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Direct and converse applications:
two sides of the same coin?

Daniele Molinini
Department of History and Philosophy of Science, University of Lisbon

Abstract
In this paper I present two cases, taken from the history of science,
in which mathematics and physics successfully interplay. These cases
provide, respectively, an example of the successful application of math-
ematics in astronomy and an example of the successful application of
mechanics in mathematics. I claim that an illustration of these cases
has a twofold value in the context of the applicability debate. First,
it enriches the debate with an historical perspective which is largely
omitted in the contemporary discussion. Second, it reveals a com-
ponent of the applicability problem that has received little attention.
This component concerns the successful application of physical prin-
ciples in mathematical practice. With the help of the two examples,
in the final part of the paper I address the following question: are suc-
cessful applications of mathematics to physics (direct applications)
and successful applications of physics to mathematics (converse appli-
cations) two sides of the same problem?

Keywords: Applicability of mathematics; mathematical practice; physical principles;
Euclidean geometry; mechanics; Archimedes; Aristarchus.

1 Introduction

Since the publication of Eugene Wigner’s paper “The Unreasonable Effec-
tiveness of Mathematics in the Natural Sciences” (1960), the philosophical
literature on the applicability of mathematics in science has rapidly increased
and several accounts have been proposed.1 The goal of the present paper is to

1See, for instance, the accounts given in Steiner 1998, Pincock 2004, Bueno and Coly-
van 2011, Rizza 2013, Bueno and French 2018 and McCullough-Benner 2019. In recent
years, the most influential picture of applied mathematics has been the so-called ‘mapping
account’ view, in which an explanation of the applicability of mathematics in science is
given in terms of mappings (like homomorphisms, epimorphisms, and monomorphisms)
that are established between mathematics and the empirical systems studied (e.g., see
Bueno and Colyvan 2011 and Bueno and French 2018).
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contribute to the applicability debate along two separate, although intercon-
nected, directions of investigation: one more historical, which draws on the
examples presented in sections 2 and 3, and the other of more philosophical
nature, examined in the remaining sections.

First, in section 2, I will illustrate an example of successful application
of mathematics that is taken from the history of science: Aristarchus’ ap-
plication of Euclidean geometry to estimate the distance of the Earth from
the Sun in terms of the distance of the Earth from the Moon. Such example
provides a clear and fascinating case for the success of Euclidean geometry
in astronomy. Next, in section 3, I shall present another case of applica-
tion: Archimedes’ application of the law of the lever in mathematics, to find
the area of a parabolic segment. Both these examples, which have not been
discussed before in the context of the applicability problem, involve a suc-
cessful interplay between mathematics and physics. Nevertheless, there is an
essential difference between them. Aristarchus’ case is a case of application
of mathematics to physics. Archimedes’ case, on the other hand, provides
a clear example of how physics (in the form of principles and methods) is
sometimes applied with success to mathematics.

One motivation for presenting the two cases is that they may serve as
a step towards a more broader, historically informed, picture of the appli-
cability problem. Indeed, examples as those presented here bring into the
debate more material for case-study analysis and also an historical perspec-
tive which, I believe, is largely ignored in the contemporary discussion. But
there is also another motivation for my choice. As I shall maintain in sec-
tions 4 and 5, the significance of these examples stretches far beyond their
historical value and reaches the philosophical debate.

Until now, discussions on the applicability problem have focused on the
successful application of mathematics in science. Call this the ‘direct ap-
plicability problem’, and ‘direct applications’ the successful applications of
mathematics in science. The case presented in section 2 provides an exemplar
of a direct application. Nevertheless, there is an aspect of the applicability
problem that has has received very little attention. This aspect has to do with
the successful use of physical considerations in mathematics. Call ‘converse
applications’ these successful applications (of physics to mathematics) and
‘converse applicability problem’ the philosophical problem that stems from
them, namely the problem of accounting for the effectiveness of (methods
and ideas that are proper to) physics in mathematics.2

Although the direct applicability problem is generally seen as the appli-

2The converse applicability problem is acknowledged in Ginammi 2018. Ginammi con-
siders different kinds of applicability involving mathematics and physics. Among these,
he explicitly addresses applications of physics to mathematics, which he calls ‘physics-to-
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cability problem, many examples of converse applications can be found in
scientific practice. Archimedes’ use of the law of the lever in mathematics
is one of these. Such examples clearly show how the converse applicabil-
ity problem is an essential, though less known and less studied, component
of the philosophical analysis of the successful interplay between science and
mathematics. Hence, while in section 4 I shall discuss two distinct criteria
to evaluate the success of direct and converse applications, in section 5 I
shall contrast the two examples introduced in sections 2 and 3 to address
the following question: are converse and direct applications two sides of the
very same problem? I won’t propose a clear-cut answer to this question but
I shall show how the study of direct applications can benefit from an inves-
tigation of the converse problem. Finally, in the Conclusions, I will resume
my analysis and point to some aspects of the applicability debate that I left
out of my analysis.

2 An early example of direct application

The example of applied mathematics illustrated here is taken from the work
of the mathematician Aristarchus of Samos. Aristarchus lived in the 3rd cen-
tury BCE, during the early Hellenistic period, and he is often remembered
for having been the first to put forward the heliocentric hypothesis. Never-
theless, historians of science and mathematics agree that Aristarchus’ major
contributions come from his only extant treatise, On the Sizes and Distances
of the Sun and the Moon (henceforth On Sizes), which is built on the classi-
cal geocentric assumption that the Sun and the Moon move in circles round
the Earth as center. Here I will present one proposition from such treatise,
together with the relative demonstration.3

Before addressing the proposition, let’s consider the assumptions that
Aristarchus uses to prove it. At the beginning of the treatise, in purely Eu-
clidean style, Aristarchus lists six hypothesis that are used to prove all the
propositions of On Sizes. The hypothesis can be divided into two types:
geometric and computational (Berggren and Sidoli 2007). The geometric
hypothesis make assumptions about the celestial world that allow the math-
ematician to construct a geometric diagram. The computational hypothesis
make assumptions about the physical world which allow the application of
numerical parameters to the geometric models and are then used to derive

math applications’. In sections 4 and 5, I shall bring up Ginammi’s analysis and discuss
some of its aspects in the context of the present work.

