ must also be served. Lemmas B.2 and B.3 derive from the fact the attractiveness of refundable tariffs is higher for those customers who have more to gain from being insured, because they have a higher subjective probability of not enjoying the service (Lemma B.2) or they have a higher valuation for it and a higher objective probability of not enjoying the service (Lemma B.3).

In the first group of equilibrium configurations, where each tariff is chosen by at least one type, Lemmas B.1-B.3 implies that there are six configurations to consider. For each configuration, we can determine the candidate equilibrium tariffs by setting p_{NR}^* equal to the lowest reservation price for types selecting such a tariff, and p_R^* such that the incentive compatibility constraints of types selecting in equilibrium such a tariff hold, with at least one of them with an equality sign. We also observe that configurations that discriminate between naive and sophisticated consumers of type θ require $\pi_{\theta} < 1$.

We summarize the candidate equilibrium tariffs in the following propositions:

Proposition B.1 Suppose HS, HL and LN select the refundable tariff and LS selects the non-refundable tariff (configuration 1). Then $p_{NR}^* = c_{LS}$ and $p_R^* = v_L$. The firm's expected profit is $v_L(\pi_H N_H + \pi_L N_L(1 - \beta)) + c_{LS}\beta N_L$.

Proof The eight constraints for expected profit maximization problem are:

$\pi_H u(v_H - p_R) \ge \pi_H u(v_H - p_{NR}) + (1 - \pi_H)u(-p_{NR})$	(IC_{HS})
$g(\pi_H)u(v_H - p_R) \ge g(\pi_H)u(v_H - p_{NR}) + (1 - g(\pi_H))u(-p_{NR})$	(IC_{HN})
$g(\pi_L)u(v_L - p_R) \ge g(\pi_L)u(v_L - p_{NR}) + (1 - g(\pi_L))u(-p_{NR})$	(IC_{LN})
$\pi_L u(v_L - p_{NR}) + (1 - \pi_L)u(-p_{NR}) \ge \pi_L u(v_L - p_R)$	(IC_{LS})
$\pi_H u(v_H - p_R) \ge 0$	(PC_{HS})
$g(\pi_H)u(v_H - p_R) \ge 0$	(PC_{HN})
$g(\pi_L)u(v_L - p_R) \ge 0$	(PC_{LN})
$\pi_L u(v_L - p_{NR}) + (1 - \pi_L)u(-p_{NR}) \ge 0$	(PC_{LS})

 PC_{LN} implies PC_{HS} , PC_{HN} and PC_{LS} as from Lemma B.1, whereas IC_{HS} implies IC_{HN} following B.2. PC_{LN} is binding when $p_R = v_L$. We ignore IC_{HS} for now. $p_R = v_L$ implies that IC_{LS} is satisfied if $p_{NR}^* \leq c_{LS}$. If this constraint is binding, then IC_{LN} holds because $c_{LS} \geq c_{LN}$. Finally, if we substitute $p_R = v_L$ and $p_{NR} = c_{LS}$ into IC_{HS} , we obtain

$$\pi_H u(v_H - v_L) \ge \pi_H u(v_H - c_{LS}) + (1 - \pi_H)u(-c_{LS}),$$

which always holds because $c_{LS} \leq v_L$.

Proposition B.2 Suppose HS and HN select the refundable tariff and LS and LN select the non-refundable tariff (configuration 2). Then $p_{NR}^* = c_{LN}$ and $p_R^* = m_2$ where m_2 is the solution of $\pi_H u(v_H - m_2) = \pi_H u(v_H - c_{LN}) + (1 - \pi_H)u(-c_{LN})$. The firm's expected profit is $m_2 \pi_H N_H + c_{LN} N_L$.

