
21 December 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Giallorenzo, S., Mauro, J., Poulsen, M.G., Siroky, F. (2021). Virtualization Costs: Benchmarking Containers
and Virtual Machines Against Bare-Metal. SN COMPUTER SCIENCE, 2(5), 1-20 [10.1007/s42979-021-
00781-8].

Published Version:

Virtualization Costs: Benchmarking Containers and Virtual Machines Against Bare-Metal

Published:
DOI: http://doi.org/10.1007/s42979-021-00781-8

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/830894 since: 2021-09-01

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1007/s42979-021-00781-8
https://hdl.handle.net/11585/830894

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

Giallorenzo, S., Mauro, J., Poulsen, M.G. et al. Virtualization Costs: Benchmarking
Containers and Virtual Machines Against Bare-Metal. SN COMPUT. SCI. 2, 404 (2021)

The final published version is available online at
https://dx.doi.org/10.1007/s42979-021-00781-8

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the
publishing policy. For all terms of use and more information see the publisher's website.

https://cris.unibo.it/
https://dx.doi.org/10.1007/s42979-021-00781-8

manuscript No.
(will be inserted by the editor)

Virtualisation Costs: Benchmarking Containers and
Virtual Machines against Bare-metal

Saverio Giallorenzo · Jacopo Mauro∗ ·
Martin Gyde Poulsen · Filip Siroky

Received: date / Accepted: date

Abstract DevOps advocates the usage of Virtualisation Technologies (VT), such
as Virtual Machines and Containers. However, it is complex to predict how the
usage of a given VT will impact on the performance of an application.

In this paper, we present a collection of reference benchmarks that developers
can use to orient when looking for the best-performing VT w.r.t their application
profile. To gather our benchmarks in a resource-wise comprehensive and compara-
ble way, we introduce VTmark: a semi-automatic open-source suite that assembles
off-the-shelf tools for benchmarking the different resources used by applications
(CPU, RAM, etc.). After performing a survey of VTs in the market, we use VT-

mark to report the benchmarks of 6 of the most widely-adopted and popular ones,
namely Docker, KVM, Podman, VMWare Workstation, VirtualBox, and Xen. To
validate the accuracy of our reference benchmarks, we show how they correlate
with the profile performance of a production-grade application ported and de-
ployed on the considered VTs.

Beyond our immediate results, VTmark let us shed light on some contradicting
findings in the related literature and, by releasing VTmark, we provide DevOps
with an open-source, extendable tool to assess the (resource-wise) costs of VTs.

Keywords Virtualisation · Benchmarking · Cloud Deployment

Saverio Giallorenzo
Università di Bologna, Italy and INRIA, France
E-mail: saverio.giallorenzo@gmail.com

Jacopo Mauro
University of Southern Denmark, Denmark
E-mail: mauro@imada.sdu.dk
∗ Corresponding author

Martin Gyde Poulsen
Ordbogen A/S, Denmark
E-mail: mgp@ordbogen.com

Filip Siroky
Ordbogen A/S, Denmark
E-mail: phillwide@gmail.com

2 Saverio Giallorenzo et al.

1 Introduction

Virtualisation Technologies (VT) such as Virtual Machines and Containers are
the pillars behind the growth of cloud computing and the adoption of the DevOps
approach [25]. VTs opened the way to structure cloud-application portability, scal-
ability, component isolation/security, etc.. Alas, those features come with different
levels of overhead on the baseline performance of “bare-metal” deployments, i.e.,
single-tenant physical servers, which constitute the hardware where VTs execute
upon.

Today there are a plethora of alternatives to choose from when adopting VTs,
even when limiting our scope to the mainstream VT categories of (hardware) hy-
pervisors (hardware-supported/native and hosted) [38], and containers [41]. While
this vastness of options is good for developers, since it gives them the flexibility
to choose the best VT for their application profile, it becomes difficult for them
to compare those options over a given set of relevant metrics (e.g., costs, perfor-
mance). Indeed, the accurate solution for obtaining comparable VT metrics for a
given application would entail adapting it to be deployed under the different VTs,
benchmark them, and choose the best fitting one. Unfortunately, there are two
main problems with this solution:

1. the developers must set their application upon the different VTs. This is a time-
consuming activity in two respects: i) developers must spend time acquiring
enough knowledge of each technology to allow them to proceed with the setup,
ii) developers have to dedicate time to the setup and optimisation of their
application under each configuration and later collect the benchmarks;

2. the approach hardly scales, i.e., each application generates a benchmark apart
and cannot be directly taken as a reference for other applications. In essence,
there is either replication of similar work or measurements that cannot be
reliably re-used within the community of developers.

Building towards a general solution, in this paper we aim to provide a reliable
reference that developers can use to orient when looking for the virtualisation tech-
nology that performs the best—technically, the one that has the smallest overhead
to bare-metal—given their application profile.

To gather our reference data, we assembled a semi-automatic suite, called VT-

mark, to benchmark different VTs reliably—here, the term “reliable” means to
have consistent and repeatable measurements among the samples with low stan-
dard deviation. VTmark uses a set of renowned off-the-shelf benchmarking tools to
collect the performance of the different VTs in a resource-wise comprehensive and
comparable way. In developing VTmark, we also aim at the maximal automation
possible for its deployment and its execution. Unfortunately, due to the nature of
some considered VTs, we could not achieve a fully-automatised deployment, e.g.,
some hypervisor solutions need some manual configuration before the execution of
the suite.

Contributions of this paper include:

– the presentation of VTmark, its components, and the rationale that guided our
choices in assembling it;

– the report and interpretation of the reference benchmarks obtained from run-
ning VTmark over different representative implementations of the three main-

Virtualisation Costs 3

stream virtualisation technologies of (hardware) native hypervisors, hosted hy-
pervisors, and containers, addressing some contradictions reported in the lit-
erature;

– an initial validation of the reliability of the results obtained through VTmark.
To do that, i) we take a production-grade distributed application (the largest
Danish online dictionary); ii) we adapt it to be deployed over the VT im-
plementations we used to collect our benchmarks (the ones in our reference
report); iii) we benchmark the performance of the various adaptations over
synthetic-yet-realistic traffic loads and we discuss our results in relation to the
reference data obtained through VTmark.

In Section 2 we provide background concepts on virtualisation technologies,
their popularity, and the list we selected for this study. We then position this con-
tribution by comparing with related work in Section 3. In Section 4 we introduce
VTmark, its components, and the relevant technical details on how they are used
within VTmark. In Section 5 we show and comment the results collected by bench-
marking a set of VT implementations (presented in Section 4.2) with VTmark.
We then present the tests performed with a production-grade distributed applica-
tion in Section 6, comparing those results with the performance profiles gathered
through VTmark. We conclude with the main closing remarks on this work and
prospect its future continuations in Section 7.

2 Preliminaries and Technology Selection

According to the well-known survey on virtualisation technologies by Chiueh and
Brook [7]:

Virtualisation is a technology that combines or divides computing resources
to present one or many operating environments using methodologies like
hardware and software partitioning or aggregation, partial or complete ma-
chine simulation, emulation, time-sharing, etc.

In this paper, we consider virtualisation technologies (VT) as abstractions of
the hardware which allows developers to have multiple coexisting running operat-
ing environments on one physical server. The abstraction itself can be on different
levels and of different types.

In this section, we first briefly report a description of the categories of VTs
that we consider mainstream in the context of the current Cloud Computing de-
velopment landscape.

2.1 Virtualisation Technologies Categories

There are mainly three categories of virtualisation technologies for the Cloud:
virtual machines, containers, and unikernels.

Virtual Machines Virtual Machines (VM) represent the first generation of virtual-
isation technologies, with implementations available as early as the 1960s. Thanks
to their long-time reliability, VMs are the backbone of the current commercially

4 Saverio Giallorenzo et al.

available Cloud offering. We can practically see VMs as physical servers, with their
own complete and isolated operating system. A VM is created and managed by
a hypervisor, also called VM monitor. There are two main types of hypervisors,
which also determine the type (features and performance) of virtual machines we
are dealing with [35]: i) type-1, or native hypervisors, which run directly on the
hardware ii) type-2, or hosted hypervisors, which run on a host operating system.

Since both native and hosted VM solutions are widely adopted in the industry,
we consider both types in an equal way in our benchmarks.

Containers Containers find their roots in technological advancements from the
1980s, which brought forward the concepts of process-level segregation file access in
operating systems. Containers provide a more lightweight virtualisation approach
than VMs, because they come as a feature of a given operating system, whose
kernel supports the co-existence of multiple isolated user-space instances—called
containers. When creating a container, the user defines which resources and devices
available to the operating system the container can access.

Since containers run interacting “directly” with the kernel1, they have a smaller
footprint on performance. On the other hand, the increased performance of con-
tainers come at the cost of a decrease in system flexibility (which is now dependent
on the guest kernel functions) and security [9] than VMs.

Unikernels Unikernels are the most recent addition to the category, with proposals
dating back to the late 1990s [16, 29, 32].

The unikernel approach is that of packaging a given application (e.g., a web
server) with the minimal kernel functions and drivers the application requires to
run as a sealed, immutable executable—called unikernel—directly on the hardware
(or sometimes on a hypervisor).

Thanks to their minimality, unikernels seem a promising compromise between
the flexibility of VMs and the performance of containers. Moreover, since uniker-
nels support the execution of one process, they increase isolation—although uniker-
nels run applications in kernel mode, making it unclear how they affect the ex-
posure of the system to attacks and bugs—and provide a simpler model for per-
formance prediction. From the software engineering point of view, while VMs and
containers do not impose strong constraints on how programmers develop their ap-
plications, unikernels require applications to be written specifically for them [20].

Due to the limitations and early-stage issues mentioned above, there are no
relevant commercial options for unikernels. Thus, we omit to consider solutions
from this category in this work.

2.2 Virtualisation Solutions & Popularity

We now present the most popular, state-of-the-art implementations of the cate-
gories of VTs considered in this work. To evaluate their popularity, we relied on
information derived from Google searches trends at trends.google.com, the num-
ber of questions on stackoverflow.com, the number of stacks on stackshare.io,
and GitHub Stars (for open source projects).