3In my presentation of Aristarchus’ proof I will follow Thomas Heath’s edition of On
Sizes (Heath 2004).
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Figure 1

numerical solutions to the problems at hand. Here we are concerned with
four of these hypothesis (H1-H3, which are geometric, and H4, which is com-
putational):

H1 The Moon receives its light from the Sun.

H2 We can consider the Earth as a point and as the center of the lunar orbit.

H3 When the Moon is at quadrature the circle that divides the dark side from
the bright side lies in the same plane as our eye.

H4 When the Moon is at quadrature the angle between the Moon and the Sun
viewed from the Earth is 87◦.

Let’s now focus on Proposition 7, which is seen by historians of mathematics
as one of the most important theorems in the book. The proposition provides
bounds for the solar distance in terms of multiples of the lunar distance:

Proposition 7. The distance of the Sun from the Earth is greater than 18
times, but less than 20 times, the distance of the Moon from the Earth.

Let A be the position of the Sun, B the position of the Earth and C
that of the Moon. BA is the distance Earth-Sun and BC is the distance
Earth-Moon. The geometric configuration is obtained from hypothesis H1-
H4 and is represented by the triangle in Figure 1, where ∠BCA = 90◦ and
∠CBA = 87◦ (therefore ∠BAC = 3◦).

Aristarchus’ proof is divided into two parts: first, he proves that the
distance of the Sun from the Earth is greater than 18 times the distance
of the Moon from the Earth (i.e., BA > 18BC) ; next, he proves that the
distance of the Sun from the Earth is less than 20 times the distance of the
Moon from the Earth (i.e., BA < 20BC). Here I will consider only his first
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Figure 2 Figure 3

demonstration, which is independent of the second and which provides a case
of successful application of mathematics in astronomy.4

Draw the square �ABEF and extend BC to an intersection with EF
(Figure 2). Call H the point of intersection. Next, draw the diagonal BF of
the square �ABEF . Thus ∠EBF = 45◦. Let BG the line that bisects the
angle ∠EBF = 45◦ and G the point of intersection of the angle bisector with
the side EF of the square. We will therefore have that ∠EBG = ∠GBF =
22.5◦.

Find M , which is the midpoint of BE, and D, which is the point that
results from the intersection of BH with the circle that has radius BM
and center M (Figure 3). If we join points D and E, we have that the
two triangles 4BAC and 4BED are congruent because two angles and the
included side of 4BAC are equal to two angles and the included side of
4BED: ∠BAC = ∠EBD, ∠ABC = ∠BED and BA = BE.5 Therefore,
CA = BD, BA = BE and BC = ED.

So far, we have obtained the following values for angles ∠EBF , ∠EBG

4Aristarchus’ first result is correct, since the actual average distance of the Earth to the
Sun in terms of its average distance to the Moon is 389. On the other hand, Aristarchus’
conclusion that the distance of the Sun from the Earth is less than 20 times the distance
of the Moon from the Earth is, although obtained through a correct mathematical proof,
false. The source of error lies in what Aristarchus assumes in hypothesis H4, namely that
when the Moon is at quadrature the angle between the Moon and the Sun viewed from
the Earth is 87◦ (∠CBA in Figure 1). The actual value of angle ∠CBA is about 89◦51′.

5Angles ∠BAC and ∠EBD are congruent. In fact, ∠EBD = ∠EBA−∠CBA, where
∠EBA = 90◦ and ∠CBA = 87◦. Thus, ∠EBD = 3◦ and it is equal to ∠BAC.
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Figure 4 Figure 5

and ∠EBH:

∠EBF = 45◦ (that is, 1
2

of 90◦)

∠EBG = ∠GBF = 22.5◦ (that is, 1
4

of 90◦)

∠EBH = ∠BAC = 3◦ (that is, 1
30

of 90◦)

Therefore,

∠EBG
∠EBH

=
1
4
1
30

=
15

2

Now, since we know that GE : HE > ∠EBG : ∠EBH (proved by Euclid in
his Optics) and ∠EBG : ∠EBH = 15 : 2, we have that GE : HE > 15 : 2.

Draw the circle of radius BA and center B, and call I the point of in-
tersection of this circle with the diagonal BF (Figure 4). Draw the line IG
perpendicular to the diagonal BF , passing through point I. This line in-
tersects the side EF at point G. Since 4(BEG) = 4(BGI), we have that
IG = GE.6

Now we draw the line perpendicular to the diagonal BF at point F and
the line perpendicular to the line IG at G (Figure 5). We get a square,
�(IGQF ), of side IG (which is equal to GE) and diagonal FG.

64(BEG) = 4(BGI) because two sides and the included angle of 4(BEG) are equal
to two sides and the included angle of 4(BGI): BE = BI, BG is common to the two
triangles and ∠EBG = ∠GBI.
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Figure 6

Let the square �(FGKN) be constructed on FG (Figure 6). Since FG is
the diagonal of �(IGQF ), by Pythagoras’ theorem we have that �(FGKN)
is twice �(IGQF ).7 This is equivalent to say that FG 2 : IG 2 = 2, and also
that FG 2 : GE 2 = 2 (since, as we have seen, IG is equal to GE).

At this point we want to evaluate the ratio FE : GE. First, we write FE
as the composition of GE and FG. Next, we observe that the ratio FG : GE
is greater than the ratio 7 : 5 (i.e., FG : GE > 7 : 5).8 Thus we have the
following expression:

FE

GE
=
GE + FG

GE
=
GE

GE
+
FG

GE
= 1 +

FG

GE
> 1 +

7

5

Hence

FE

GE
>

12

5

Since FE : GE > 12 : 5 and GE : HE > 15 : 2, we can evaluate the ratio
FE : HE in the following way:

FE

HE
=
FE

GE
· GE
HE

>
12

5
· 15

2
7The diagonal FG divides the square �(IGQF ) into two isosceles triangles: 4(GIF )

and 4(GQF ). If we apply the Pythagorean theorem to 4(GIF ), we get that FG 2 =
2IG 2, which is equivalent to say that �(FGKN) is twice �(IGQF ).