Proof The eight constraints of the expected profit maximization program are:

$$\begin{aligned} \pi_{H}u(v_{H} - p_{R}) &\geq \pi_{H}u(v_{H} - p_{NR}) + (1 - \pi_{H})u(-p_{NR}) & (IC_{HS}) \\ g(\pi_{H})u(v_{H} - p_{R}) &\geq g(\pi_{H})u(v_{H} - p_{NR}) + (1 - g(\pi_{H}))u(-p_{NR}) & (IC_{HN}) \\ g(\pi_{L})u(v_{L} - p_{NR}) + (1 - g(\pi_{L}))u(-p_{NR}) &\geq g(\pi_{L})u(v_{L} - p_{R}) & (IC_{LN}) \\ \pi_{L}u(v_{L} - p_{NR}) + (1 - \pi_{L})u(-p_{NR}) &\geq \pi_{L}u(v_{L} - p_{R}) & (IC_{LS}) \\ \pi_{H}u(v_{H} - p_{R}) &\geq 0 & (PC_{HS}) \\ g(\pi_{L})u(v_{L} - p_{NR}) + (1 - g(\pi_{L}))u(-p_{NR}) &\geq 0 & (PC_{LN}) \\ \pi_{L}u(v_{L} - p_{NR}) + (1 - \pi_{L})u(-p_{NR}) &\geq 0 & (PC_{LS}) \end{aligned}$$

 PC_{LN} implies PC_{HS} , PC_{HN} and PC_{LS} following Lemma B.1; IC_{HS} implies IC_{HN} as per Lemma B.2. PC_{LN} is binding for $p_{NR} = c_{LN}$. For $p_R = m_2$, IC_{HS} is binding. Because

$$\pi_H u(v_H - v_L) \ge \pi_H u(v_H - c_{LN}) + (1 - \pi_H)u(-c_{LN}),$$

it follows that $m_2 \geq v_L$, which implies that IC_{LS} and IC_{LN} hold.

Proposition B.3 Suppose HS and HN select the refundable tariff, LS selects the nonrefundable tariff, and LN does not buy (configuration 3). Then $p_{NR}^* = c_{LS}$ and $p_R^* = m_3$ where m_3 is the solution of $\pi_H u(v_H - m_3) = \pi_H u(v_H - c_{LS}) + (1 - g(\pi_H))u(-c_{LS})$. The firm's expected profit is $m_3\pi_H N_H + c_{LS}\beta N_L$.

Proof These are the six constraints for the expected profit maximization problem in this case:

$$\begin{aligned} \pi_{H}u(v_{H} - p_{R}) &\geq \pi_{H}u(v_{H} - p_{NR}) + (1 - \pi_{H})u(-p_{NR}) & (IC_{HS}) \\ g(\pi_{H})u(v_{H} - p_{R}) &\geq g(\pi_{H})u(v_{H} - p_{NR}) + (1 - g(\pi_{H}))u(-p_{NR}) & (IC_{HN}) \\ \pi_{L}u(v_{L} - p_{NR}) + (1 - \pi_{L})u(-p_{NR}) &\geq \pi_{L}u(v_{L} - p_{R}) & (IC_{LS}) \\ \pi_{H}u(v_{H} - p_{R}) &\geq 0 & (PC_{HS}) \\ g(\pi_{H})u(v_{H} - p_{NR}) + (1 - \pi_{L})u(-p_{NR}) &\geq 0 & (PC_{LS}) \end{aligned}$$

 PC_{LS} implies PC_{HS} and PC_{HN} (Lemma B.1), and IC_{HS} implies IC_{HN} as per Lemma B.2. PC_{LS} is binding for $p_{NR} = c_{LS}$. For $p_R = m_3$, IC_{HS} is binding. Moreover, because the following inequality holds:

$$\pi_H u(v_H - v_L) \ge \pi_H u(v_H - c_{LN}) + (1 - \pi_H)u(-c_{LN}),$$

it follows that $m_3 \geq v_L$, and therefore IC_{LS} is verified. Finally, we observe that LN types would obtain a negative expected utility both from the refundable tariff (since $m_3 > v_L$) and the non-refundable tariff (since $c_{LS} > c_{LN}$) as long as $\pi_L < 1$.