1 They use the same system call interfaces of traditional programs and avoid to logically
emulate some hardware.

trends.google.com
stackoverflow.com
stackshare.io

Virtualisation Costs 5

Stack Overflow Google Trends Stackshare stacks Github stars

VMware vSphere 607 24.1 476 0

Xen Project 428 9.6 25 326

ESXi 428 83.28 0 0

Azure Virtual Machines 2019 0.7 40 10

Hyper-V 1413 35 0 0

KVM 998 45 38 0

Oracle VM 500 7.11 4 0

bhyve 11 0.5 0 15

Virtuozzo 77 0.1 2 0

Fig. 1: Popularity of Type-1 hypervisors.

As a premise, we notice that there are many solutions for each VT category we
consider. Broadly, while they share the same denominating features of the category
they belong in, they differ in the set of features and performance they grant. For
example, minimal solutions encompass the creation, configuration, deployment,
and management of containers or VMs, while more sophisticated alternatives add
functionalities such as advanced orchestration, scaling, and load balancing of the
instances. In benchmarking these technologies, we abstract from the distinguishing
features of specific implementations, which we do not address here.

When displaying the data on the popularity in tabular format (cf. Figs. 1 to 3),
we sort in descending order the entries in the row based on the sum of the column-
marginal difference between the entry value and the maximal value for the column.
Formally, let i be the row index of the table t, c[i] the value of of column c in raw i,
max(c) the maximal value in column c, the row score of i in t is obtained as follows.

row score(i, t) =
∑

c ∈ columns(t)

1

|columns(t)|
∗ c[i]

max(c)

Native Hypervisors (Type-1) We report the list of the most popular native hy-
pervisor (type-1) solutions in Fig. 12. From the data, the most popular type-1
hypervisors is VMWare vSphere, followed by Xen Project and ESXi.

Hosted Hypervisors (Type-2) We report the list of the most popular hosted hypervi-
sor (type-2) solutions in Fig. 23. The most popular type-2 hypervisor is VirtualBox,
followed by QEMU and VMware Workstation.

2 Google Trends results are for a 12-month average relative to VMWare ESXi peak popular-
ity between April 2020 and March 2021. XenServer and Xen have been respectively renamed
into Citrix Hypervisor and Xen Project. For consistency, we refer to these with the latter.

3 Google Trends results are obtained for a 12-month average relative to VirtualBox peak
popularity between April 2020 and March 2021. The results on VMware Workstation combine
the three main products that share the same underlying technology: VMware Workstation
Player, VMware Workstation Pro, and WMware Fusion. All these projects are not open source
and therefore in this plot, we omitted the Github star column.

6 Saverio Giallorenzo et al.

Stack Overflow Google Trends Stackshare stacks

VirtualBox 5619 75 20200

QEMU 1917 6.32 57

VMware Workstation 583 18 53

Parallels (Mac) 383 5.88 8

Oracle Solaris Zones 14 0 0

Fig. 2: Popularity of Type-2 hypervisors.

We remark that some technologies in this category can work also as type-
1 hypervisors. For instance, QEMU can become a type-1 hypervisor by using
KVM [21]. In this work, we consider them in isolation and belonging to the type-2
category.

Containers This category of implementations is indisputably dominated by the
de-facto standard imposed by Docker [34], which is three orders of magnitude
more popular than any competitor, according to Google trends. Similar (on a
smaller scale) results come from Stack Overflow (75K threads) and Stackshare
(50K stacks).

Right after Docker (less popular, in absolute terms), we find Kubernetes,
which has about 30% of the popularity of Docker, based on Google trends and
stackoverflow.com.

For completeness and consistency with the previous sections, we report the list
of the most popular containers solutions in Fig. 34, excluding the most famous
Docker and Kubernetes options above, to avoid skewing the scale due to their
disproportionate popularity.

Looking at the chart, we can state that most container engines are Linux-based
and often tied to one particular distribution.

2.3 Technology Selection

We conclude by providing the rationale behind the choices made to select the
VT implementations used to collect our benchmark. In summary, we look for the
popularity and affordability of the VT technologies.

Popularity reflects the adoption and interest around a given technology demon-
strated by users. The more popular the technology is, the larger is its adoption and
the possible audience interested in comparisons including it. There is no consensus
on defining popularity, but for our work, we relied on the information derived from
Google searches trends, stackoverflow.com, stackshare.io, and GitHub Stars as
reported in the previous section.

With affordability, we mean an expression of the ease of adoption that a given
technology presents to the general audience of users; e.g., whether it is a free and
open-source solution or rather comes with paid licensing or subscriptions and/or

4 Google Trends results are for a 12-month average relative to LXC peak popularity between
April 2020 and March 2021.

stackoverflow.com
stackoverflow.com
stackshare.io

Virtualisation Costs 7

Stack Overflow Google Trends Stackshare stacks Github stars

Apache Mesos 1246 5.65 282 4700

LXC 555 54.1 91 3300

Podman 175 43.9 0 7700

LXD 134 34.75 79 2900

Containerd 86 11.26 37 8100

RKT 42 0.98 28 8900

Runc 54 4.17 0 7900

Linux-VServer 407 29.63 0 14

CRI-O 19 2.75 2 3300

OpenVZ 111 11.38 10 28

User Mode Linux 29 13.88 0 0

RailCar 13 1.6 0 1100

Fig. 3: Popularity of Container engines (Docker and Kubernetes excluded).

platform lock-ins. We deem more affordable solutions that are open-source rather
than closed-source, solutions that are free rather than paid, and solutions that en-
tail the fewest lock-ins. For example, if there are no relevant open-source projects
in a given technology segment, the next most affordable options are closed-source
projects that offer free/community versions of their solutions. Moreover, as an ex-
tension of the lock-in effect, when standards (proper or de-facto) exist, we consider
more affordable those solutions compatible with them. Similarly, when comparing
closed-source options, we consider as most affordable those that users can deploy
on their private infrastructure rather than requiring them to use some third-party
infrastructure.

Our goal was to test at least one technology for every virtualisation modality.
Following the principles above we identified the following list of implementations.

Type-1 Hypervisors Xen/Xen Project. Since VMware vSphere is a closed-source
project, we consider the more affordable second best solution, i.e., Xen Project—
which is open-source and has no dependencies on a specific platform. In the
remainder, for brevity, we use “Xen” to refer to Xen Project.

Type-2 Hypervisors Virtualbox. Here, Virtualbox is the undisputed popularity and
affordability “winner”.

Containers Docker. As reported in the related section, Docker is by far the most
renowned and affordable technology for containers.

Given the above choice of technologies, we also looked for comparable alterna-
tives for each of them:

Type-1 Hypervisors KVM. Similarly to our choice for Xen, we orient our alterna-
tive for type-1 hypervisors mediating popularity with affordability. Hence, we
exclude ESXi (a closed-source project by VMware) and Azure Virtual Machines

8 Saverio Giallorenzo et al.

and Hyper-V (tied to the Microsoft Azure platform). Hence, we consider KVM

as the second-best type-1 hypervisor given its popularity and affordability—it
is an open source project and it does not dependent on a specific platform.

Type-2 Hypervisors VMware Workstation. Although QEMU appears to be the sec-
ond most popular type-2 hypervisor, QEMU is a complex platform that can be
used as a type-2 hypervisor but also configured to work as a type-1 hypervisor.
For this reason, we discarded QEMU and selected VMware Workstation, which
is the third most popular type-2 hypervisor—besides being a technology often
compared in the literature.

Containers Podman. Regarding containers, in addition to Docker, we select Pod-
man. The reason for this choice is that both the second and third most popular
solutions—Kubernetes and Apache Mesos—are container-orchestration tech-
nologies rather than strictly container engines. The following entry, LXC, would
be valid (it is a popular open-source project), however its incompatibility with
the Docker format, a de-facto standard for container specification, makes it
less affordable than the next-in-line, Podman, which adopts that standard.

3 Related Work

In this section, we position our work among other related contributions in the
literature on benchmarking and comparisons of existing virtualisation technologies.

We schematically represent the technologies considered in the relevant related
work in Table 1. In the table, when a cell is marked with the sign •, we mean that
the authors benchmarked that software but did not report which version they
used; when the version is available, we replace • with that number. For VMware,
if indicated by the authors, we also report whether they used the pro (P) or the
free (F) version of that software. The last row with the title “Year Pub.” indicates
the year of the publication (last two digits after the year 2000).

From the table, the only other work comparing bare metal, type-1 and -2
hypervisors, and containers is [2], which was published more than 15 years ago,
barely after the creation of the first public clouds. Moreover, our paper is the only
work that includes in its comparison Podman.

In addition to the data shown in the table, we report the fact that only 15% of
those works included scripts used for running the benchmark (towards assembling
a suite like VTmark), and only 8% listed the benchmark arguments, as we do here.

In the remainder of the section, we report the main findings summarised from
the surveyed papers and divided by VT categories.

3.1 Native Hypervisor (Type-1) Performance

There is a common agreement on the performance impact of Type-1 Hypervisor on
CPU and memory, which is reported as small for a single VM instance. However,
when scaling, the overall performance drops significantly in contrast to contain-
ers. As far as disk performance is concerned, the performance drops somewhere
between 10% and 50% depending on the different IO operations.