8Aristarchus remarks that FG 2 : GE 2 = 2 and 2 > 49 : 25. Therefore FG 2 : GE 2 >
49 : 25, which gives the inequality FG : GE > 7 : 5.
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Hence

FE

HE
> 18

Now, since BH > BE and BE = FE, we also have that BH > FE.
Furthermore, FE : HE > 18 and BH > FE, and therefore BH : HE > 18.

Right triangles 4(BAC) and 4(BEH) are similar because their angles
are congruent (∠ACB = ∠BEH,∠BAC = ∠EBH and ∠ABC = ∠BHE).
Thus, the corresponding sides are in proportion: BA : BH = BC : HE. If
we write the last proportion found as BH : HE = BA : BC and we consider
that BH : HE > 18, we get our final result:

BA

BC
> 18

We have proved that BA > 18BC, namely that the distance of the Sun from
the Earth is greater than 18 times the distance of the Moon from the Earth.

3 An early example of converse application

In the previous section we saw an example of direct application of mathemat-
ics. More precisely, we saw how Euclidean geometry is applied in astronomy
to evaluate the relative distances of the Sun and the Moon from the Earth.
In this section I will report an early example of converse application. As
the previous case, also the example below involves Euclidean mathematics.
Nevertheless, contrary to what we have seen with Aristarchus’ Proposition
7, we will have that a mathematical result is reached with the use of physical
considerations (in Aristarchus’ case we had an opposite scenario: a result
concerning the physical world was obtained through a purely mathematical
demonstration).

Although many recent textbooks in mathematics contain examples of how
physics (mainly mechanics) can be used with success in mathematics (e.g.,
Uspenskii 1961, Kogan 1974 and Levi 2009), the interest in converse appli-
cations (of physics to mathematics) can be traced back to Archimedes and
his treatise The Method of Mechanical Theorems, for Eratosthenes (hence-
forth Method). In this work, which is a private communication to Eratos-
thenes, Archimedes shows how the application of some mechanical principles
in mathematics has led him to the discovery of several mathematical results.

The first result of the Method is found in Proposition 1 and has to do
with the area of a parabolic segment (i.e., the region bounded by a parabola
and a line): any segment of a parabola is four-thirds of the triangle whose
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Figure 7

base is the line that bounds the parabola and whose height is the segment
that is parallel to the axis of symmetry of the parabola and that joins the
middle point of the base to a point on the parabola. A geometric proof
of this proposition is given by Archimedes in his treatise Quadrature of the
Parabola. Nevertheless, in the Method he offers an argument that shows
how, combining geometric results with the law of the lever, he was led to the
mathematical discovery.

To see how Archimedes reached a mathematical conclusion using physical
considerations, let’s have a look at his treatment as it appears in the Method.9

Consider a parabolic segment ABC (henceforth ABCps), bounded by the
straight line AC and the parabola γ (Figure 7). Let AC be bisected in D and
DB be drawn parallel to the axis of symmetry, or diameter, of the parabola
(the dashed line in Figure 7). Now join AB and BC. Archimedes shows that
the area of the parabolic segment ABCps is equal to four-thirds the area of
the triangle 4ABC inscribed in the parabola.

From A draw the straight line AKZ parallel to DB (see Figure 8). Line
AKZ meets the tangent to the curve at C in Z and the straight line CB in
K. Point E is the point of intersection of lines CZ and DB. Extend now
line CK to H such that CK = KH. Next, consider an arbitrary point O on
AC and draw a straight line parallel to DB, which meets the parabola γ in
P , CK in N and CZ in M .

Since ABCps is a parabolic segment, CE its tangent and CD half of the
chord AC parallel to the tangent to the parabola at B, then DB = BE.10

9In this paper I am adopting Jan Dijksterhuis’ exposition of the Method (Dijksterhuis
1987).

10This result, concerning the property of the subtangent, is stated in the Quadrature of
the Parabola, Proposition 2, where Archimedes mentions that the result was obtained by
Aristaeus and Euclid in their treatises on conic sections (Heath 2009, p. 235). The chord
AC is parallel to the tangent to the parabola at B because D is the middle point of AC
and DB is parallel to the axis of the parabola (this result is also stated in the Quadrature

9



Figure 8

For this reason, and because AZ and OM are both parallel to DE, we
also have that ON = NM and AK = KZ.11 Now, since CA : AO =
MO : OP (proved in Quadrature of the Parabola, Proposition 5), CA :
AO = CK : KN (application of Euclid’s Elements, Proposition 2 from
Book VI and Proposition 18 from Book V) and CK = KH, we have that
KH : KN = MO : OP .

After this purely geometrical treatment, Archimedes begins to introduce
physical considerations. More precisely, he uses some lemmas on centers of
gravity that he mentions at the beginning of the Method and that have been
proved in his treatise On the Equilibrium of Planes. First, he observes that
point N is the center of gravity of the straight line OM (the center of gravity
of a straight line is its middle point). Therefore, if we take a segment LT
equal to OP with H as its center of gravity (so that LH = HT ), LT will
be in equilibrium with OM . Indeed, using the law of the lever (proved by
Archimedes in On the Equilibrium of Planes, Propositions 6 and 7 of Book
I), we can observe that HN is divided into segments (HK and KN) which
are inversely proportional to the ‘weights’ LT and MO, namely in such a

of the Parabola, Proposition 1).
11Here Archimedes is implicitly applying three results obtained by Euclid in the Ele-

ments: Proposition 4 of Book VI and Propositions 11 and 9 of Book V.
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way that HK : KN = MO : LT , so that K is the center of gravity of the
combined weight of the two.12

Thus, Archimedes sees the straight line HN as an idealized lever, of arms
HK and KN , that remains in equilibrium under the influence of two weights.
The two weights in question are the two segments LT and MO, which are
imagined as real weights such that the longer segment MO has greater weight
than the shorter segment LT .