Proposition B.4 Suppose HN selects the refundable tariff and HS, LS and LN select the non-refundable tariff (configuration 4). Then, $p_{NR}^* = c_{LN}$ and $p_R^* = m_4$ where m_4 is the solution of $g(\pi_H)u(v_H - m_4) = g(\pi_H)u(v_H - c_{LN}) + (1 - g(\pi_H))u(-c_{LN})$. The expected profit is $m_4\pi_H(1 - \beta)N_H + c_{LN}(\beta N_H + N_L)$.

Proof The eight constraints for expected profit maximization are the following;

$$\begin{aligned} \pi_{H}u(v_{H} - p_{NR}) + (1 - \pi_{H})u(-p_{NR}) &\geq \pi_{H}u(v_{H} - p_{R}) & (IC_{HS}) \\ g(\pi_{H})u(v_{H} - p_{R}) &\geq g(\pi_{H})u(v_{H} - p_{NR}) + (1 - g(\pi_{H}))u(-p_{NR}) & (IC_{HN}) \\ \pi_{L}u(v_{L} - p_{NR}) + (1 - \pi_{L})u(-p_{NR}) &\geq \pi_{L}u(v_{L} - p_{R}) & (IC_{LS}) \\ g(\pi_{L})u(v_{L} - p_{NR}) + (1 - g(\pi_{L}))u(-p_{NR}) &\geq g(\pi_{L})u(v_{L} - p_{R}) & (IC_{LN}) \\ \pi_{H}u(v_{H} - p_{R} &\geq 0 & (PC_{HS}) \\ g(\pi_{H})u(v_{H} - p_{NR}) + (1 - g(\pi_{H}))u(-p_{NR}) &\geq 0 & (PC_{HN}) \\ \pi_{L}u(v_{L} - p_{NR}) + (1 - \pi_{L})u(-p_{NR}) &\geq 0 & (PC_{LS}) \\ g(\pi_{L})u(v_{L} - p_{NR}) + (1 - g(\pi_{L}))u(-p_{NR}) &\geq 0 & (PC_{LN}) \end{aligned}$$

 PC_{LN} implies that all the other participation constraints hold, as per Lemma B.1. PC_{LN} is binding for $p_{NR} = c_{LN}$. For $p_R = m_4$, IC_{HL} is binding. IC_{HL} can be re-written as

$$g(\pi_H) \left[u(v_H - c_{LN}) - u(v_H - m_4) - u(-c_{LN}) \right] = -u(-c_{LN}),$$

which for $\pi_H < 1$ implies:

$$\pi_H \left[u(v_H - c_{LN}) - u(v_H - m_4) - u(-c_{LN}) \right] < -u(-c_{LN}),$$

from which IC_{HS} follows. Because

$$g(\pi)u(v_H - v_L) > \pi u(v_H - c_{LN}) + (1 - \pi)u(-c_{LN}),$$

then $m_4 > v_L$. It follows that IC_{LS} and IC_{LN} are verified, too.

Proposition B.5 Suppose HN selects the refundable tariff, HS and LS select the nonrefundable tariff and LN does not buy (configuration 5). Then, $p_{NR}^* = c_{LS}$ and $p_R^* = m_5$ where m_5 is the solution of $g(\pi_H)u(v_H - m_5) = g(\pi_H)u(v_H - c_{LS}) + (1 - g(\pi_H))u(-c_{LS})$. The firm's expected profit is $m_5\pi_H(N_H(1 - \beta)) + c_{LS}\beta(N_H + N_L)$. **Proof** The six constraints for expected profit maximization are:

$$\begin{aligned} \pi_{H}u(v_{H} - p_{NR}) + (1 - \pi_{H})u(-p_{NR}) &\geq \pi_{H}u(v_{H} - p_{R}) & (IC_{HS}) \\ g(\pi_{H})u(v_{H} - p_{R}) &\geq g(\pi_{H})u(v_{H} - p_{NR}) + (1 - g(\pi_{H}))u(-p_{NR}) & (IC_{HN}) \\ \pi_{L}u(v_{L} - p_{NR}) + (1 - \pi_{L})u(-p_{NR}) &\geq \pi_{L}u(v_{L} - p_{R}) & (IC_{LS}) \\ \pi_{H}u(v_{H} - p_{NR}) + (1 - \pi_{H})u(-p_{NR}) &\geq 0 & (PC_{HS}) \\ g(\pi_{H})u(v_{H} - p_{R}) &\geq 0 & (PC_{HN}) \\ \pi_{L}u(v_{L} - p_{NR}) + (1 - \pi_{L})u(-p_{NR}) &\geq 0 & (PC_{LS}) \end{aligned}$$