There are significant differences between the reported results, sometimes lead-
ing to contradicting outputs. For example, Soltesz et. al. [42], when comparing

Virtualisation Costs 9

Technology S
ol

te
sz

et
al

.
[4

2]
B

ar
h
am

et
al

.
[2

]
M

av
ri

d
is

et
al

.
[3

3]
G

ra
n
is

ze
w

sk
i
et

al
.
[2

2]
L

an
ge

r
et

al
.
[2

8]
M

or
ab

it
o

et
al

.
[3

5]
S
ch

ee
p
er

s
[3

9]
S
h
ar

m
a

et
al

.
[4

0]
C

h
ae

et
al

.
[6

]
F
el

te
r

et
al

.
[1

7]
K

am
ar

ai
n
en

et
al

.
[2

6]

B
ar

ik
et

al
.
[3

]
L

i
et

al
.
[3

0]
T
h
is

p
a
p
e
r

Bare-metal
• • • • • • • •

Type-1 Hypervisors
Xen 3 <1 • • 4.11.4
XenServer 6.1 •
KVM • 5.4 2 • • • • 3.1.0
Hyper-V • •
OVM 3.2.7
ESXi 5.1 4.0
Type-2 Hypervisors
VMWare F3.2 P7 F 15.5.6
VirtualBox 4.3.6 3.1.2 • 6.0.16
Containers
Docker 1.3.2 • • • • • 19.03.8
Podman 1.7.0
LXC 1.0.6 • •
VServer •
UML •
Year Pub. 07 03 18 16 11 15 14 16 17 15 15 16 17

Table 1: Virtualisation technologies used in related work and this paper.

Xen against bare-metal using the synthetic benchmark DBENCH [43], found out
a performance drop of 79% while Barham et al. [2], on the same setting, report a
drop of performance of only 3%.

This huge difference might be due to Barham et al. working with a prototype
and the overhead reported by Soltesz et. al could have been introduced later due
to the Xen technology development.

From the majority of the work, native hypervisors seem to affect network per-
formance. Mavridis et al. [33] and Barham et al. [2] report nearly identical through-
put to bare-metal, when the CPU utilisation is not stressed. The data suggest that
type-1 hypervisors require more CPU to process packets, which is also supported,
e.g., by the TCP STREAM benchmark performance in [33]. Network performance
seems to have significant overhead and depends mostly on the available CPU pro-
cessing power to achieve the same throughput or response rate of bare-metal.

Note also that Mavridis et al. [33], benchmarking TCP and UDP request-
response performance found out that KVM has almost the same performance as
bare-metal. That report contradicts the results obtained by Morabito et al. [35]
that also run the same comparison and reported a 43% performance drop between
KVM and bare-metal.

3.2 Hosted Hypervisor (Type-2) Performance

The performance overhead of type-2 hypervisors vary significantly among reports
in the considered related work.

10 Saverio Giallorenzo et al.

In particular, CPU performance varies from paper to paper and among bench-
marks. Li et al. [30] report a performance drop of only about 4.5% on average.
Barham et al. [2] report no significant performance impact for the SPEC INT2000
benchmark5 and 20% performance decrease for the Linux kernel compilation time.
Barik et al. [3] report 45% for building Apache and 55% for building PHP in com-
parison to Docker performance. Lastly, Graniszewski et al. [22] report an average
22.5% performance drop against type-2 hypervisors in nbench. For kernel compi-
lation, Graniszewski et al. state the performance drop is about 40% in comparison
with type-2 hypervisors.

Memory performance drops seem small. The consensus is that, similarly to
type-1 hypervisors, the drop is smaller than 5%.

Disk operations suffer instead a performance drop of about 30% based on
the results from the Bonnie++ benchmarks [8] reported by Li et al. and the
DBENCH benchmarks [43] reported by Barham et al.. Contrarily, Graniszewski
et al. [22] showed that VirtualBox doubled the performance of any of the type-1
hypervisors that they benchmarked. For web-server and mail-server benchmarks,
the performance is usually less than 50% of the type-1 hypervisors.

From the reports, also the network suffers a significant performance overhead.
Graniszewski et al. [22] netperf6 reported the same or worse performance than
Type-1 hypervisors, and Li et al. [30] using Iperf (TCP) reported a 55% perfor-
mance drop. Barik et al. [3] measured a 33% performance drop for TCP against
container with tbench.

To summarise, type-2 hypervisors are expected to have a significant impact on
CPU, disk, and network performance in certain situations, while memory perfor-
mance should not have significant drops.

3.2.1 Containers Performance

As expected, all reports agree that containers have a small impact on resources.
The CPU and memory performance are almost unaffected: sometimes, the over-
head is only 1%. More surprisingly, there are cases reporting containers performing
better than bare-metal. Morabito et al. [35], for example, report a 1% improvement
for Docker and LXC over bare-metal in Linpack benchmarks [14].

Soltesz et al. [42], and Morabito et al. [35] report the same performance impact
of using containers on TCP stream. The performance of UDP streams and TCP
and UDP request-response rates seem to be significantly impacted according to the
results from Morabito et al.. In particular, the UDP stream benchmark resulted in
about a 40% performance drop while the request-response rate for TCP and UDP,
respectively, are about 20% and 10% lower than the response rate of bare-metal.
Li et al. [30] present contradicting results, showing only a 2% overhead.

Disk performance follow a similar trend to those of the network: they vary
among operations and their drop can range from 7% to 50%. The considered
related work report different amounts of overhead: Li et al. [30], using Bonnie++,
recorded a 40% to 50% data throughput decrease, Morabito et al. [35], using
Bonnie++ and dd, report a 7% performance drop for sequential reads and writes
while for random writes and seeks the performance drop ranges between 10%

5 http://www.spec.org/.
6 https://hewlettpackard.github.io/netperf/.

http://www.spec.org/
https://hewlettpackard.github.io/netperf/

Virtualisation Costs 11

Benchmark Resource Version Options

Dhrystone CPU 2.2 2147483627
Whetstone CPU 1996 5,000,000
Kcbench CPU 0.4.1
RAMspeed RAM 3.5.0 -b 1...19 -g 32 -l 5

iPerf3 NET 3.6

-O 10 -i 60 -t 180 -b 0
-O 10 -i 60 -t 180 -b 0 -b 1000000000
-O 10 -i 60 -t 180 -b 0 -u
-O 10 -i 60 -t 180 -b 0 -b 1000000000 -u

Bonnie++ Disk 1.98 -q -r 16000 -z 1580230295 -x 3 -n 2500 1000

DBENCH Disk 4.0
-t 180 1/2/4/8 [-D /dbench]
-t 180 1/2/4/8 [-D /dbench] -F
-t 180 1/2/4/8 [-D /dbench] -s

Table 2: Synthetic benchmarks used in VTmark.

and 50%. Soltesz et al. [42] contradict the results obtained from dd, Dbench,
and Postmark benchmarks, where VServer performs better than bare-metal in
DBENCH and Postmark and the same in dd.

Overall, containers seem to have a small impact on resources and scale well.
The only exception is disk performance, where the overhead seems to vary.

4 VTmark

In this section, we present VTmark, a semi-automatic benchmarking suite to run a
set of synthetic benchmarks over a target computational resource.

In the following, we give a summary of the synthetic benchmarking tools in-
cluded in VTmark, we detail our architectural choices to (semi-)automatise the
deployment and execution of VTmark, and describe the virtualisation solutions
selected in Section 2 as targets of this study.

4.1 Benchmarking Toolset

Inspired by the related literature (cf. Section 3), VTmark includes some of the most
widely-used benchmarking tools freely available on the main Linux distributions,
which we briefly describe below. As a summary, Table 2 shows all the adopted
tools, with their launch parameters used in VTmark7.

Dhrystone Dhrystone [44] was created in 1984 as a single-threaded program for
measuring CPU performance. Initially written in ADA, it was later translated
into C. In VTmark, we use version 2.2 (adjusted to use the current version of C
compiler libraries) and we execute this benchmark 5 times to normalise its results.
To achieve reliable results, Dhrystone should be executed many times. The tool
documentation suggests running at least 500 million iterations. We decided to have
2,147,483,627 repetitions.8

7 Note that the -D option for DBENCH was used for container engines with volumes. When
benchmarking iPerf3, we additionally specify the IP address and the port of the server we
benchmark with the options -c <ip> and --cport <port>.

8 Nearing the maximal number of iterations reachable by a 32-bit integer counter.

12 Saverio Giallorenzo et al.

Whetstone Whetstone [11] measures floating-point operations performance and
was written initially in Algol 60 in 1972 and rewritten in Fortran in 1973. The
Fortran version was the first general-purpose benchmark setting the industry stan-
dard of performance [31]. The C version was written in 1996 and is available at
http://www.roylongbottom.org.uk/whets.c. In VTmark, we adjusted the code (C
version) and set a fixed number of passes to 5,000,000 to get consistent results. A
pass for Whetstone is the execution of the original benchmark that is now required
to accommodate for the introduction of faster CPUs.

Kcbench Kcbench9 is a benchmark that measures the time needed for compiling
the Linux kernel, monitoring the CPU utilisation during the compilation. VTmark

uses version 0.4.1 from Kcbench’s GitHub repository. The benchmark compiles
Linux 4.14 kernel three times by default.

RAMspeed RAMspeed [24] is a cache and memory benchmark for several UNIX-
like operating systems. One can use it to benchmark integer, floating-point, MMX,
and SSE instructions in two types of benchmarks: *mark benchmarks that pass
sequential data streams to the relevant hardware units, and *mem benchmarks
to measure the speed of simulated Copy, Scale, Add, and Triad tests10 with the
support for a batch run returning the average speeds. VTmark uses version 3.5.0
from http://www.alasir.com/software/ramspeed, setting the number of gigabytes
per pass to 32 with -g 32 and BatchRun mode with -l 5.

iPerf3 iPerf3 [15] is a network throughput benchmark for testing TCP, UDP, and
SCTP. The binary contains a server and a client: the client sends data to the server
and the server responds to the former. The benchmark provides reports from both
the server and the client. We used the Debian Buster package. VTmark performs
several benchmarks with iPerf3, setting the duration of the test to 3 minutes (-t
180) but discarding the first 10 seconds (-O 10) needed to warm up the system
and to reach stable speed readings.

Bonnie++ Bonnie++ [8] is a benchmark that performs a set of simple tests on
the file system and hard drive to measure their performance. The tests range over
database-like access to one or more files, as well as creation, reading, deletion, and
random seeks. VTmark uses the Bonnie++ Debian Buster package and specifies the
amount of RAM (-r 16000), a seed for randomised operation (-z 158230295), the
number of tests to 3 (-x 3), and the number of samples (-n 2500). In particular,
among all the Bonnie++ benchmarks, we have considered the sequential output
and sequential input micro-benchmarks testing the per-character, block input and
output operations, and the output rewrites.