We can now extend the result obtained for MO and LT , which is equal to
OP , to all the segments that are taken in the same way of MO and OP . In
fact, all the straight lines that can be drawn in the triangle 4AZC parallel
to MO will be in equilibrium with their portions cut off from them by the
parabola, when transferred to H (as we did for OP ). K will be the center
of gravity of the combined weight of each straight line and its portion. Now,
since the triangle 4AZC is made up of all the parallel lines inside it, and
since the parabolic segment ABCps consists of all the parallel lines drawn
inside it in the manner of OP , the triangle 4AZC will balance about the
point K the parabolic segment placed about H as center of gravity, so that
K is their common center of gravity.

After having established the equilibrium (with center of gravity K) be-
tween the triangle 4AZC and the parabolic segment ABCps transferred to
H, Archimedes finds the center of gravity of triangle 4AZC. Since CK is a
median of 4AZC, if we take point X on CK such that CK = 3XK, then
X will be the center of gravity of 4AZC.13

Since there is equilibrium between the triangle 4AZC and the parabolic
segment ABCps about H, and their center of gravity is K, we have the
following result: the triangle 4AZC is to the parabolic segment ABCps

transferred to H as its center of gravity as HK is to KX (that is, 4AZC :
ABCps = HK : KX). Now, since HK = KC = 3KX, then the triangle
4AZC is three times the segment of parabola ABCps. Moreover, 4AZC is
four times the triangle 4ABC, since ZK = KA and AD = DC.14 Hence, if

12The law of the lever, found by Archimedes in the treatise On the Equilibrium of Planes,
states that bodies placed on opposite sides of the fulcrum are in equilibrium at distances
reciprocally proportional to their weights. For instance, if two bodies of masses m1 and
m2 placed on the arms of a straight lever of fulcrum K, and if d1 and d2 are the distances
of the bodies’ centers of mass from the fulcrum, then the two bodies will balance just in
case m1/d2 = m2/d1.

13The point of intersection of the medians of a triangle divides each median into segments
with a 2 : 1 ratio. Thus, by taking point X on CK such that CK = 3XK, we find the point
of intersection of the medians. But the point where the three medians of the triangle meet
is also the center of gravity of the triangle, as Archimedes proves in his On the Equilibrium
of Planes, Proposition 14 of Book I (Heath 2009, p. 201).

14The result is obtained through an application of Euclid’s Elements, Proposition 1 of
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4AZC = 3ABCps and 4AZC = 44ABC, we can conclude that

3ABCps = 44ABC

We have thus shown that the parabolic segment ABC is four-thirds of the
triangle ABC.

4 Successful applications

Aristarchus’ estimate of the distance of the Sun from the Earth and Archimedes’
treatment in Proposition 1 represent two cases of application. The first is
a case of application of mathematics to physics (more precisely, astronomy)
and the result obtained concerns the concrete entities of the latter discipline
(some astronomical objects, together with their relative distances). The sec-
ond example, on the other hand, is a case of application of a physical law
(the law of the lever) in pure mathematics, and the result reached is a purely
mathematical one (it is about geometrical entities and relations between
them). But now the question arises as to how can we say that these appli-
cations are successful. In the present section I offer two criteria to evaluate
the effectiveness of mathematics and physics in such cases.

Before moving on with a presentation of these criteria, it is important
to clarify in what sense Archimedes’ case is an example of application of
physics in mathematics. What Archimedes does in his treatment is finding
a mathematical proposition. Nevertheless, at the end of his discussion of
Proposition 1, he remarks that the treatment he has just presented cannot
be said to be a proof of the result. Rather, he says, it creates a certain
impression that the conclusion is true:

This as not therefore been proved by the above, but a certain
impression has been created that the conclusion is true. (Dijk-
sterhuis 1987, p. 318)

Thus, we can consider that, in Archimedes, the application of physics in
mathematics amounts to the use of physics to discover a mathematical fact.
This sense of ‘application’ well reflects the way in which Archimedes sees the
mechanical-mathematical arguments given in the Method, which he explicitly
considers as tools to “discover” a mathematical fact (Dijksterhuis 1987, p.
315). Moreover, it also mirrors the way in which historians of mathematics
look at Archimedes’ way of proceeding in the Method. For instance, Reviel

Book VI.
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Netz and William Noel consider Archimedes’ way of finding mathematical
results in the Method as an “act of magic no less spectacular [than the act of
finding physical results through pure mathematics]. It is matter-over-mind—
physics discovering a mathematical fact. This is done in the Method” (Netz
and Noel 2007, p. 148; my emphasis).

More generally, I take the application of physics as the use of physics to
discover a mathematical fact. Such process of discovery does not coincide
with the demonstrative process that is typically found in mathematical prac-
tice. In fact, the method by which mathematicians are convinced of the truth
of a result in many cases is quite different from the way in which that result is
established. The process through which mathematical results are discovered
may involve non-demonstrative tools such as the ability to reason visually on
a diagram or the ability to trace similarities between different mathematical
theories (see, e.g., Lakatos 1976 and Pólya 1981). Moreover, as it happens in
converse applications, the discovery can be found by tracing several analogies
between an empirical set up and mathematics (e.g., in Archimedes’ example,
a line segment is seen as a lever while other line segments as weights).

The idea that the application of physics in mathematics can be spelled
out in terms of discovery, and more precisely in terms of analogies between
the empirical set up and mathematics, has already been advanced in the
philosophical debate on applicability (Ginammi 2018). In the context of
mathematical practice, the very same idea is shared by those mathematics
who apply physics in their mathematical work. For instance, Mark Levi ob-
serves how “the physical argument can be a tool of discovery” (Levi 2009,
p. 3) and “physical reasoning was responsible for some fundamental math-
ematical discoveries, from Archimedes, to Riemann, to Poincaré, and up to
the present day” (Ibid., p. 4). In a similar vein, in his Théorie analytique de
la chaleur (1822), Fourier famously noted that “profound study of nature is
the most fertile source of mathematical discoveries”.