From Lemma B.1, PC_{LS} implies PC_{HS} . PC_{LS} is binding for $p_{NR} = c_{LS}$. For $p_R = m_5$, IC_{HL} is binding. We can rewrite IC_{HL} as

$$g(\pi_H) \left[u(v_H - c_{LS}) - u(v_H - m_5) - u(-c_{LS}) \right] = -u(-c_{LS}),$$

which for $\pi_H < 1$ implies:

$$\pi_H \left[u(v_H - c_{LN}) - u(v_H - m_h) - u(-c_{LN}) \right] > -u(-c_{LN}),$$

from which IC_{HS} follows. Moreover because the following inequality holds:

$$g(\pi_H)u(v_H - v_L) > g(\pi_H)u(v_H - c_{LN}) + (1 - g(\pi_H))u(-c_{LN}),$$

then $m_5 > v_L$, so IC_{LS} is verified. Finally, note that LN would derive a negative expected utility both from the refundable tariff $(m_5 > v_L)$ and from the non-refundable tariff because $c_{LS} > c_{LN}$ when $\pi_L < 1$.

Proposition B.6 Suppose HN selects a refundable tariff, HS selects a non-refundable tariff and LS and LN do not buy (configuration 6). Then $p_{NR}^* = c_{HS}$ and $p_R^* = v_H$, and the firm's expected profit is $v_H \pi_H (1 - \beta) N_H + c_{HS} \beta N_H$.

Proof The four constraints for expected profit maximization are the following:

$$\pi_{H}u(v_{H} - p_{NR}) + (1 - \pi)u(-p_{NR}) \ge \pi u(v_{H} - p_{R}) \qquad (IC_{HS})$$

$$g(\pi_{H})u(v_{H} - p_{R}) \ge g(\pi_{H})u(v_{H} - p_{NR}) + (1 - g(\pi_{H}))u(-p_{NR}) \qquad (IC_{HS})$$

$$\pi_{H}u(v_{H} - p_{R}) \ge 0 \qquad (PC_{HS})$$

$$g(\pi_{H})u(v_{H} - p_{NR}) + (1 - g(\pi_{H}))u(-p_{NR}) \ge 0 \qquad (PC_{HN})$$

Suppose that both participation constraints are binding. Then IC_{HS} is also binding and IC_{HN} is satisfied. Finally, note that both LN and LS would derive a negative expected utility both from the refundable tariff (because $v_H > v_L$) and the non-refundable tariff because $c_{HS} > c_{LS} > c_{LN}$.

In the second group of configurations, customers choose only the refundable tariff. In this case, the participation constraints do not depend on the degree of sophistication (because $U_{\theta}^{S,R} \geq 0$ implies $U_{\theta}^{N,R} \geq 0$ and vice versa). It follows that the candidate equilibrium tariffs are determined by fixing the refundable tariff equal to the lowest valuation among the customers served by the firm. This leads to the following Propositions.

Proposition B.7 Suppose HS, HL, LS and LN select the refundable tariff (configuration 7). Then, $p_{NR}^* = p > c_{HS}$ and $p_R^* = v_L$. The firm's expected profit is $v_L(\pi_H N_H + \pi_L N_L)$.

Proposition B.8 Suppose HS and HN select the refundable tariff and LS and LN do not buy (configuration 8). Then, $p_{NR}^* = p > c_{LS}$ and $p_R^* = v_H$. The firm's expected profit is $\pi_H v_H N_H$.