DBENCH DBENCH [43] is an IO workload benchmarking tool that can be run
for a desired period of time, using multiple processes to simulate concurrent users.
VTmark uses DBENCH from the official Debian Buster repository. The benchmark

9 https://gitlab.com/knurd42/kcbench.
10 Triad is a combination of Add and Scale operations: it reads data from the first memory

location, scales it, then adds data from the second one and writes to a third place.

http://www.roylongbottom.org.uk/whets.c
http://www.alasir.com/software/ramspeed
https://gitlab.com/knurd42/kcbench

Virtualisation Costs 13

Technology Version Debian Package

Xen 4.11.4 Y
KVM 3.1.0 Y
VirtualBox 6.0.16 Y
VMWare Workstation 15.5.6 N
Docker 19.03.8 Community Y
Podman 1.7.0 N

Table 3: Supported virtualisation technologies in VTmark.

is set to run for 3 minutes (-t 180) with 1, 2, 4, and 8 processes with no extra
synchronisation, fsync (-F), and O SYNC (-s) options.11

4.2 Architecture and Supported Virtualisation Technologies

Architecture and Bare-metal Baseline As baseline comparison for the considered
virtualisation technologies, VTmark can be installed on Debian-based bare-metal
servers. To streamline its execution, we recommend to pair VTmark with Openstack-
baremetal, which helps in automating operations over bare-metal servers. Indeed,
Openstack [36] is a cloud operating system that enables the creation of bare-
metal machines, containers, and virtual machines over a pool of servers that it
manages. It enables its users to manage storage, compute, and network resources
through APIs and web interfaces with standard authentication. VTmark uses the
state-of-the-art data collector Influx DB12 to capture the benchmark resource con-
sumption. In particular, it captures all types of CPU usage (system, user, IO wait,
interrupts, ...) for every core, disc reads and writes, total disc utilisation as well
as swap, and memory and network usage. The captured data is then visualised by
Grafana13, a state-of-the-art technology for metrics visualisation.

We now list the virtualisation technologies supported by VTmark, which we
summarise in Table 3. In the following, we detail also how VTmark deploys them.

Type-1 Hypervisors: Xen Xen (Project) is an open-source type-1 hypervisor [19].
The Xen hypervisor uses a microkernel design to have a small footprint and inter-
face. It manages CPU, memory, and interrupts. IO operations and networks are
managed by the control domain (the host). In VTmark, Xen packages are installed
on an OpenStack bare-metal server. The guest OS is based on a file-based image
in the host operating system using the sparse image option. The domain also has
limited CPU and memory.

Type-1 Hypervisors: KVM KVM stands for Kernel-based Virtual Machine [27]
and comes as a virtualisation module of the Linux kernel to allows the latter
to act as a hypervisor. KVM is open source and requires processors with hard-
ware virtualisation instructions to provide hardware-assisted virtualisation and
para-virtualisation. Similar to Xen, in VTmark KVM packages are installed on an

11 Note that DBENCH does not impose requirements on the number of CPUs. Indeed, when
8 processes are run, these processes can be run concurrently also on only 1 CPU.
12 https://www.influxdata.com/.
13 https://grafana.com/.

https://www.influxdata.com/
https://grafana.com/

14 Saverio Giallorenzo et al.

OpenStack bare-metal server. The user has to pass the image of the VM of the
guest operating system to the KVM installation scripts that creates it. After this
step, the user goes through the standard Debian installation.

Type-2 Hypervisors: Virtualbox Oracle VM VirtualBox is a type-2 hypervisor sup-
porting the Windows, macOs, Linux, and Oracle Solaris operating systems. Virtu-
albox supports many hardware features, guest multiprocessing, running different
operating systems, and managing VMs through both a graphical and command-
line interfaces [37]. Oracle provides a Debian package for VirtualBox in its repos-
itory. For its setup, VTmark installs the additional package xinit and fluxbox to
let its user access the VirtualBox GUI and set up the image manually (it was used
to install the OS and set up an IP address14). Concretely, VTmark facilitates the
download of a standard Debian installation image and it allows users to create
a VM with the required settings. This VM is then used to run the benchmarks
automatically.

Type-2 Hypervisors: VMWare Workstation VMWare Workstation (both the Pro
and Player versions) is a type-2 hypervisor for Linux and Windows. VMWare
Workstation supports high-performance 3D graphics, virtual networking, dupli-
cation, and snapshots and comes with a REST API for VM automation. For
deploying VMWare Workstation in VTmark, we extended an already-existing An-
sible role15 to install additional packages (viz. libpcsclite1, linux-headers-4.19.0-6-
amd64, libxml2, and policykit-1). The user of VTmark needs to set up the VMWare
VM using the GUI as done for VirtualBox and deploy the benchmarks.

Containers: Docker Docker is an open-source container engine. It acts as a server-
client application with the Docker daemon running in the background, and its
command-line interface acting as clients. Docker builds on the containerd dae-
mon, which relies on OCI-compliant container runtimes [18]. In VTmark Docker is
installed from the official Docker repository. The containers are created based on
the Ansible playbooks for deploying the benchmarks. In particular, VTmark uses
the standard Docker Debian 10 image.16

Containers: Podman Podman is an open-source, daemon-less container engine for
OCI containers on Linux systems. The commands for Podman management are
compatible with Docker, thus allowing a smooth transition between the two en-
gines. It supports both OCI and Docker image formats and has support for man-
aging groups of containers together within Pods [10].

Podman has no Debian package. VTmark deploys Podman using an Ansible
role for installing it with all its dependencies. Thanks to the compatibility with
Docker, VTmark reuses the scripts to build Docker images to also build the Podman
images.

14 Note that if a DHCP server is available, this procedure could be automatised. However,
we did not want VTmark to rely on the presence of a DHCP server and for this reason we kept
VirtualBox as a semi-automatised target in VTmark.
15 https://github.com/vmware-archive/ansible-role-vmware-workstation.
16 https://hub.docker.com/ /debian.

https://github.com/vmware-archive/ansible-role-vmware-workstation
https://hub.docker.com/_/debian

Virtualisation Costs 15

4.3 Using VTmark

VTmark considers as its target operating system Linux, and it is specifically pro-
grammed to run on Debian-based distributions—indeed, considering the main dis-
tributions of Debian and Ubuntu alone, ca. 65% of the whole market-share of
Linux-based web servers17 are suitable to run VTmark. VTmark requires as mini-
mal hardware resources 2 servers, one used for monitoring, with a recommendation
of 2 to 4 cores and 2 to 4 GB of RAM, and the second one for the actual bench-
marking. For the benchmarking, we recommend 8 cores, 16GB of RAM, and a
gigabit network adapter18. The two servers need to be configured with Debian,
preferably on the same network, and the IP addresses of the virtual machines
and the containers must be reachable. We recommend managing those two servers
with, e.g., OpenStack [36]—as did in our benchmarks—, which provides features
that help to automate the shift between different virtualisation technologies. To
run the configuration scripts of VTmark, a workstation with installed Ansible 2.8
or newer version [23] is required.

The deployment of the monitor server is automated through Ansible, which re-
quires the definition of the server IP address to the telegraf influxdb instance in
the configuration file ansible/group vars/all/vars.yml and into the monitor host
in ansible/inventory.ini. Additional configuration options like the timezone in-
formation are available in ansible/group vars/all/vars.yml and in ansible/ansible.cfg.

After setting up these parameters, the monitor can be deployed by running the
following command.

ansible-playbook -i inventory.ini monitor.yml -l monitor

When the monitor is deployed it is possible to proceed with the deployment of
the virtualisation technologies to benchmark. As done for the monitor, the IP of
the server in which to deploy the virtualisation technology needs to be added into
the ansible/inventory.ini file. As an example, in the following, it is possible to
see a snippet of the ini file for KVM.

[kvm_host]
openstack-kvm ansible_host=10.0.0.1 ansible_become=true

To deploy the host roles it is possible to execute the following command

ansible-playbook -i inventory.ini phase1.yml -l <technology>-host

where <technology> is the virtualisation technology to test (i.e., among: baremetal,
openstack-baremetal, xen, kvm, virtualbox, vmware-workstation, docker, and podman
).

Bare-metal, Openstack bare-metal, Docker, and Podman do not require any
further steps. Unfortunately, it was not possible to fully automatise the deploy-
ment for Xen, KVM, VirtualBox, and VMWare Workstation, which require the
execution of a few manual steps for the creation and configuration of the VMs19.

17 https://w3techs.com/technologies/details/os-linux.
18 Benchmarking with a less powerful server is possible but, in this case, some benchmark

arguments might need adjustments.
19 The interested reader can find those instructions at https://gitlab.com/phillwide/vtmark/
-/blob/master/DEPLOYMENT.md.

https://w3techs.com/technologies/details/os-linux
https://gitlab.com/phillwide/vtmark/-/blob/master/DEPLOYMENT.md
https://gitlab.com/phillwide/vtmark/-/blob/master/DEPLOYMENT.md

16 Saverio Giallorenzo et al.

After these manual steps are executed, to finalise the deployment the following
command should be invoked

ansible-playbook -i inventory.ini phase1.yml -l <technology>-guest

after specifying the IP address of the virtual machine created in the inventory (the
technologies to consider here that replace the <technology> place holder are kvm,
virtualbox, vmware-workstation, and xen).

When the virtual machines and containers are deployed, the benchmark ac-
tivity starts by running the vtmark executor.py to run the benchmarks.20 This
will start to execute the benchmark in sequence and collect the results, which will
be saved in the same directory as the script. The results are split based on the
benchmark and every benchmark is saved in its own folder. The results can then be
parsed with the utility script vtmark parser.py that prints them into the standard
output in comma-separated values format or alternatively into Latex tables.