Let’s now move to the criteria to evaluate the effectiveness of mathemat-
ics and physics. The claim that a discipline A (mathematics, or physics) is
successfully applied to another discipline B (physics, or mathematics) ulti-
mately depends on the fact that the result obtained in B through the use of A
is successful. Nevertheless, to claim that we are confronted with a successful
result in B, it is reasonable to think that we should provide a criterion, and
this criterion should be somehow independent from the application we are
considering (otherwise, the reasoning would strike us as circular). In cases of
direct applications, such criterion can been identified as follows: the success
of mathematics in the empirical sciences is given by the fact that the (em-
pirical) results obtained through mathematics receive successful empirical
confirmations or they allow to make successful empirical predictions.

13



Surely, there might be other criteria that make an application of math-
ematics in the empirical science successful. For example, mathematics can
be considered successful in science because it leads to simpler calculations,
or because it sheds light on certain connections between different scientific
areas or aspects of different phenomena. Nevertheless, the specific criterion
given in the previous paragraph better renders the usage that is often made
of ‘successful application of mathematics’ in many influential studies on the
applicability of mathematics (e.g., see Pincock 2004, p. 136).

In the case of converse applications, on the other hand, the criterion can-
not be the same and, more importantly, it cannot appeal to empirical con-
siderations. The reason is that successful applications of physics to math-
ematics are successful in mathematics. And therefore the criterion to be
adopted should be a wholly mathematical one. This is why I see only one
relevant possibility, namely: the success of non-mathematical methods in
mathematics is given from the existence of a purely mathematical proof of
the result.15

It may be observed that the criterion just offered is inadequate, or rather
incomplete, when a result is discovered by applying non-mathematical con-
siderations and a proof of that result is not available. In fact, what happens
in this scenario is that we cannot use the criterion to establish if the converse
application is successful or not. Such observation is surely important because
in mathematical practice we have many cases in which a mathematical fact
is discovered without there being a proof available. Nevertheless, it is not
problematic since the criterion reflects the following intuition: in this sce-
nario, the converse application has heuristic value in fostering mathematical
investigation and to claim that such application is successful we have to wait
for a proof of the result.16

Now we can see whether the two cases are successful applications (accord-
ing to the two criteria given above). First, consider Aristarchus’ application
of Euclidean geometry to obtain his astronomical result that the distance of
the Sun from the Earth is greater than 18 times the distance of the Moon
from the Earth. Although Aristarchus does not consider this result as a
prediction, and he does not have empirical means to confirm it, we can see
how his estimate is consistent with our current knowledge of the distances
between the three bodies. How? It is sufficient to measure (by radar signals)
the distance between the Earth and Mercury (or even between the Earth
and an artificial solar satellite like the Parker Solar Probe, which is currently

15The proof should be formally valid and contain no mistakes. Otherwise it would not
count as proof.

16I am grateful to a referee for pushing me to clarify this point.
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orbiting around the Sun in the ecliptic plane). Since the results confirm that
the average distance of this object from the Earth is greater than 18 times the
Earth-Moon distance, which can also be measured with high accuracy using
radio signals, we also know that the actual average distance of the Earth to
the Sun is greater than 18 times its average distance to the Moon. Thus, by
using techniques that are independent from the Euclidean geometry used by
Aristarchus, we know that the result found in section 2 is correct.17

Aristarchus’ application of mathematics to astronomy is therefore suc-
cessful because it receives independent empirical confirmation. But what
about Archimedes’ case? According to the criterion given above, the con-
verse application is successful if the same result is obtained through a purely
mathematical proof. Do we have such a proof?

The answer is given by Archimedes himself. After noting that the treat-
ment of Proposition 1 given in the Method cannot be said to be a proof, he
observes:

Since we thus see that the conclusion has not been proved, but
we suppose it is true, we shall mention the previously published
geometrical proof, which we ourselves have found for it, in its
appointed place. (Dijksterhuis 1987, p. 318)

Thus, the passage informs us on the existence of a purely geometrical demon-
stration of what is stated in Proposition 1. Such demonstration is given by
Archimedes in his treatise Quadrature of the Parabola, where he obtains
the same result using the method of exhaustion, without recurring to non-
mathematical considerations (see Katz 2009, pp. 108-109). We have therefore
that the result obtained in Proposition 1 through the application of the law
of the lever is confirmed on independent grounds, within pure mathematics,
and the application should be considered a successful one.18

5 Two sides of the same coin?

After having established that the two examples illustrated are cases of suc-
cessful applications, it is now time to see how mathematics and physics are

17In the radio-signal method, distance are calculated without trigonometry, using only
the time-delay of the signal and the speed of light. For a description of the method see
Webb 1999.

18Archimedes’ result is also confirmed by modern calculus. Nevertheless, it is not neces-
sary to resort to modern mathematics, since the geometrical proof given in the Quadrature
of the Parabola is still regarded by mathematicians as a flawless demonstration.
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applied and, next, turn to the more general question of whether direct and
converse applications are two sides of the same problem.