Finally, in the third group of configurations, only the non-refundable tariff is chosen. In this case, given Lemma B.1 above, the candidate equilibrium tariffs are determined by fixing to non-refundable tariff equal to the lowest reservation price among the customers served by the firm. Therefore, we can derive the following Propositions:

Proposition B.9 Suppose HS, HL, LS and LN select the non-refundable tariff (configuration 9). Then $p_{NR}^* = c_{LN}$ and $p_R^* = p > v^H$. The firm's expected profit is $c_{LS}(N_H + N_L)$.

Proposition B.10 Suppose HS, HL and LS select the non-refundable tariff and LS does not buy (configuration 10). Then $p_{NR}^* = c_{LS}$ and $p_R^* = p > v^H$. The expected profit is $c_{LS}(N_H + \beta N_L)$.

Proposition B.11 Suppose HS and HN select the non-refundable tariff and LS and LN do not buy (configuration 11). Then $p_{NR}^* = c_{HN}$ and $p_R^* = p > v^H$. The expected profit is $c_{HN}N_H$.

Proposition B.12 Suppose HS selects the non-refundable tariff and HL, LS and LN do not buy. (configuration 12). Then $p_{NR}^* = c_{HS}$ and $p_R^* = p > v^H$. The firm's expected profit is

 $c_{HS}\beta N_H.$

Based on expected profit comparison, the following Proposition shows that we can restrict our attention to seven candidate equilibria.

Proposition B.13 The candidate equilibrium 7 always guarantees higher expected profits than candidate equilibria 9 and 10. The candidate equilibrium 8 always guarantees higher expected profits than candidate equilibria 6, 11 and 12.

Proof Equilibrium 8 dominates 6 because $v_H \ge c_{HS}$. Equilibrium 7 dominates 9 and 10 and 8 dominates 11 and 12 because $\pi_{\theta}v_{\theta} \ge c_{\theta S}$. (??) can be re-written as $\pi_{\theta} = \frac{-u(-c_{\theta S})}{u(v_{\theta}-c_{\theta S})-u(-c_{\theta S})}$. Multiplying both sides by $\frac{v_{\theta}}{c_{\theta S}}$, we obtain $\frac{\pi_{\theta}v_{\theta}}{c_{\theta S}} = \frac{-u(-c_{\theta S})/c_{\theta S}}{[u(v_{\theta}-c_{\theta S})-u(-c_{\theta S})]/v_{\theta}}$. The right-hand term is greater than or equal to 1 because $u''(\circ) < 0$. $\pi_{\theta}v_{\theta} \ge c_{\theta S}$ then follows.

B.2 The optimal tariff menu: the case of $\pi_L \to 1$ and $\pi_L \to \overline{\pi}$

In this Section we provide the characterization of the equilibrium for $\pi_L \to 1$ and $\pi_H \to \overline{\pi}$. We observe that $\lim_{\pi_L \to 1} c_{LN} = \lim_{\pi_L \to 1} c_{LS} = v_L$. which implies $m_2 = m_3$ and $m_4 = m_5$. The expected profits are summarized Table B.1 below.

Equilibrium candidate:	Expected profits:
1	$v_L \overline{\pi} N_H + v_L N_L$
2	$m_2 \overline{\pi} N_H + v_L N_L$
3	$m_3 \overline{\pi} N_H + v_L \beta N_L$
4	$m_4\overline{\pi}(1-\beta)N_H + v_L(\beta N_H + N_L)$
5	$m_5\overline{\pi}(N_H(1-\beta)) + v_L\beta(N_H+N_L)$
7	$v_L \overline{\pi} N_H + v_L N_L$
8	$\overline{\pi}v_H N_H$

Table B.1: Expected profits for each equilibrium configuration

The following Proposition shows that in this case we can further restrict our attention to three candidate equilibria only.

Proposition B.14 The candidate equilibria 2 always guarantee higher expected profits than candidate equilibria 1,7 and 3. The candidate equilibrium 4 always guarantees a higher expected profit than 5.

