
Received 28 July 2024; accepted 14 August 2024. Date of publication 22 August 2024; date of current version 4 September 2024.

Digital Object Identifier 10.1109/OJCOMS.2024.3447839

Joint Power Control and Pilot Assignment in
Cell-Free Massive MIMO Using Deep Learning

MUHAMMAD USMAN KHAN (Member, IEEE), ENRICO TESTI (Member, IEEE),
MARCO CHIANI (Fellow, IEEE), AND ENRICO PAOLINI (Senior Member, IEEE)

CNIT/WiLab, DEI, University of Bologna, 47521 Cesena, Italy

CORRESPONDING AUTHOR: E. TESTI (e-mail: enrico.testi@unibo.it)

This work was supported in part by the Consorzio Nazionale Inter-Universitario per le Telecomunicazioni (CNIT) Wireless Communications Laboratory (WiLab)
and the WiLab-Huawei Joint Innovation Center; and in part by the European Union through the Italian National Recovery and Resilience Plan

of NextGenerationEU, Partnership on “Telecommunications of the Future” under Grant PE00000001-RESTART.

ABSTRACT Cell-free massive MIMO (CF-mMIMO) networks leverage seamless cooperation among
numerous access points to serve a large number of users over the same time/frequency resources. This
paper addresses the challenges of pilot and data power control, as well as pilot assignment, in the uplink
of a cell-free massive MIMO (CF-mMIMO) network, where the number of users significantly exceeds
that of the available orthogonal pilots. We first derive the closed-form expression of the achievable uplink
rate of a user. Subsequently, harnessing the universal function approximation capability of artificial neural
networks, we introduce a novel multi-task deep learning-based approach for joint power control and pilot
assignment, aiming to maximize the minimum user rate. Our proposed method entails the design and
unsupervised training of a deep neural network (DNN), employing a custom loss function specifically
tailored to perform joint power control and pilot assignment, while simultaneously limiting the total
network power usage. Extensive simulations demonstrate that our method outperforms the existing power
control and pilot assignment strategies in terms of achievable network throughput, minimum user rate,
and per-user energy consumption. The model versatility and adaptability are assessed by simulating two
different scenarios, namely a urban macro (UMa) and an industrial one.

INDEX TERMS Cell-free massive MIMO, deep learning, pilot assignment, power control.

I. INTRODUCTION

AS THE demands for device connectivity and mobile
data traffic escalate, strategic base station (BS) densifi-

cation within the network emerges as a pivotal solution [1].
Network densification can be achieved in two ways: adding
more BSs for local spectrum reuse or implementing mas-
sive multiple-input multiple-output (mMIMO) to reduce
interference [2], [3]. The first architecture that combines
the advantages of both approaches was proposed in [4],
known as cell-free massive MIMO (CF-mMIMO). The
CF-mMIMO can achieve the objectives of 6G by improving
the (usually poor) quality of service for the users at the
edge of the cell and reducing inter-cell interference [5]. In
such a distributed mMIMO-based network, a large number
of service antennas, called access points (APs), serve a group
of users distributed in a wide area. Unlike conventional

cellular networks, this approach discards the concept of
cells and cell boundaries entirely. The CF-mMIMO approach
relies on seamless cooperation among numerous APs, all
operating within the same time-frequency resource using
time-division duplexing (TDD). At the center of the network
is the central processing unit (CPU) through which the
cooperation between the APs takes place. The APs are
connected to the CPU through a fronthaul connection. Such
network architecture, augmented by emerging technologies
like reflective intelligent surfaces (RISs), extremely large-
scale MIMO (XL-MIMO), and holographic MIMO, is among
the most promising candidates for next-generation wireless
networks [6], [7], [8], [9].
With reference to massive machine-type communica-

tions (mMTC) services, a typical massive multiple access
(MMA) problem arises in the uplink, in which a myriad
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of devices physically located in the same area contend
to transmit their packets, consisting of a pilot and data
payload, over the radio access network. Due to limited
coherence time intervals and a very large number of
devices, assigning orthogonal pilots to every user becomes
impractical [3]. Consequently, we are compelled to reuse
pilots, inadvertently giving rise to the pilot contamination
phenomenon, which deteriorates the quality of channel
estimation [10]. Additionally, the challenge of inter-user
interference emerges, demanding innovative solutions, e.g.,
using advanced power control mechanisms. However, the
mMIMO system benefits from channel hardening, i.e., the
effect of small-scale fading becomes negligible at the receiver
due to the presence of multiple antennas. This allows us to
optimize power coefficients based on the large-scale fading
coefficients instead of small-scale fading which requires
frequent updates [11].
Strategic power control and careful pilot assignment are