Let’s first make a point about what is applied to what. One way to
present the problem of application is the following: mathematical deals with
(abstract) entities that have no spatio-temporal location and lack causality ;
the empirical sciences, on the other hand, deal with (concrete) entities that
have spatio-temporal location and causal efficacy ; in many cases the entities
of the empirical sciences are studied through the entities of mathematics,
and this leads to successful results (i.e., successful predictions and successful
experimental confirmations) ; how can we account for the successful applica-
bility of mathematics in the empirical sciences?19

Now, although this way of putting the problem well renders the concep-
tual difficulty that derives from the interplay between the abstract realm of
mathematics and the concrete realm of the empirical sciences, I think that
it does not offer an accurate characterization of the issue. According to the
characterization just given, it seems that the (abstract) entities of one dis-
cipline, mathematics, are applied to the (concrete) entities of an empirical
science. Nevertheless, it would be better to talk of application of mathemat-
ical theories in the empirical sciences. At first glance, the point may seem
just a terminological one. However, there is more to it than mere terminol-
ogy. First, this particular stance well reflects a very intuitive understanding
of mathematical objects: mathematical objects are framed within theories
and acquire their significance in theories (e.g., a square is a particular object
defined in Euclidean geometry, while a group is a particular algebraic struc-
ture in group theory). Second, rephrasing the direct applicability problem in
terms of mathematical theories applied in the empirical sciences permits to
shift the attention from entities to theories and this approach may provide
an interesting perspective on the applicability problem.20

Take, for instance, Aristarchus’ example. We may say that the success-
ful application of mathematics is given by the successful application of the

19Mark Steiner calls this the “metaphysical question concerning application: how can
facts about numbers [thought of as abstract or nonphysical objects] be relevant to the
empirical world?” (Steiner 1998, pp. 1-2). Other philosophers of mathematics present
the applicability problem in terms of the abstract/concrete dichotomy, as a metaphysical
issue. See, for instance, (Dummett 1991, p. 301) and (Nolan 2015, p. 61).

20Similar remarks on the importance to focus on (applied) mathematical theories, rather
than (applied) mathematical objects, have been put forward in the debate on the enhanced
indispensability argument (see section 3.4 of Panza and Sereni 2016). Moreover, it can be
noted that also mapping accounts of mathematical applicability focus on (applied) theories
rather than (applied) entities. For instance, Otávio Bueno and Steven French observe how
“In applying a mathematical theory to physics, we are often ‘bringing in’ structure from
the mathematical level to the physical” (Bueno and French 2018, p. 56).
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abstract entities of Euclidean geometry (i.e., lines, angles, circles and so no).
And it is uncontroversial which claims are mathematical and which are not.
But do we really mean that the successful application comes from applying
‘lines and angles’ to the (empirical) objects of astronomy? Such a claim is
obscure unless we observe how these entities have mathematical significance
within the framework of Euclidean geometry (what is a line in Archimedes’
treatment, if not an object of Euclidean geometry?). It would be therefore
more correct to talk about the successful applicability of mathematical the-
ories, together with the results obtained in such theories, in the empirical
sciences.21

A similar point can be made for converse applications. In converse ap-
plications we do not apply concrete entities such as levers and tables to
mathematics. Rather, we apply physical laws and theories that are about
concrete objects. Take Archimedes’ case. In his geometrical treatment of the
parabolic segment, Archimedes applies his law of the lever, which states that
bodies placed on opposite sides of a fulcrum are in equilibrium at distances
reciprocally proportional to their weights. Obviously, he does not posses the
concept of torque (the intensity with which a force tries to rotate an object
it’s applied to around a pivot). But we know today that, with levers, the
position of the fulcrum determines the distribution of the balanced torques
on either side. A lever is in balance if the total left side torque is equal to the
total right side torque. Such zero torque condition gives the law of the lever
used by Archimedes.22 Moreover, the zero total torque condition on a sys-
tem means that the total angular momentum of the system is constant. And
therefore the law of the lever essentially depends on a conservation principle,
conservation of angular momentum, which is among the most fundamental
principles of physics. It is this principle that Archimedes is implicitly apply-
ing in his geometrical treatment. And thus in Archimedes’ case the converse
applicability problem, namely the problem of accounting for the success of
physics in mathematics, can be restated in terms of the successful application
of a physical principle in mathematics.

Archimedes’ example is not an isolated case of converse application. As

21By adopting this stance, I am not providing any argument ruling out the possibility
that what is applied are objects (of theories). This possibility should be left open. And
this especially because talking in terms of theories seems to leave a lot out (e.g., we may
want to be more specific about what is applied to what, and talking about theories does
not seem to provide this kind of specificity). I am indebted to a referee for bringing this
consideration to my attention.

22For a simple lever, if m1 and m2 are the masses of the two bodies on the arms and d1
and d2 are the distances of the bodies’ centers of mass from the fulcrum, the zero torque
condition reads m1g ·d1 = m2g ·d2, which is Archimedes’ law of the lever m1/d2 = m2/d1.
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I observed at the beginning of section 3, although the converse applicability
problem has received little attention in the contemporary philosophical de-
bate, we do have many textbooks that illustrate how physics is applied with
success in mathematics. For some mathematical results, as for instance the
Pythagorean theorem, we also have many different physical arguments (see
Levi 2009). Furthermore, a look at these textbooks reveal how applications
of physics not only occur in geometry but also in other areas of mathematics
(although geometry is the area where such applications have received more
attention).23 These examples show how physics is applied in mathematics
under the form of principles and laws, as it happens in Archimedes’ case.
Moreover, for the most part, these principles and laws draw on considera-
tions about conservation of energy and linear momentum.24 Thus it seems
that there is a cluster of cases of converse applicability which involve the
application of some principles, such as conservation of energy and conserva-
tion of angular momentum. These principles are neither mathematical, since
they are about physical entities and phenomena, nor strictly empirical, as
they are about idealized concrete entities and state of affairs.25

Now, if we have a look at our case of direct application, namely Aristarchus’
example, we may ask whether there is a similar involvement of physical prin-
ciples (similarly to what happens in Archimedes’ case and in other cases of
converse applications). We saw how Aristarchus begins his treatise with some
hypothesis, which are used to derive all the propositions. In these hypothesis
we find assumptions about the physical world. Some of these assumptions
contain idealizations (e.g., the Earth the Sun and the Moon are considered as
points), while others contain numerical values that are useful in the develop-
ment of the geometrical reasoning (e.g., the angle between the Moon and the
Sun viewed from the Earth is 87◦). From our modern perspective, however,

23For instance, Uspenskii (1961) also focuses on cases where a physical principle is used
to establish a purely arithmetical result.