Proof 2 dominates 1 and 7 because $m_2 > v_L$, and 3 because $\beta < 1$. 4 dominates 5 because $\beta < 1$.

Candidate equilibria 4, 2 and 8 correspond to Configuration I, II and III respectively. The condition that makes Configuration I the optimal menu based on expected profit comparison is described in the main text.

B.3 Proof of Lemma 1

Suppose that $\overline{\pi}v_H N_H > \overline{\pi} m_{II}N_H + v_L N_L$. This condition implies that configuration III yields higher profits than Configuration II for $\pi_L \to 1$ and $\pi_H \to \overline{\pi}$. Therefore, if the menu choice is restricted to cases without naiveté-based discrimination (Configuration II and III), in the optimal menu only high-valuation types are served, and pay a price equal to v_H . In this case, the market is not fully covered, and the utility of low-valuation types is zero. With naiveté-based discrimination, i.e. if Configuration I is feasible and profitable, the naive high-valuation types pay m_I , lower than v_H , and the same is for the sophisticated types, since $v_L < v_H$. Low-valuation types are indifferent under Configuration I and III.

Now consider $\overline{\pi}v_H N_H < \overline{\pi} m_{II} N_H + v_L N_L$. Absent naiveté-based discrimination, the market is fully covered in equilibrium. If naiveté-based discrimination is considered (and profitable), a NH type ends up paying m_I , which is higher than m_{II} : therefore, he is worse off. The HS type is better off, since $v_L < m_I$. As in the previous case, low types are indifferent.

C A model with competition

We sketch a tractable model of competitive price discrimination, following Stole (1995) and Valletti (2002). We assume that consumers are located along a line of unit length, with point x being a consumer's position, while two firms are located at the extremes of the line (points 0 and 1). The distribution of consumers' "augmented" type (ω) does not depend on x. If θ is the consumer willingness to pay and x her position, then the utility function $u(\circ)$ when she buys from the firm located in 0 is given by $v_{\theta} - p - tx$, while it is $v_{\theta} - p - t(1 - x)$ if she buys from the firm located in 1. As in Stole (1995) and Valletti (2002), we assume that the "horizontal" parameter x is observable, so that firms can offer refundable and nonrefundable tariffs contingent on x. In equilibrium, each firm serves the half of the market which is the closest to it, while the other firm fixes the lowest possible tariffs (in our setting, both equal to zero) at these locations. From now on we focus on the case of small cancellation probability ($\pi_L \to 1$ and $\pi_H \to \overline{\pi} < 1$) and Configuration I, corresponding to naiveté-based discrimination. Since firms are symmetric, we consider the firm located at the left extreme (point 0) only. In addition to meeting the constraints for the monopoly case, the firm must guarantee each consumer a utility which is at least the utility provided by other firm, so that both the refundable and non-refundable price must be lower than t(1-2x). We define these conditions as the competition constraints.

Ignoring competition constraints, Configuration I now entails $p_{NR}^* = v_L - tx$ and $p_R^* = m_I$ where m_I is the solution to $g(\pi_H)u(v_H - m_I) = g(\pi_H)u(v_H - v_L) + (1 - g(\pi_H))u(-v_L + tx)$. If competition is mild, i.e. if x is low and/or t is high, competition constraints are not binding, so that the monopoly case is unaffected. If competition is intense, i.e. if x is high and/or t is low, both constraints are binding. It follows that the cancellation premium is zero. For an intermediate level of competition intensity, the competition constraint is binding for the high type only. It follows that $p_{NR}^* = v_L - tx$ and $p_R^* = t(1-2x)$. This requires $v_L - tx < t(1-2x)$, i.e. $v_L < t(1-x)$. In this case, the cancellation premium is given by $p_R^* - p_{NR}^* = t(1-x) - v_L > 0$.