pivotal in mitigating inter-user interference and enhancing
network performance. The most diffused power con-
trol strategies focus on maximizing the minimum user
rate to ensure uniform service quality regardless of
the spatial user distribution [4], [12], [13]. The max-
min problem for power/pilot assignment can be solved
through optimization [14], [15], [16]. However, the high
computational burden inherent in optimization algorithms
poses substantial challenges in terms of meeting stringent
time constraints, making classical optimization techniques
impractical. Leveraging the universal function approxima-
tion capability of artificial neural networks (ANNs), deep
learning (DL)-based methodologies emerge as an innovative
solution yielding high performance while simultaneously
reducing computational complexity, when compared to tra-
ditional optimization algorithms [17]. Indeed, whereas an
optimization algorithm necessitates to be re-run from scratch
whenever a system parameter or input variable changes,
once the DL model is trained, we can exploit its forward
propagation for fast and efficient prediction.

A. RELATED WORKS
1) POWER CONTROL

The advantages offered by DL algorithms have catalyzed
a significant body of work in CF-mMIMO [18], [19],
[20], [21]. Power control in the CF-mMIMO scenario is
no exception [5], [17], [22], [23], [24]. The approaches
for power control through DL in the literature can be
divided into two: supervised and unsupervised. In supervised
learning, a crucial requirement is the availability of output
labels (specifically, the power coefficients of each user)
for both training and testing the network. The output
labels are generated using optimization algorithms, requiring
significant execution time. A supervised long short-term
memory (LSTM) network and a deep neural network (DNN)
for power control is proposed in [5] and [22], respectively,
feeding the position of the users as input to the learning
model. In [17], a DNN that takes the large-scale fading

coefficients as input and produces the optimized power
coefficients and the total power budget as output is proposed.
Conversely, in unsupervised learning, no prior knowledge

of output labels is required. This reduces the time to generate
the datasets but necessitates the development of a problem-
tailored loss function. In [23], [24], a specific loss function
that maximizes the minimum user rate is proposed. In [25],
the model complexity is reduced by feeding aggregated large-
scale fading coefficients to the DNN, rather than individual
ones. Notably, the DNN with the proposed loss function
achieves better performance than the optimization algorithm
in [4]. In [26], a soft max-min problem is proposed. Most
of the above-mentioned strategies presume that mutually
orthogonal pilots are assigned to the users. Yet, in massive
access scenarios, this approach becomes impractical due to
the limited coherence intervals.

2) PILOT ASSIGNMENT

A substantial body of research has explored pilot assign-
ment strategies, with random pilot assignment emerging
as the most widely recognized approach [27]. A repul-
sive clustering-based method for the pilot assignment in
CF-mMIMO is proposed in [28]. Graph coloring-based pilot
assignment is presented in [29]. The study in [10] is focused
on forming groups of the users and APs to reduce pilot
contamination. A supervised learning-based approach that
maps the users’ location to a pilot sequence is presented
in [30]. A multi-agent reinforcement learning-based approach
for pilot assignment is proposed in [3].

3) POWER CONTROL AND PILOT ASSIGNMENT

Only few works in the literature address both power control
and pilot assignment simultaneously. In [4], a greedy iterative
algorithm is proposed that assigns a different pilot to the
user having the minimum user rate while solving the power
control problem via bisection. Mai et al. designed pilots and
formulated optimization problems for joint pilot power and
data power control [31]. In [16], a pilot assignment strategy
is proposed focusing on active users detection (AUD), and
then they developed a power control scheme for coexisted
human-type communication (HTC) and machine-type com-
munication (MTC) traffic. In [32], a deep reinforcement
learning (DRL)-based approach for joint power and pilot
assignment is presented. The authors perform clustering of
the users and then assign pilots and allocate power using
DRL, to increase AUD performance.

B. MAIN CONTRIBUTIONS
The literature predominantly emphasizes either power control
or pilot assignment tasks, with limited attention given to both
optimizations. Even in cases where both optimizations are
addressed, most studies rely on time-inefficient optimization
algorithms. Although there are works exploring DRL for
joint power control and pilot assignment, they tend to
concentrate on AUD rather than enhancing the spectral
efficiency (SE), leaving room for more comprehensive and
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efficient methodologies in this domain. Thus, the main
contributions of the paper are summarised as follows.