Detailed instructions on how to deploy, run, and visualise the results of the
benchmarks are available at https://gitlab.com/phillwide/vtmark/-/blob/master/
PARSER.md

5 Results

In this section, we present the reference benchmarks we obtained by running VT-

mark on a production-grade computation cluster. The cluster is composed of Su-
permicro SuperServer 5039MS-H8TRF nodes with Intel Xeon E3-1240 v5, 16GB
2133MHz RAM, Intel SSD DC S3520 Series 150GB and gigabit network adapters.

Settings Before presenting our results, we report information on the general setup
of the benchmarks. When not using standard settings for a given technology, we
also include their configuration and the reason for the deviation.

The version of Debian we used was Debian Buster with kernel 4.19.0. The
image for OpenStack is a generic Debian cloud image with the same kernel. The
cloud image had to be adjusted by disabling the discard option from /etc/fstab
root partition, as it was degrading disk performance. The benchmarks were run on
a single node, virtual machine, or container according to the target virtualisation
technology.

For Xen, the server instance has 14GB of RAM, eight virtual cores and PyGrub
for bootloader. The other settings are the default. Networking works through a
network bridge. The hypervisor is pinned to a single CPU, has 2GB of memory
and disabled autobaloon.

For KVM, the VM has 14GB of memory, eight virtual cores and uses the
host CPU configuration, the VM image is not sparse and the virtualisation is full.
Networking works through a network bridge.

For VirtualBox and VMWare, considering also the settings used for the Xen
server, both images were created with the default settings, a bridged network,
14163 MB of RAM, and eight cores. For VirtualBox, we tested disk performance
both having the drive set SSD and HDD in the storage settings. We used the

20 When more computational resources are available, VTmark can deploy and run in parallel
all the benchmarks, except iPerf3 which, for reliability, needs the dedicated usage of the network
to avoid interference among multiple instances running in parallel.

https://gitlab.com/phillwide/vtmark/-/blob/master/PARSER.md
https://gitlab.com/phillwide/vtmark/-/blob/master/PARSER.md

Virtualisation Costs 17

Dhystone Whetstone Kcbench RAMspeed Iperf3

OpS bare-metal 100% 100% 100% 101% 99.8%

Xen 92.3% 92.2% 80.7% 105.5% 99.4%

KVM 99.6% 99.8% 95.9% 100.4% 99.1%

VirtualBox 99.2% 92.5% 92.7% 95% 75.2%

VMWare 101.4% 101.1% 92.5% 103% 78.2%

Docker 100.1% 99.9% 97.7% 101% 100%

Podman 102.2% 102.5% 98% 103% 100%

Fig. 4: Results in terms of percentage w.r.t. bare-metal from Dhrystone, Whet-
stone, Kcbench, RAMspeed, and Iperf3.

default controller (SATA) and also the SCSI controller for a pre-allocated (static-
size disk) and bridged network. For VMWare, the system disk of the VM was
pre-allocated to avoid the performance drop of resizing the image, and we used
the SCSI controller (recommended) and the VM in “headless” mode (i.e., an image
without the GUI as it is not needed for running the benchmarks).

We now report and comment on the results of the benchmarks, starting from
the idle performance of the system and then passing to compare the technologies
by running VTmark and commenting the results from each tool in its set.

Benchmark Memory (%)

Bare-metal 1.3
OpS bare-metal 1.6
Xen 2.4
KVM 6
VirtualBox 7.4
VMWare Workstation 2
Docker 2.5
Podman 1.8

Table 4: Idle performance.

Idle State Table 4 shows the RAM usage (in percent) in idle state for each of
the targets. The memory consumption of VirtualBox and VMWare Workstation
is calculated by adding the used memory from the VM and the memory on the
host without the VM.

The resource consumption differs in a small percentage of RAM. We do not
report the usage of CPU, network, nor disk as they are close to 0 for all technolo-
gies.

Dhrystone We report the results relative to bare-metal from Dhrystone in the first
column of Fig. 4. The performance difference is minimal (under 3 %) with the
exception of Xen that shows a performance degradation of 8%21.

21 Similar results can be obtained when compiling the benchmark with the register storage
class option (-DPASS2 -DREG) or with the optimisation option (-DPASS2 -O).

18 Saverio Giallorenzo et al.

Interestingly, there are virtualisation solutions that perform even better than
bare-metal. Podman, for instance, consistently outperforms bare-metal in this
benchmark (2.2% performance increase). This is a surprising result which could be
explained by the different Debian image used within the container and the Debian
image used by bare-metal. Unfortunately, due to the complexity of the setting, we
were not able to pinpoint the exact cause of this performance difference.22

As expected, OpenStack bare-metal achieves almost an identical performance
to the one of bare-metal. As far as type-2 hypervisors are concerned, we notice
that they cause more context switches and interrupts, but this does not seem to
correlate to lower performance in the Dhrystone benchmark.

The performance of container engines matches the results of Morabito et al. [35].
Our results for type-2 hypervisors also match with what Barham et al. [2] reported
for SPEC INT2000 (an alternative CPU integer benchmark). Our results for type-
1 hypervisor performance is instead lower than expected, which might be caused
by the system image being file-based—this matches the observation of the authors
of the Xen Project, who mentions a degradation of performance for file backend
storages23—although it is not clear whether the CPU performance is also affected,
besides disk IOs.

Whetstone As shown in the second column of Fig. 4, the results from running
Whetstone are similar to those of Dhrystone. Podman performs best for both
versions again. Most of the technologies perform almost the same way as bare-
metal. The only exceptions are VirtualBox and Xen, which perform significantly
worse.

The resource consumption is the same as for the Dhrystone benchmark. The
results generally follow our expectations, except for the differences between Virtu-
alBox and VMWare Workstation. VMWare Workstation performs well even with
floating-point operations, but VirtualBox falls behind. Xen has the same perfor-
mance overhead in this benchmark as it did in Dhrystone.

Kcbench Kcbench is a multi-threaded benchmark and, as shown in the third col-
umn of Fig. 4, it helps in highlighting the differences between the technologies
studied w.r.t. the two previously benchmarks. Here, only OpenStack bare-metal
and bare-metal perform the same, followed by the container engines with a per-
formance drop of about 2.5% to 3%. The type-2 hypervisors have an overhead
that results in about 8% lower performance. KVM is slightly better than type-2
hypervisors with a performance drop of 4% while Xen drops to 81% of bare-metal.
The benchmark in this case utilises 100% of CPU, uses around 5% of RAM, and
under 1% disk IO.

Differently from Barham et al. [2], who report a 20% performance drop while
compiling Linux kernel 2.4.21 for VMWare Workstation, we saw only an 8% de-
crease. Barik et al. [3] also reported a bigger difference between the performance of
Docker and VirtualBox. Soltesz et al. [42] found no performance difference among
bare-metal, Xen, and VServer when compiling the Linux kernel for single-core
guests. They found a 7% performance drop for Xen when running SMP guests,

22 Docker shares the same image with Podman, but differently than Podman, it has a per-
formance aligned with bare-metal.
23 https://wiki.xenproject.org/wiki/Storage options.

https://wiki.xenproject.org/wiki/Storage_options

Virtualisation Costs 19

where we found 19%. We conjecture that these differences are probably due to mi-
nor configuration differences among the various parameters involved in deploying
the VTs.

RAMspeed The fourth column of Fig. 4 reports the average RAM performance
using RAMspeed. We compute the results by averaging the speeds of copy, scale,
add, and triad operations of different memory types over five runs.

With the exception of VirtualBox, there is no performance drop for any of
the technologies. All technologies achieve up to 6% better results than bare-metal,
and mostly they do 11% better in the individual memory operation types. Xen
performs best here with a 6% better performance than bare-metal. This surprising
result may be due to the way the RAM is accessed by the various virtualisation
technologies and by the fact that RAMspeed does not stress the system too much,
i.e., RAMspeed used only 25% of the CPU and about 1% of RAM for any virtu-
alisation technology without affecting other resources.

The results from RAMspeed match what we expected based on the related
work. Even the 5% performance drop was observed for type-2 hypervisors.

Iperf3 We report in the fifth column of Fig. 4 only the UDP performance bench-
marks obtained by running Iperf3, since their TCP counterparts are very close.

OpenStack bare-metal and container engines suffer no performance impact.
Type-1 hypervisors have a limited performance impact of less than 1% while type-
2 hypervisors instead achieve a significant decrease in performance of more than
20%.

Our bandwidth results for type-2 hypervisors are similar to the results of Barik
et al. [3]. Container engine performance follows the trends from Li et al. [30], but
are different from Soltesz et al. [42] and Morabito et al. [35]. Xen performance is not
impacted, differently to what reported by in Soltesz et al. [42]. From the related
work, we expected the performance might be linked to the CPU speed. This is
supported by our results that report a performance drop when type-2 hypervisors
use only one CPU core. Because iPerf3 needs less computation power to generate
TCP traffic, the performance impact was not visible for the TCP benchmark.

Note that Iperf3 does not detect the limits correctly inside containers. In this
case, they generate up to 4 times more data, which is then limited by the network
interface. In the data reported in Fig. 4, for coherence, we set limits to network
traffic for all the tested technologies.

Bonnie++ Fig. 5 reports the results of sequential-outputs and -inputs of Bon-
nie++. Among all the benchmark used in this report that did not require setting
the time window explicitly, Bonnie++ was the only one having a high variability,
i.e., presenting a standard deviation greater than 2%. For this reason, in Fig. 5 we
reported also not only the comparison of performance w.r.t. bare-metal but also
the relative standard deviation in percentage of the measures obtained by running
the benchmark 3 times.24

As we have seen previously for the CPU utilisation, RAM memory, and net-
work, OpenStack bare-metal has no performance impact for Bonnie++ sequential-
outputs and -inputs.

24 We excluded from our benchmarks the results of sequential-creates that we deemed too
volatile and subject to significant performance differences.