D A model with a capacity constraint

In this section, we outline an extension of the model that includes a capacity constraint. We assume that the firm can serve up to K customers; K therefore represents the available capacity at the beginning of the period. Consistently with the set-up of the basic model, the firm is myopic and maximizes expected profits in each period; for this reason, we omit the time index for capacity just as we did for the other variables. In addition, we focus on the case of $\pi_L \to 1$ and $\pi_H \to \overline{\pi}$, and further restrict the analysis to $\beta \geq 1/2$. By assuming that the fraction of sophisticated consumers is "large", we consider the area of the parameter space for which the conditions for the existence of naiveté-based discrimination are less likely to be met. A fortiori, our conclusions should hold for lower values of β . Finally, we assume that the firm adopts a quantity-based revenue management approach, by allocating capacity to each tariff. Because there is no uncertainty in demand, the firm serves fully the group of customers purchasing the tariff associated with higher expected profits; they then use the residual capacity to sell the other tariff. For $K \geq N_H + N_L$, the analysis is just the same as the one presented in Section 4 in the main text. Here we consider $K < N_H + N_L$.

To solve the model, we first observe that, in each of the twelve configurations considered as candidate equilibria in Appendix Section B, the tariffs that maximize expected profits are unrelated to the number of consumers of each type served; in contrast, expected profits do, of course, depend on the number of consumers per type. To determine the equilibrium, we therefore proceed as follows:

- For each configuration, we determine i) the condition on K that makes a configuration *admissible*, i.e., such that the firm can serve (at least partially) the consumer types that are supposed to be served under that configuration; and ii) the corresponding expected profits, as a function of K.
- For each value of K, we compare the expected profits of all the admissible configurations to identify the optimal menu.

For each configuration, the condition for admissibility and the corresponding expected profits are as follows:

(Configuration 1) In this case, consumer types HS, HL and LN select the refundable tariff, whereas LS customers select the non-refundable tariff. The condition for this configuration to be admissible is $K > N_H + N_L(1-\beta)$. The firm's expected profit is $v_L K \pi_{R1}^* + v_L \beta N_L$, where $\pi_R^* = \overline{\pi} \frac{N_H}{N_H + N_L(1-\beta)} + \frac{N_L(1-\beta)}{N_H + N_L(1-\beta)}$ is the average cancellation probability for the consumers choosing the refundable tariff.

(Configuration 2) In this case, HS and HN select the refundable tariff and LS and LN choose the non-refundable tariff. The condition for admissibility of this configuration is $K > N_H$. The expected profit is $m_2 \overline{\pi} N_H + v_L (K - N_H)$. Note that with $\pi_L \to 1$ and $\pi_H \to \overline{\pi}$, configuration 3 is equivalent to configuration 2.

(Configuration 4) HN customers select the refundable tariff while HS, LS and LN opt for the non-refundable tariff. The condition for this configuration to be admissible is $K > N_H(1-\beta)$. The expected profit is $m_4\overline{\pi}(1-\beta)N_H + v_L(K-(1-\beta)N_H)$. In the case of $\pi_L \to 1$ and $\pi_H \to \overline{\pi}$ on which we focus in this extension, configuration 5 is equivalent to configuration 4.

(Configuration 6) Customers of type HN select a refundable tariff, HS selects a nonrefundable tariff, and LS and LN do not buy. This case requires $K > N_H(1 - \beta)$ to be admissible. The expected profit is $v_H \overline{\pi}(1 - \beta)N_H + c_{HS} \min\{\beta N_H; K - (1 - \beta)N_H\}$.

(Configuration 7) In this case, all consumer types select the refundable tariff. This requires $K > N_H$. The firm's profit is $v_L K \pi_{R2}^*$, with $\pi_{R2}^* = \overline{\pi} \frac{N_H}{N_H + N_L} + \frac{N_L}{N_H + N_L}$.

(Configuration 8) HS and HN types select the refundable tariff and LS and LN types do not buy. This configuration is always admissible. The expected profit is $\pi v_H \min\{K; N_H\}$.