• We propose a multi-task learning framework consisting
of a DNN for joint pilot and data power control and
pilot assignment (JPDCPA). The network is trained in
an unsupervised manner by means of a custom loss
function, designed to maximize the minimum user rate
in a CF-mMIMO network.

• We consider a massive access scenario consisting of a
large number of users to which a much smaller number
of orthogonal pilots must be assigned. The multi-task
DNN is designed to be scalable and to deal with large
cell-free networks.

• We validate the proposed model via extensive sim-
ulation, providing a comparison with state-of-the-art
methods in terms of achievable network throughput,
minimum user rate, and energy consumption of the
devices after optimization.

• We demonstrate the versatility and adaptability of
our approach by assessing its performance in urban
macro (UMa) and indoor industrial scenarios [33].
Furthermore, in our study we have considered different
user-to-antenna ratios, including scenarios where the
number of users exceeds that of the antennas, and vice
versa.

• We characterize the performance of the proposed DNN
in terms of the minimum user rate and per-user uplink
throughput rate. Additionally, we evaluate the network
energy consumption and provide insights into the impact
of each term in the custom loss function on the overall
system performance.

• Finally, we investigate the computational complexity
of the proposed approach in terms of floating point
operations (FLOPs).

The rest of the paper is organized as follows. In Section II,
we present the system model and in Section III, we present
the signal-to-interference-plus-noise ratio (SINR) analysis.
We formulate the problem for maximizing the minimum
SINR in Section IV. The DL-based approach for joint pilot
and data power control and pilot assignment in CF-mMIMO
is described in Section V. Simulation setup along with the
numerical results is provided in Section VI. Conclusions are
drawn in Section VII.
Matrices, vectors, and scalars are represented by boldface

uppercase, boldface lowercase, and lowercase letters, respec-
tively. The fields of real and complex numbers are denoted
by R and C, respectively. The operations (·)T , (·)∗, and (·)H
denote the transpose, conjugate, and conjugate transpose,
respectively. The expectation and Euclidean norm operators
are defined as E[ · ] and ‖ · ‖2, respectively. The normal
and circularly-symmetric complex normal distributions with
mean 0 and variance σ 2 are denoted by N (0, σ 2) and
CN (0, σ 2), respectively.
This paper is an extension of [34]. While [34] focused

exclusively on data power control and pilot assignment in a

FIGURE 1. An illustration of a typical cell-free massive MIMO network.

scenario with single-antenna APs, the current work expands
on this foundation by considering pilot power control and
multiple antennas APs. To incorporate pilot power control
and multiple antennas, a new expression is derived for
the achievable uplink rate of a user in a CF-mMIMO
scenario and a new DNN architecture is proposed with a
customized loss function. Unlike [34], which exclusively
provides simulation results for the UMa scenario, this work
considers also an industrial indoor one [33]. In [34], we
focused on scenarios where the number of users exceeds the
number of antennas. In this work, we extend the discussion to
encompass scenarios where the number of users is fewer than
the number of antennas. We introduce results that elucidate
the significance of each loss term within the loss function.
Furthermore, a comprehensive analysis of the algorithm’s
computational complexity is provided.

II. SYSTEM MODEL
We consider a CF-mMIMO system with M APs, each
equipped with N antennas, arranged on a grid and K users
randomly deployed in an area measuring D × D m2, as
illustrated in Fig. 1. The APs are connected to a CPU through
fronthaul links. We assume that the number of mutually
orthogonal pilot sequences P is far less than the number
of users K, i.e., P � K. The set of available orthogonal
pilot sequences is denoted by P = {p1, p2, . . . , pP}. We
assume that the large-scale fading coefficients between
every user and AP are known at the CPU whenever
necessary [17], [23], [25]. We assume that the APs serve
all the users in the same time-frequency resources and that
each channel coherence interval is divided into downlink
and uplink phases, such that the system operates in TDD.
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We also assume that during the downlink phase the CPU
communicates the optimized power coefficients and pilot
assignments to the users of the network through the APs.