20 Saverio Giallorenzo et al.

Input Output
Per Char Block Per Char Block Rewrite

Bare-metal 100% (1.39) 100% (0.94) 100% (1.01) 100% (3.23) 100% (2.17)

OpS bare-metal 99.3% (1.66) 102.3% (2.00) 99.7% (0.88) 101.2% (2.33) 102.6% (1.55)

Xen 34.8% (0.64) 108.7% (1.23) 54.1% (0.74) 94.8% (6.02) 104.7% (2.70)

KVM 96.9% (1.47) 98.4% (1.69) 93.8% (8.30) 100.2% (0.70) 106.9% (2.19)

VirtualBox 95.8% (1.58) 104.8% (1.75) 96.6% (0.45) 88.3% (2.95) 93.6% (0.88)

VMWare 81.2% (12.76) 48.6% (6.25) 94.2% (3.59) 90.4% (12.45) 64.6% (0.90)

Docker 58.7% (2.05) 101.5% (0.83) 61.3% (0.40) 99% (0.37) 100.8% (1.56)

Podman 59.2% (0.22) 100.9% (2.44) 60% (0.34) 100.9% (2.63) 99.1% (2.46)

Fig. 5: Percentage results w.r.t. bare-metal for the sequential input and output
benchmarks of Bonnie. The relative standard deviation in percentage of the mea-
sures is added in brackets.

Type-1 hypervisors and the container technologies have no significant degra-
dation of performance w.r.t. bare-metal for block operations and rewrite output
operations. The performance difference is no lower than 6% and, surprisingly, for
the input-block benchmarks, they can achieve slightly better performance of bare-
metal. In the per-character benchmarks, Xen has a significant degradation (almost
half of bare-metal) and also the container technologies undergo performance degra-
dations of around 40%.

VirtualBox is consistent with all the disk and controller settings, and thus
we report in Fig. 5 only the results obtained with the SCSI controller. The per-
character writing and reading and rewrite speeds are around 5% lower. The block
writes benchmark performance is around 15% lower than the one of bare-metal
while instead in the block reads it outperforms bare-metal by 2%. Compare to Vir-
tualBox, the rewrite and block-read performance for VMWare Workstation drops
by around 35% and 50%, respectively. Also the per-character write performance
drops by around 10%. VirtualBox host uses 10% of CPU while its guest uses 5%
CPU for system and 20% IO wait. VMWare Workstation uses significantly more
CPU. The host peaks at 50% system usage and 15% IO wait, while the guest
peaks only at 10% and 20% IO wait. On the other hand, Xen’s control domain
CPU utilisation consists mostly of only IO wait (up to 20%). Xen guest peaks at
10% CPU utilisation and 20% IO wait.

Compared to the literature, our results show VirtualBox outperforming the
VMWare hypervisor, while Li et al. [30] reported the opposite observation. The
swap in position could be explained by new releases of the software that either
increased the performance of the former or decreased the ones of the latter. An-
other possible explanation could be the high variability of the performance of the
VMWare Workstation with a standard deviation superior to 5% for some sub-
benchmarks. Xen’s performance is worse than expected for small operations, but
block operations and rewrite results for both Xen and KVM are way better than
intuitively expected.

DBENCH We report in Fig. 6 the results from the DBENCH benchmark: the de-
fault load-file using different amounts of processes without synchronisation (plain

Virtualisation Costs 21

DBENCH in Fig. 6a) and with the fsync flag (DBENCH FSYNC in Fig. 6b) that
makes DBENCH perform a fsync() to the file after each write operation.25

B-metal OpS Xen KVM VirtualBox VMWare Docker Podman

60%

80%

100%

120%

140%

160%

1 process 2 processes 4 processes 8 processes

(a)

B-metal OpS Xen KVM VirtualBox VMWare Docker Podman

50%

100%

150%

200%

250%

300%

1 process 2 processes 4 processes 8 processes

(b)

Fig. 6: DBENCH results: (a) plain
DBENCH and (b) DBENCH FSYNC
percentage w.r.t. bare-metal.

Here, the first surprising result
is that VMWare Workstation consis-
tently outperforms all other virtual-
isation technologies and bare-metal.
The synchronisation option im-
proves the performance of VMWare
Workstation, which leads almost-
three-times better performance than
bare-metal. This outcome is puzzling
and we are unsure if the hypervi-
sor manages to properly write the
data into the disk while executing
the benchmark, or if the technology
would lead to a greater data loss on
an unexpected shutdown.

OpenStack bare-metal shows mostly
no significant performance impact—
lower than 3%.

Type-1 hypervisors perform within
60% to 75% of bare-metal and ben-
efits a bit from the synchronisation.

VirtualBox, performs the worst
out of all the technologies and it
is the only technology to perform
worse with more processors. Virtu-
alBox reaches a drop of performance of almost 60% when 8 processors are used.
As done for Bonnie++, also Fig. 6 presents the results obtained by using the
SCSI controller. We noted that when using the SATA controller, the performance
worsens further, reaching a drop of more 20% w.r.t. bare-metal.

The container engines achieve up to 77% of the performance of bare-metal with
no synchronisation. With synchronisation, the performance improves to around
95% of bare-metal. We notice that container engines benefit from more processes
as they generally perform better.

Considering the differences among the technologies in CPU usage in the bench-
mark, bare-metal spends proportionally more on IO wait than containers, while
using about 12.5% less CPU during the peak. VMWare Workstation uses 70%
CPU time on the host and 60% on the guest during its peak. Moreover, it uses
only 2% of CPU on IO wait, which is the lowest among the technologies.

The VirtualBox CPU usage varies depending on the controller used during
each benchmark, especially when the SCSI controller is used.

Comparing to the literature, in our tests VMWare Workstation achieved results
way better than any other technology. This is similar to what Graniszewski et
al. [22] observed with VirtualBox using an alternative benchmark. However, even
considering various disk setups, in our tests VirtualBox performs the worst overall.

25 Note that similar setting instead the O SYNC flag that makes DBENCH override the
loadfile and use O SYNC for all file open operations leads to similar results.

22 Saverio Giallorenzo et al.

The decrease of performance of type-1 hypervisor reported by other authors was
between 10% to 50%. In our setup, the impact is between 23% and 40%, which is
within the expected range.

5.1 Threats to validity

The first threat to the validity of our experiments is the inherent non-determinism
of distributed systems, which play a major role in increasing the variability of
benchmark results: context switches, networking latency, and caching effects are
just some of the factors that are not under the direct check of VTmark, but whose
effects can influence the results from the benchmarks. To account for the variability
of the VTmark benchmarks, we aimed at repeating the measures, when possible,
or run them for long enough to allow the stabilisation of the results. In particular,
the experiments with Dhrystone, Whetstone, and Kcbench were repeated 5, 5,
and 3 times respectively and we obtained a standard deviation always below 2%.
Bonnie++ had an higher variability but since each repetition could takes more
than 20 minutes, we decided to run it only for 3 times. For the benchmark of
RAMspeed, Iperf3, and DBENCH, which require them to run for a given allocated
time, we decided to allocate 3 minutes. This is the amount of time we empirically
observed it takes for the results to become stable.

In general, we encountered low variability with a standard deviation of above
5% only when benchmarking with Bonnie++ on VMWare Workstation.

Another threat to validity is the potential dependence of the results w.r.t. con-
figuration parameters. All the tested technologies have a wide configuration space
where combinations of different parameters result in benchmarks that are difficult
to compare with each other. For example, [33] and [28] show that the choice of
both host and guest OS can affect performance. In VTmark, we tried to follow the
recommended guidelines whenever possible or chose the default configurations, try-
ing to run the benchmark as closely as possible to a real production environment.
For instance, Soltesz et al. [42] for their experiments disabled hyper-threading to
achieve more stable results, while practitioners (e.g., [13]) suggest disabling those
features that might cause a non-deterministic performance impact, like the Intel
Turbo Boost feature which automatically changes CPU frequency as well as the
hyper-threading and the scaling governor profiles when it registers the running of
demanding tasks. In VTmark we set the scaling governor to the maximum perfor-
mance profile, which is also the only adjustment done with the production servers
at Ordbogen A/S.

6 Case Study

In this section, we compare the results obtained in Section 5 with the perfor-
mance profile of a real-world application used in production for nearly 10 years at
Ordbogen A/S, here adapted to run on the VTs considered in Section 4.

First, we describe the architecture, the components, and the resource profile
of the application considered in this case study. We also report the peculiarities of
adapting it for running our target technologies. We then move to briefly describe
how we stress-tested each setup with synthetic-yet-realistic inbound traffic and we

Virtualisation Costs 23

User

MariaDB

Web

Nginx

Memcache

PHP (website)

Search daemon

Fuzzy daemon

Dict-replica

MariaDB

Log

MariaDB

UDPSQL

Session

Memcache

Legend

name storage component

name request-handling component

name search-engine component

name redirection component name service use

Fig. 7: Architectural diagram of the Ordbogen Website Infrastructure.

conclude by reporting our results and comparing them with the reference data
from VTmark.

6.1 The Ordbogen Website

The main aim of the Ordbogen A/S website is to serve the content of the digital
dictionary (searches and pages). The use-case architecture—released in April 2010
and deprecated in February 2019—comes with an extensive testing system polished
over the years to faithfully simulate the traffic generated at peak hours.

The use-case architecture consists of a Web service exposed to the customers
and four internal services: Dict-replica, Log, User, Session. We report in Fig. 7 a
representation of the architecture, with the service components and the relations
between.

The Web service serves several Ordbogen websites, using Nginx for redirecting
inbound requests. All websites are built with PHP and use Memcache for query
optimisation. All sites have 15 minutes of standard cache timeout for all semi-static
data. Search and Fuzzy daemons are components for searching the Dict-replica
indexes. The search daemon is a C++ Levenshtein-based search engine; while the
Fuzzy daemon is a legacy C-based search engine. The web servers log each search
to the Log database over UDP.