(Configuration 9) In this case, all four types choose the non-refundable tariff. This configuration requires $K > N_H + N_L\beta$ t be admissible. The expected profit is $v_L K$. (Configuration 10) HS, HL and LS types select the non-refundable tariff, whereas LN types do not buy. The admissibility condition is $K > N_H$, and the expected profit is $v_L \min\{K; N_H + \beta N_L\}$.

(Configuration 11) In this case, HS and HN customers select the non-refundable tariff, whereas LS and LN do not buy. The condition for this configuration to be admissible is $K > \beta N_H$. The expected profit is $c_{HN} \min\{K; N_H\}$.

(Configuration 12) HS customers buy the non-refundable tariff while HL, LS and LN do not buy. This configuration is always admissible, and will lead to an expected profit of $c_{HS} \min\{K; \beta N_H\}$.

Expected profit comparisons for each value of K lead to the following results.

- 1. If $K \leq (1 \beta)N_H$, the only admissible configurations are (8) and (12). Configuration (8) always guarantees higher expected profits than (12) because $\overline{\pi}v_H > c_{HS}$.
- 2. If $(1-\beta)N_H < K \leq \beta N_H$, the admissible configurations are (4), (6), (8) and (12), with configuration (8) dominating the others because the condition for (8) yielding higher expected profits than (6) is $K > (1-\beta)N_H$, and the condition for (8) to be superior to (4) is $K > \frac{\overline{\pi}m_4 v_L}{\overline{\pi}v_H v_L}(1-\beta)N_H$. This condition always holds because $\frac{\overline{\pi}m_4 v_L}{\overline{\pi}v_H v_L} < 1$ is implied by $\overline{\pi}v_H > \overline{\pi}m_4 > v_L$ (the second inequality is demonstrated in Escobari and Jindapon (2014).
- 3. If $\beta N_H < K \leq N_H$, the admissible configurations are (4), (6), (8), (11) and (12), with configuration (8) being again the dominating one. This occurs because (8) is preferred to (11) under $\overline{\pi}v_H > c_{HN}$.
- 4. If $N_H < K \leq N_H + (1 \beta)N_L$, the admissible configurations are (2), (4), (6), (7), (8), (10), (11) and (12). Configuration (8) dominates (10) because $\overline{\pi}v_H > v_L$. In turn, (10) yields higher expected profits than (7) because $\pi_{R2}^* < 1$. For configuration (4) to be the one yielding the highest expected profits, the requirement is that $K > N_H(1 - \beta) + N_H \frac{\overline{\pi}}{v_L}(v_H - m_4(1 - \beta) \text{ and } \overline{\pi} [m_4(1 - \beta) - m_2] + v_L\beta > 0.IfN_H + (1 - \beta) < K \leq N_H + \beta N_L$, the admissible configurations are (1), (2), (4), (6), (7), (8), (10), (11) and (12). (1) is dominated by (10) because $\pi_{R1}^* < 1$. The conditions for Configuration (4) to the one with the highest expected profits are the same as before.
- 6. If $\beta N_L + N_H < K \leq N_H + N_L$, all configurations are admissible. Configuration (9) is dominated by (2) since $\overline{\pi}m_2 > v_L$. The conditions for configuration (4) to be the one with the highest expected profit are the same as before.

The following Proposition describes the condition under which configuration 4, the one that exhibits naiveté-based discrimination, is the optimal one.

Proposition D.1 If $K < N_H$, Configuration (4) is never the optimal configuration. If $K > N_H$, configuration (4) is optimal if $K > N_H(1-\beta) + N_H \frac{\overline{\pi}}{v_L}(v_H - m_4(1-\beta))$ and $\overline{\pi} [m_4(1-\beta) - m_2] + v_L \beta > 0$.

References

- Escobari, D. and P. Jindapon (2014). Price Discrimination through Refund Contracts in Airlines. International Journal of Industrial Organization 34(3), 1–8.
- Stole, L. A. (1995). Nonlinear pricing and oligopoly. Journal of Economics and Management Strategy 4(4), 529–562.
- Valletti, T. (2002). Location choice and price discrimination in a duopoly. *Regional Science* and Urban Economics 32(3), 339–358.