A. UPLINK TRANSMISSION
The uplink transmission consists of two phases: pilot
transmission and data transmission.

1) PILOT TRANSMISSION

In this phase, all K users synchronously transmit the pilot
they have been assigned to via optimization. The vector of
received symbols at nth antenna of the mth AP, ymn ∈ C

τ×1,
is

ymn = √τρp

K∑

k=1

√
bkgmnkφk + wmn (1)

where ρp is the normalized pilot signal-to-noise ratio (SNR),
φk ∈ C

τ×1 are the pilot symbols transmitted by user k
with ‖φk‖2 = 1, τ is the pilot sequence length, bk ∈ [0, 1]
is the pilot power control coefficient, gmnk is the channel
coefficient between the kth user and the nth antenna of the
mth AP, and wmn ∈ C

τ×1 is additive noise and its elements
are independent and identically distributed (i.i.d.) CN (0, 1)

random variables (r.v.s). The normalized pilot transmit SNR
is defined as

ρp = ρ̄p

σ 2
n

(2)

where σ 2
n = BkBT0NF, ρ̄p is the pilot transmit power, B is the

bandwidth, kB is the Boltzmann constant, T0 is the equivalent
noise temperature, and NF denotes the noise figure of the
receiver. The channel coefficient between user k and at the
nth antenna at the mth AP is modeled as

gmnk =
√

βmkhmnk (3)

where βmk is the large-scale fading incorporating both path-
loss and log-normal shadowing, and hmnk ∼ CN (0, 1) is the
small-scale fading. The large-scale fading coefficient is

βmk = 10σshsmk/10

PLmk
(4)

where PLmk is the path-loss from the kth user to the mth
AP, σsh is the shadowing intensity, and smk ∼ N (0, 1). The
nth antenna at the mth AP estimates the channel associated
with the kth user by projecting ymn along φk, as

ỹmnk = φHk ymn

= √τρp

⎛

⎝
√
bkgmnk +

K∑

k′ 
=k

√
bk′gmnk′φ

H
k φk′

⎞

⎠+ φHk wmn (5)

such that the minimum mean square error (MMSE) channel
estimate is

ĝmnk = E
[
ỹ∗mnk gmnk

]

E
[ |ỹmnk|2

] ỹmnk (6)

= cmkỹmnk

where cmk is defined as

cmk =
√

τρpbkβmk

τρp
∑K

k′=1 bk′βmk′ |φHk φk′ |2 + 1
. (7)

Let us remark that the quality of the channel estimate
depends on the pilots assigned to all the users of the network.

2) UPLINK DATA TRANSMISSION

The uplink phase is then concluded with the simultaneous
transmission of the data payload of all the users. The generic
received signal sample at the nth antenna of the mth AP can
be written as

zmn = √ρ

K∑

k=1

√
qkgmnkxk + νmn (8)

where ρ is the normalized data transmit SNR, qk ∈ [0, 1]
is the power control coefficient of user k, xk is the data
payload symbol transmitted by user k with E[ |xk|2] = 1,
and νmn ∼ CN (0, 1) is additive noise. The normalized data
transmit SNR is defined as

ρ = ρ̄

σ 2
n

(9)

where ρ̄ is the maximum data transmit power.
We assume that for the detection of the symbols transmit-

ted by the kth user each AP processes the received signal
by multiplying it with the complex conjugate of the locally
derived channel estimate [4]. The resultant quantity is then
forwarded to the CPU through a fronthaul link to perform
joint detection. The aggregated received signal at the CPU
is

rk =
M∑

m=1

N∑

n=1

ĝ∗mnkzmn

= √ρ

K∑

k′=1

M∑

m=1

N∑

n=1

√
qk′ ĝ

∗
mnkgmnk′xk′ +

M∑

m=1

N∑

n=1

ĝ∗mnkνmn.

(10)

III. SINR ANALYSIS
In this section, we obtain a closed-form expression for
the uplink achievable rate using the formulation introduced
in [4], [15]. A key distinction between our proposed method
and the approach outlined in [4], [15] pertains to pilot
power allocation. The two approaches assume equal pilot
power allocation for each user, while we perform also
pilot power control. The derivation of the achievable rate
expression assumes that each user possesses knowledge of
channel statistics but not specific channel realizations. The
received signal rk can be expressed as

rk = DSkxk + BUkxk +
K∑

k′ 
=k
IUIkk′xk + TNk (11)
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where

DSk �
√

ρ E

{
M∑

m=1

N∑

n=1

√
qkgmnkĝ

∗
mnk

}
, (12)

BUk �
√

ρ

M∑

m=1

N∑

n=1

√
qkgmnkĝ

∗
mnk

−√ρ E

{
M∑

m=1

N∑

n=1

√
qkgmnkĝ

∗
mnk

}
(13)

IUIkk′ �
√

ρ

M∑

m=1

N∑

n=1

√
qk′gmnk′ ĝ

∗
mnk (14)

TNk �
M∑

m=1

N∑

n=1

ĝ∗mnkνmn. (15)

The terms DSk, BUk, IUIkk′ , and TNk denote the desired
signal for the kth user, the uncertainty in beamforming gain
for the kth user, the inter-user interference introduced by the
k′th user, and the total noise, respectively. The first term
of (11) demonstrates no correlation with the second, third,
and fourth terms, i.e., the desired signal and effective noise
terms are uncorrelated. By considering uncorrelated Gaussian
noise as a worst-case scenario, the achievable SINR of the
received signal of the kth user can be expressed as

SINRk = |DS|2k
E{|BUk|2} +∑K

k′ 
=k E{|IUIkk′ |2} + E{|TNk|2}
.