The other components are:

– the User service, which gives access to database for storing data related to
users and companies such as username, email, password, licenses, etc.;

– the Session service, which helps relieving the load on the User service by caching
(via Memcache) the ongoing user sessions;

24 Saverio Giallorenzo et al.

– the Log service, which is an in-house UDPSQL service capturing logging data
from the Web service over UDP. UDPSQL stores the data into a MySQL
database, sending to the Log service each search made and the time it took to
serve the request;

– the Dict-replica service, which gives access to database containing all dictio-
nary products, letting the Search and Fuzzy daemons fetch search indexes and
providing content for the websites.

From the logs recorded in production during peak hours, the Web service is
the main bottleneck of the system under stress, hence, we pick that component
for comparing our benchmarks.

6.2 Adaptation and Stress-testing

Ordbogen A/S created a test suite that can simulate users behaviour at peak hours.
An instance of the test suite emulates the typical behaviours of more than 50,000
distinct users as separate, session-oriented HTTP requests. When stress testing
ordbogen.com, the system would be usually tested with up to 200,000 current
simulated users.

Each simulated user produces a randomised load pattern that approaches nor-
mal distribution when the number of simulated users increases. The users begin
searching in the first 7 minutes, and each user conducts 25 searches 60 to 180
seconds apart.

For our use-case, we set up a separate benchmarking environment, running the
Dict-replica, Log, User, Session in a unique node, since these are not bottlenecks
for the application. We created a Docker image for each service, and with Docker
compose, we built and ran the four services on a Dell PowerEdge R240 with four
core Intel CPU E2124 and 16 GB DDR4 RAM and 1TB HDD.

For creating the traffic, we used the Ordbogen A/S stress test with an increas-
ing number of simulated users. We then measured the response rate and request
execution time under load, looking into the different aspects of the considered
virtualisation technologies.

6.3 Empirical Benchmark Results

We report in Fig. 8 the results of our benchmarks, divided in three plots showing
how many requests per second the various virtualisation technologies sustain

– with a successful (HTTP 200) response, Fig. 8a;
– with a HTTP error (HTTP 50*) response, Fig. 8b;
– with a transport-level error (e.g., request timeout), Fig. 8c.

To test the various setups, we simulated 2000, 4000, 8000, and 160000 concur-
rent synthetic users, each performing a simulated, realistic interaction with the
Orbogen website (i.e., every user performed 25 search activities, each one com-
posed of multiple HTTP request interactions). Concretely, each synthetic user
loaded the page and performed a series of requests, amounting to 250 queries. If
the synthetic user received a failure (a 50* error or a transport-level error, like
a timeout) the follow-up HTTP request in the search activity was dropped, thus

ordbogen.com

Virtualisation Costs 25

23 24

106.3

106.4

106.5

106.6

(a)

23 24

104

105

106

(b)

23 24

101

102

103

104

105

(c)

Bare-metal OpenStack KVM VirtualBox VMWare Docker Podman

Fig. 8: Benchmarks of the case study. Axes are in log scale. The x-axes represent
thousands of requests per second. Y-axes respectively represent: (a) # of HTTP
200 (successful) responses, (b) # of HTTP 50* (server error) responses, (c) # of
non-HTTP errors (e.g., request timeout).

reducing the amount of total HTTP requests performed. The duration of the test
varied between 1h 8’ to 2h 16’ due to the variability of the response times (request
timeouts delayed the execution of the following searches for a simulated user).

When benchmarking Xen, we could not proceed beyond 2000 simulated users
due to a high rate of connection errors, which caused the overall tests to fail.
We put our best efforts to find the root cause of those failures, but, due to the
complexity of the stress-test architecture, we could not pinpoint if the issue could
be solved by adopting different Xen settings. For this reason, we decided to exclude
Xen for the visualisation of the results in Fig. 8.

For presentation sake, we visualise the results obtained simulating 8000 (23 ∗
1000) and 16000 (24 ∗ 1000) users since the results with 4000 user or less did not
present any major difference between the various technologies. Please note that
the plots in Fig. 8 are in logarithmic scale, where the values in the x-axes represent
thousands of requests per seconds.

In Fig. 8a—the higher the line, the better—bare-metal and OpenStack bare-
metal provide the highest throughput of satisfied HTTP requests (HTTP 200).
Docker and Podman follow nearby, while VirtualBox and KVM are close second-
to-last and VMWare is the least performing technology.

Note that when simulating 8000 users, even bare-metal servers use 100% of
CPU, and the first errors start occurring. This can be seen in Fig. 8b and Fig. 8c—
the lower the line, the better. Looking at Fig. 8b, OpenStack bare-metal performs
slightly better than bare-metal. We conjecture that the small difference in perfor-
mance is due to the interplay between non-determinism and the random behaviour
of users generated by the test suite. While, at 8000 users, we find respectively Pod-
man, KVM, Docker, VirtualBox, and VMWare as the best-performing technolo-
gies, we observe an inversion at 16000 users, where VirtualBox has fewer 50* errors
than Docker and Podman, and KVM is slightly better than Podman. Passing to
Fig. 8c, we return to find bare-metal as the best-performing technology, followed
by OpenStack bare-metal and KVM. Interestingly, for bare-metal and OpenStack
bare-metal, the doubled amount of users (from 8000 to 16000) corresponds to a

26 Saverio Giallorenzo et al.

decrease in the number of transport-level errors, which instead remain stable for
the container technologies. As in Fig. 8b, there is an inversion between the best-
performing technologies at 8000 users—VirtualBox, and VMWare return slightly
fewer errors than Docker, fo llowed from a distance by Podman—while, at 16000,
Docker and Podman sensibly distance VMWare and VirtualBox (note, here in in-
verted positions w.r.t.the 8000-calls figure). This phenomenon is probably due to
the high depletion of the computational resource when simulating 16000 users. At
8000 users, the system is still trying to satisfy their requests without reporting an
error, thus causing the application to encounter transport-level errors. At 16000
users, instead, the resources are depleted and the application returns errors reduc-
ing the number of messages that incur transport-level errors. Overall, the sum of
all the errors of the container technologies is more than bare-metal and OpenStack
bare-metal and less than the other technologies.

Comparison with VTmark The gathered results from our use case align with those
found with VTmark. Indeed, the Ordbogen website is a CPU- and memory-intensive
application and, as seen in Section 5, we were expecting type-2 hypervisors to be
the worse-performing, followed respectively by type-1 hypervisors, containers, and
bare-metal or OpenStack bare-metal. Based on the results of our benchmarks, in
particular, looking at Kcbench and DBENCH, we were expecting no decrease in
performance between bare-metal and OpenStack bare-metal, a decrease of perfor-
mance in the order of 2/5% at peak usage between bare-metal and the container
technologies, and more than that for the other hypervisors 1 and 2 technologies.
In our use-case, we measure the expected observation at 8000 users, which stress
the servers and consume all the CPU resources.

As a side note, these results led the Orbogen’s DevOps to compare the running
costs of the computing nodes and the performance differences between a bare-
metal and a container solution, deeming the gap relevant enough (approximately
2%) to orient the adoption of OpenStack bare-metal VT for their deployment but
considering for the future the possibility of adopting a container solution (Docker,
Podman) to make the architecture more flexible for Cloud deployments.

7 Conclusion

We introduced VTmark, a suite that helps in benchmarking the performance of
various virtualisation technologies. Among the benefits of VTmark, it provides a
way for developers to compare the performance of candidate deployment technolo-
gies without the need to adapt the actual system they want to deploy, but rather
use the results from VTmark to orient their decision.

At the moment, developers can use VTmark to benchmark the most common
solutions based on hypervisors and containers against bare-metal, using 7 well-
know benchmarking tools for comparing the performance of CPU, memory, I/O,
and networking.

As a preliminary validation of VTmark, we run it on the hardware used to run
a production-grade distributed application, showing the performance trade-offs of
various technologies and relating our findings with the existing literature—pointing
out and discussing contradictory results. We have shown that the obtained mea-
sures correlate with the result of VTmark. The result strengthens our claim that de-

Virtualisation Costs 27

velopers can use VTmark to obtain reliable indicators to compare the performance
profile of their applications with that of candidate virtualisation technologies.

As future work, we plan to increase the number of virtualisation technologies
supported by VTmark and the number of benchmarking tools. Another direction
regards the “ergonomics” of VTmark, i.e., making the execution of VTmark fully
automated (e.g., using Cloud [4, 5, 1] and Serverless [12] coordination deployment
tools) and parametrising the execution of tests with respect to sets of constraints,
like setting a maximal number of CPUs (memory size, etc.) used across the bench-
marks, bounding the time given for the whole suite to run, as well as fixing per-tool
time bounds, etc..

Regarding the selection of benchmarks, we believe that there is a need for
more refined benchmarks, to distinguish and compare the performance of com-
plex, distributed application. For example, in our experiments the benchmarks
performed with RAMspeed for memory and with Dhrystone and Whetstone for
single-core CPUs are not enough to show relevant performance nuances among
the different technologies. While complex production-grade applications can work
as benchmarks—like the one we used in our use-case—they come with their own
application-specific performance profiles, making it difficult to use their results as
indicators for other applications or difficult to adapt and use for a given virtu-
alisation technology. We deem this lack of proper tools a call for action for the
community of researchers and practitioners spanning from Cloud Computing to
DevOps to study and develop more refined benchmarks and benchmarking tools:
a) able to discriminate in finer ways the various virtualisation technologies, b) fast
and openly available, c) reliable (i.e., which have limited variability), and d) highly
automated.

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict
of interest.

References

1. Lorenzo Bacchiani, Mario Bravetti, Saverio Giallorenzo, Jacopo Mauro, Ia-
copo Talevi, and Gianluigi Zavattaro. Microservice dynamic architecture-level
deployment orchestration. In Ferruccio Damiani and Ornela Dardha, editors,
Coordination Models and Languages - 23rd IFIP WG 6.1 International Conference,

COORDINATION 2021, Held as Part of the 16th International Federated Confer-

ence on Distributed Computing Techniques, DisCoTec 2021, Valletta, Malta, June

14-18, 2021, Proceedings, volume 12717 of Lecture Notes in Computer Science,
pages 257–275. Springer, 2021.

2. Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex
Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of
virtualization. SIGOPS Oper. Syst. Rev., 37(5):164–177, October 2003.