24Conservation principles appear as the main ingredients of converse applications, even
if sometimes the reference to such principles is not explicit. For instance, Mark Levi
discusses a case of application of Kirchhoff’s second law (Levi 2009, p. 76). Although
not mentioned by Levi, we know that Kirchhoff’s second law is a consequence of charge
conservation and conservation of energy.

25Here I am specifically focusing on the import of principles, and not laws, in converse
applications. The distinction between principles and laws is the object of a separate
debate in philosophy of science, but for the point at stake here it is sufficient to add that
I generally regard principles as more fundamental than laws. For instance, as I show in
footnote 22, Archimedes’ law of the lever can be obtained from the conservation of angular
momentum. And therefore the principle of conservation of angular momentum is more
fundamental than the law of the lever. I do not exclude, however, that some physical laws
may have such fundamental status. For instance, Newtons’ laws are sometimes regarded
as fundamental principles of physics (Dilworth 1994).
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we know that Aristarchus is also implicitly assuming more than that. In
particular, he is assuming that space is Euclidean, which we may consider as
another idealization. And, more importantly, that light propagates between
two points in space instantaneously and in a straight line. These presuppo-
sitions, which are naturally missing from Aristarchus’ list of hypothesis, are
necessary to the application since they allow to consider the mathematical
representation as the representation of a specific empirical setting. If we deny
one of these assumptions, the geometrical treatment will not be consistent
anymore. Take, for instance, the assumption that light travels a straight line
path (when it does not interact with the medium, which is homogenous, and
does not get bent when it passes near to a massive object). If we drop this
premise, or even deny it, we cannot represent the distance between the Earth
and the Sun as a Euclidean straight line between two points (where ‘straight
line between two points’ is an entity of geometry, not a physical object).
Moreover, this assumption is grounded on a physical principle. Visible light
is electromagnetic radiation with a specific wavelength, and the straight-line
propagation of electromagnetic (light) waves in a homogeneous medium is a
consequence of Fermat’s principle of least time, which states the following:
light propagates in such a way that the propagation time is minimal. Thus,
light travels in a perfectly straight line simply because it is the most eco-
nomical and efficient way for it to travel. And in a flat geometry the path
which requires the shortest time is a straight line. We have therefore that
also in Aristarchus’ case there is a physical principle that operates and that
guarantees the successful interplay between mathematics and physics.

The previous observations suggest that, although direct and converse
applications may be discussed separately (the former as successful applica-
tions of mathematics to physics, while the latter as successful applications of
physics to mathematics), there is also something that they share. This some-
thing has to do with the intervention of physical principles in the application
process.

Surely, to observe that physical principles are applied in direct and con-
verse applications is not enough to claim that the applicability of mathe-
matics in science and the applicability of science in mathematics are two
sides of the very same problem and should be the object of a unified in-
vestigation. Nevertheless, I believe that this shortfall can be addressed by
adopting a novel stance on the applicability issue. What I have in mind is
the following idea: mathematical truths and physical principles successfully
interact because they share the same modal status of being metaphysically
necessary. The fact that they share the same species of necessity is what
makes them mutually interacting (in both directions, namely from mathe-
matics to physics and from physics to mathematics). This proposal would be
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therefore centered on physical principles and mathematical truths involved
in the application, and not on the structural features that can be identified
in the mathematical and physical domains (as it happens in the structural
approaches to the applicability issue).

The proposal just sketched clearly requires more elaboration, which I am
not able to provide at the present stage. Nevertheless, I want to stress two
points that provide favorable grounds for pursuing this strategy of analysis.
First, the view that some physical principles, as for instance conservation
laws, are metaphysically necessary has been defended by various philosophers
of science (Swoyer 1982; Leeds 2007; Wolff 2013). Scientific essentialist, for
instance, take laws of nature as metaphysically necessary (Ellis 2002, Bird
2007). Thus, if we observe that mathematical truths are usually seen as
“paradigmatic metaphysical necessities” (Clarke-Doane 2019, p. 5), we have
good grounds to take mathematical truths and physical principles as shar-
ing the same modal status of being metaphysically necessary. Second, an
analysis of the interplay between mathematics and physics in terms of the
modal status of mathematical facts and physical laws has already been ad-
vanced within another debate in philosophy of science. In his recent studies
on mathematical explanation, Marc Lange considers that, in some non-causal
explanations, mathematical facts act as constraints because they bring into
the explanation a particular degree of necessity (mathematical necessity) that
is stronger than the necessity of ordinary laws of nature (Lange 2017). Al-
though Lange does not connect his proposal to the applicability debate and
he specifically focuses on the modal force of mathematical facts and physical
laws, such perspective reinforces the idea that the interplay between mathe-
matics and physics can be analyzed by focusing on the modal status of the
mathematical facts and physical principles that are involved in applications.

What exactly is to be gained by pursuing the strategy above is yet to be
assessed. Moreover, the sketchy picture just given need to be complemented
by the many and multifaceted analysis of physical laws in terms of meta-
physical necessity (e.g., those offered in Wolff 2013 and Linnemann 2020).
On the other hand, the proposals outlined in the previous lines prompts new
questions about applicability and has the virtue of bypassing two major dif-
ficulties that arise for the structural mapping account of applications. First,
such strategy has the benefit of addressing a metaphysical issue through a
purely metaphysical approach, by focusing on the particular species of ne-
cessity that is involved in the application process. Why is this a benefit? As
I noted at the beginning of the present section, the applicability issue can
be considered as a metaphysical one (in both directions: from mathemat-
ics to science and from science to mathematics). It is therefore reasonable
to think that it should be addressed through considerations of metaphysical
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nature. Now, if we consider the mapping view of applicability, namely the
most discussed picture of applicability in the contemporary debate, we can
note that at its core lies the idea that the successful use of mathematics
in science can be explained through mathematics (more precisely, through
mathematical mappings). But this way of proceeding can be regarded as
suspicious, since it essentially uses mathematics to explain the successful in-
terplay between mathematics and science (Why does mathematics work in
explaining such interplay? The mapping account is silent on that). Simi-
larly, Tim Räz and Tilman Sauer have observed how the mapping account
faces what they call “the circularity objection”: “Mappings cannot possi-
bly explain how mathematics can be applied to the world; they can only
explain how mathematics can be applied to some other mathematical do-
main” (Räz and Sauer 2015, p. 60). The approach above clearly bypasses
this line of criticism, and the circularity objection that comes with it, since
it does not account for the applicability issue in terms of mathematics, but
in terms of metaphysical modality. Second, the approach above better deals
with physical idealizations. Since idealizations cannot captured through sim-
ple mappings like isomorphisms, the mapping account has been considered
problematic when taking into account them (Batterman 2010).26 Now, if we
consider the approach outlined above, it seems that this difficulty is easily
bypassed too. In fact, the proposal draws on the idea that the interaction
between mathematics and physics holds at the level of the necessary sta-
tus of mathematical truths and physical principles, where the latter refer
to idealized physical settings. Consequently, physical idealizations are not
problematic for this view.

Let me conclude the present section with a short remark. By offering
a novel, although sketchy, picture of application I am not ruling out the
possibility that a different account of applicability, as for instance the map-
ping account view, may be able to provide a unified treatment of direct and
converse applications.27 Moreover, there are surely interesting insights to be
gained through examining how the accounts of applicability already available
deal with direct and converse applications. But such a task clearly requires

26To overcome the problem with idealizations, some authors have proposed an extension
of the mapping account in terms of partial structures (see, e.g., Bueno and French 2018).
Note, however, that this refinement does not provide an answer to the first criticism
exposed here, since partial structures are still mathematical structures.

27Interestingly, some positive reasons in favor of such unified perspective in terms of
structural similarities and structural representation are given in Ginammi 2018. These
considerations are surely important to address direct and converse applications in terms
of a structuralist approach. Nevertheless, as observed by Ginammi himself, they still
require further elaboration. In the present study I did not follow this route and I preferred
to focus on an alternative direction of analysis.
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a separate investigation. In this final section, rather than developing this
investigation, I focused on an alternative approach. I put forward the main
idea behind this proposal and I stressed how some considerations coming
from other debates in philosophy of science give us good grounds for be-
lieving that the idea can be developed further. Finally, I showed how this
proposal may be better suited to handle two difficulties that we can identify
in the mapping approach to applications.

6 Conclusions

In this paper I presented two cases of application (of mathematics to physics
and physics to mathematics, respectively). These cases enrich the discussion
on the applicability problem because they provide an historical perspective
on it. Moreover, in sections 4 and 5, I showed how the significance of such
examples reaches the philosophical debate. I showed why these cases should
be considered as successful applications and how the converse applicability
problem, which has been largely ignored in the contemporary discussion, may
be approached by focusing on the introduction of physical principles in math-
ematical practice. In the final part of the paper, I addressed the question
of whether direct and converse applications are connected. Although I did
not give a clear-cut answer to such question, I showed how in some cases of
direct applications, as for instance in Aristarchus’, the successful application
is also grounded on the successful intervention of physical principles. Fur-
thermore, I sketched a novel proposal that seems to be well suited to exploit
this consideration and provide a unified approach to direct and converse ap-
plications. So, perhaps, the lesson to be drawn from the present study is
that one should not focus solely on one or the other side of the applicability
problem, but rather look at both sides of the coin.

I did not advance a full account of application, nor did I address the
broader question of how mathematics and the empirical sciences (other than
physics) successfully interact. Rather, I focused the successful interplay be-
tween mathematics and physics and I traced a potential path which, I be-
lieve, is worth exploring. It should also be observed that the problem of
the applicability of mathematics has deep ramifications in other debates in
philosophy of mathematics and philosophy of science. One of these is the
debate over mathematical explanations in science. Articulating a plausible
account of the applicability of mathematics in the empirical sciences is par-
ticularly important for those philosophers who maintain that mathematics
can play an explanatory role in science (see, e.g., Baker 2009, Batterman
2010, Pincock 2015, Lange 2017 and Bangu 2020). And this especially if
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we consider that successful applicability (of mathematics) is often seen as
a necessary, although not sufficient, condition for mathematical explanation
of empirical facts (Shapiro 1983, p. 525). Furthermore, some philosophers
have proposed the idea that there exist physical explanations of mathemat-
ical facts (Skow 2015). Surely, if we agree that physics yields explanatory
power in mathematics, it is extremely important to address the question of
whether there is an explanatory dimension to applying physical principles
within mathematics.

These (as many other) issues connected to the investigation of direct
and converse applications cannot be addressed here. I leave them for future
work and I hope that the direction of investigation sketched here may have
repercussions on such exciting discussions.
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Räz, T. and Sauer, T. (2015). Outline of a dynamical inferential conception of the
application of mathematics. Studies in History and Philosophy of Science Part
B: Studies in History and Philosophy of Modern Physics, 49:57–72.

Rizza, D. (2013). The applicability of mathematics: Beyond mapping accounts.
Philosophy of Science, 80(3):398–412.

Shapiro, S. (1983). Mathematics and reality. Philosophy of Science, 50:523–548.

Skow, B. (2015). Are There Genuine Physical Explanations of Mathematical Phe-
nomena? The British Journal for the Philosophy of Science, 66(1):69–93.

Steiner, M. (1998). The applicability of mathematics as a philosophical problem.
Harvard University Press, Cambridge, MA, USA.

Swoyer, C. (1982). The nature of natural laws. Australasian Journal of Philosophy,
60(3):203–223.

Uspenskii, V. A. (1961). Some Applications of Mechanics to Mathematics. Blaisdell
Publishing Company, New York.

Webb, S. (1999). Measuring the Universe: The Cosmological Distance Ladder.
Springer Science & Business Media.

Wolff, J. (2013). Are conservation laws metaphysically necessary? Philosophy of
Science, 80(5):898–906.

25