3. R. K. Barik, R. K. Lenka, K. R. Rao, and D. Ghose. Performance analy-
sis of virtual machines and containers in cloud computing. In 2016 Inter-

28 Saverio Giallorenzo et al.

national Conference on Computing, Communication and Automation (ICCCA),
pages 1204–1210. IEEE, 2016.

4. Mario Bravetti, Saverio Giallorenzo, Jacopo Mauro, Iacopo Talevi, and Gi-
anluigi Zavattaro. Optimal and automated deployment for microservices. In
Fundamental Approaches to Software Engineering - 22nd International Confer-

ence, FASE 2019, Held as Part of the European Joint Conferences on Theory

and Practice of Software, ETAPS 2019, Prague, Czech Republic, April 6-11, 2019,

Proceedings, pages 351–368. Springer, 2019.
5. Mario Bravetti, Saverio Giallorenzo, Jacopo Mauro, Iacopo Talevi, and Gian-

luigi Zavattaro. A formal approach to microservice architecture deployment.
In Microservices, Science and Engineering, pages 183–208. Springer, 2020.

6. MinSu Chae, HwaMin Lee, and Kiyeol Lee. A performance comparison of linux
containers and virtual machines using docker and kvm. Cluster Computing,
22(1):1765–1775, Jan 2019.

7. Susanta Nanda Tzi-cker Chiueh and Stony Brook. A survey on virtualization
technologies. Rpe Report, 142, 2005.

8. Russell Coker. Bonnie++. https://www.coker.com.au/bonnie++/, 2001. ”[On-
line; accessed 22-October-2019]”.

9. Theo Combe, Antony Martin, and Roberto Di Pietro. To docker or not to
docker: A security perspective. IEEE Cloud Computing, 3(5):54–62, 2016.

10. Containers Organization. What is podman? https://podman.io/whatis.html.
”[Online; accessed 05-February-2020]”.

11. H Curnow and B. Wichmann. A synthetic benchmark. The Computer Journal,
19:43–49, 02 1976.

12. Giuseppe De Palma, Saverio Giallorenzo, Jacopo Mauro, and Gianluigi Za-
vattaro. Allocation priority policies for serverless function-execution schedul-
ing optimisation. In Eleanna Kafeza, Boualem Benatallah, Fabio Martinelli,
Hakim Hacid, Athman Bouguettaya, and Hamid Motahari, editors, Service-

Oriented Computing - 18th International Conference, ICSOC 2020, Dubai, United

Arab Emirates, December 14-17, 2020, Proceedings, volume 12571 of Lecture Notes

in Computer Science, pages 416–430. Springer, 2020.
13. Denis Bakhvalov. How to get consistent results when bench-

marking on linux? https://easyperf.net/blog/2019/08/02/
Perf-measurement-environment-on-Linux. ”[Online; accessed 23-October-
2019]”.

14. Jack J Dongarra, Cleve Barry Moler, James R Bunch, and Gilbert W Stewart.
LINPACK users’ guide. SIAM, 1979.

15. Jon Dugan, Seth Elliott, Bruce A. Mah, Jeff Poskanzer, and Kaustubh Prabhu.
iperf - the ultimate speed test tool for tcp, udp and sctp. https://iperf.fr/.
”[Online; accessed 22-October-2019]”.

16. Dawson R Engler, M Frans Kaashoek, and James O’Toole Jr. Exokernel:
An operating system architecture for application-level resource management.
ACM SIGOPS Operating Systems Review, 29(5):251–266, 1995.

17. W. Felter, A. Ferreira, R. Rajamony, and J. Rubio. An updated performance
comparison of virtual machines and linux containers. In 2015 IEEE Interna-

tional Symposium on Performance Analysis of Systems and Software (ISPASS),
pages 171–172, March 2015.

18. The Linux Foundation. Open Container Initiative. https://opencontainers.
org/, 2020. [Online; accessed 14-June-2020].

https://www.coker.com.au/bonnie++/
https://podman.io/whatis.html
https://easyperf.net/blog/2019/08/02/Perf-measurement-environment-on-Linux
https://easyperf.net/blog/2019/08/02/Perf-measurement-environment-on-Linux
https://iperf.fr/
https://opencontainers.org/
https://opencontainers.org/

Virtualisation Costs 29

19. The Linux Foundation. Xen Project Overview. https://wiki.xen.org/wiki/
Xen Project Software Overview, 2020. [Online; accessed 28-July-2020].

20. T. Goethals, M. Sebrechts, A. Atrey, B. Volckaert, and F. De Turck. Unikernels
vs containers: An in-depth benchmarking study in the context of microservice
applications. In 2018 IEEE 8th International Symposium on Cloud and Service

Computing (SC2), pages 1–8, Nov 2018.
21. Yasunori Goto. Kernel-based virtual machine technology. Fujitsu Scientific and

Technical Journal, 47(3):362–368, 2011.
22. Waldemar Graniszewski and Adam Arciszewski. Performance analysis of se-

lected hypervisors (virtual machine monitors - vmms). International Journal

of Electronics and Telecommunications, 62(3):231–236, 2016.
23. Red Hat. Ansible. https://www.ansible.com/, 2020. [Online; accessed 20-

April-2020].
24. Rhett M. Hollander and Paul V. Bolotoff. RAMspeed, a cache and memory

benchmarking tool. http://alasir.com/software/ramspeed/, 2002. ”[Online;
accessed 22-October-2019]”.

25. Michael Hüttermann. DevOps for developers. Apress, 2012.
26. Teemu Kamarainen, Yuanqi Shan, Matti Siekkinen, and Antti Yla-Jaaski. Vir-

tual machines vs. containers in cloud gaming systems. In 2015 International

Workshop on Network and Systems Support for Games (NetGames), volume 2016-
, pages 1–6. IEEE, 2015;2016;.

27. Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori. kvm:
the linux virtual machine monitor. In Proceedings of the Linux symposium,
volume 1, pages 225–230. Ottawa, Ontorio, Canada, 2007.

28. Steve G. Langer and Todd French. Virtual machine performance benchmark-
ing. Journal of Digital Imaging, 24(5):883–889, 2011.

29. Ian M. Leslie, Derek McAuley, Richard Black, Timothy Roscoe, Paul Barham,
David Evers, Robin Fairbairns, and Eoin Hyden. The design and implemen-
tation of an operating system to support distributed multimedia applications.
IEEE journal on selected areas in communications, 14(7):1280–1297, 1996.

30. Z. Li, M. Kihl, Q. Lu, and J. A. Andersson. Performance overhead comparison
between hypervisor and container based virtualization. In 2017 IEEE 31st

International Conference on Advanced Information Networking and Applications

(AINA), pages 955–962. IEEE, 2017.
31. Roy Longbottom. Classic benchmarks. http://www.roylongbottom.org.uk/

classic.html. ”[Online; accessed 06-March-2020]”.
32. Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David Scott,

Balraj Singh, Thomas Gazagnaire, Steven Smith, Steven Hand, and Jon
Crowcroft. Unikernels: Library operating systems for the cloud. ACM

SIGARCH Computer Architecture News, 41(1):461–472, 2013.
33. Ilias Mavridis and Helen Karatza. Combining containers and virtual machines

to enhance isolation and extend functionality on cloud computing. Future

Generation Computer Systems, 94:674–696, 2019.
34. Dirk Merkel. Docker: lightweight linux containers for consistent development

and deployment. Linux journal, 2014(239):2, 2014.
35. R. Morabito, J. Kjällman, and M. Komu. Hypervisors vs. lightweight virtual-

ization: A performance comparison. In 2015 IEEE International Conference on

Cloud Engineering, pages 386–393. IEEE, 2015.

https://wiki.xen.org/wiki/Xen_Project_Software_Overview
https://wiki.xen.org/wiki/Xen_Project_Software_Overview
https://www.ansible.com/
http://alasir.com/software/ramspeed/
http://www.roylongbottom.org.uk/classic.html
http://www.roylongbottom.org.uk/classic.html

30 Saverio Giallorenzo et al.

36. Openstack. What is OpenStack? https://www.openstack.org/software/, 2020.
[Online; accessed 20-April-2020].

37. Oracle. Virtualbox manual: Chapter 1 first steps. https://www.virtualbox.
org/manual/ch01.html. ”[Online; accessed 05-February-2020]”.

38. Gerald J Popek and Robert P Goldberg. Formal requirements for virtualizable
third generation architectures. Communications of the ACM, 17(7):412–421,
1974.

39. Mathijs Jeroen Scheepers. Virtualization and containerization of application
infrastructure : A comparison. In 21st twente student conference on IT, vol-
ume 21, 2014.

40. Prateek Sharma, Lucas Chaufournier, Prashant Shenoy, and Y. C. Tay. Con-
tainers and virtual machines at scale: A comparative study. In Proceedings

of the 17th International Middleware Conference, pages 1–13. Association for
Computing Machinery, 11 2016.

41. Stephen Soltesz, Herbert Pötzl, Marc E Fiuczynski, Andy Bavier, and Larry
Peterson. Container-based operating system virtualization: a scalable, high-
performance alternative to hypervisors. In Proceedings of the 2Nd ACM

SIGOPS/EuroSys european conference on computer systems 2007, pages 275–287,
2007.

42. Stephen Soltesz, Herbert Pötzl, Marc E. Fiuczynski, Andy Bavier, and Larry
Peterson. Container-based operating system virtualization: A scalable, high-
performance alternative to hypervisors. SIGOPS Oper. Syst. Rev., 41(3):275–
287, March 2007.

43. Andrew Tridgell and Ronnie Sahlberg. Dbench. https://dbench.samba.org.
”[Online; accessed 22-October-2019]”.

44. Reinhold P Weicker. Dhrystone: a synthetic systems programming benchmark.
Communications of the ACM, 27(10):1013–1030, 1984.

https://www.openstack.org/software/
https://www.virtualbox.org/manual/ch01.html
https://www.virtualbox.org/manual/ch01.html
https://dbench.samba.org