(16)

By manipulating the expressions in (12), (13), (14), (15) and
substituting them into (16), we derive the final expression
for the achievable uplink rate of the kth user in (19), shown
at the bottom of the page. Please refer to the Appendix for
the complete proof.

IV. PROBLEM FORMULATION
In [4], the authors have demonstrated that uniform and
good-quality service can be ensured to all the users of a
CF-mMIMO system via max-min power control. Let us
define the kth user uplink throughput rate as

Rk = log2(1+ SINRk) (17)

where the SINR of user k is given by (19) and γmk =√
τρpbkβmkcmk [4]. The max-min power control aims at

maximizing the minimum user uplink throughput rate such
that all the users of the network can experience good
quality of service. In this work, we assume that the number
of orthogonal pilots is considerably smaller than the total
number of users, such that orthogonal pilots reuse becomes

necessary. Adding such a constraint, the max-min problem
can be formulated as

max
bk,qk,φk

min
k
Rk

s.t. 0 ≤ bk ≤ 1, k = 1, 2, . . . ,K,

0 ≤ qk ≤ 1, k = 1, 2, . . . ,K,

φk ∈ P . (18)

V. DEEP LEARNING-BASED APPROACH
In this section, we introduce a multi-task DNN designed
to solve the problem in (18), allocating pilot and data
power coefficients bk and qk, respectively, and simultaneously
assigning pilot sequences φk to the users. The proposed
algorithm maximizes the minimum user rate based on the
large-scale fading experienced by the users, which are known
at the CPU [17], [23], [25]. Hereafter, we describe the data
pre-processing strategy, the architecture of the proposed DL
model, and the loss function used for the unsupervised
training.

A. PRE-PROCESSING
To make unsupervised training effective and decrease the
input layer size, we pre-processed the data by aggregating
the large-scale fading coefficients and applying proper
normalization. The data pre-processing procedure is detailed
in the following.
1) Large-scale fading coefficients aggregation: We

aggregate the large-scale fading coefficients related to
user k as

β
(j)
k =

M∑

i=1

β
(j)
ik (20)

where the superscript (j) refers to the jth sample of
the dataset. This operation reduces the input layer size
of the DL model, making the architecture scalable and
suitable for large networks [25].

2) Logarithmic scale conversion and scaling: We per-
form z-score normalization of the aggregated fading
coefficients in logarithmic scale, ξ

(j)
k = log10(β

(j)
k ),

such that the normalized data are zero mean and have
standard deviation one, i.e.,

η
(j)
k =

ξ
(j)
k − μ̄

σ̄
(21)

where μ̄ and σ̄ are the sample mean and sample
standard deviation of ξ

(j)
k , respectively, computed over

all the network users and the training samples. Let us
remark that the test dataset is normalized using μ̄ and
σ̄ calculated over the training dataset.

SINRk =
qkN

(∑M
m=1 γmk

)2

∑K
k′ 
=k qk′

(∑M
m=1 γmk

√
bk′βmk′√
bkβmk

)2

|φHk φk′ |2 +
∑K

k′=1 qk′
∑M

m=1 γmkβmk′ + 1
ρ

∑M
m=1 γmk

. (19)

5264 VOLUME 5, 2024



FIGURE 2. Model layout of the multi-task DNN for joint pilot and data power control
and pilot assignment (JPDCPA). The size of each layer is specified next to it; for
instance, the fully connected layers of the pilot and data power control branches
contain K neurons each, while the output layer of a single pilot assignment
sub-branch contains P neurons.

3) Normalization: We apply L2-normalization to each
sample of the dataset, such that the kth normalized
feature of the jth sample is

χ
(j)
k =

η
(j)
k√

∑K
i=1

(
η

(j)
i

)2
. (22)

B. ARCHITECTURE
In this subsection, we present the proposed multi-task DNN
architecture for joint pilot and data power control, and pilot
assignment, which we refer to as JPDCPA. We explored
various architectures by varying the numbers, types, and
sizes of layers, aiming to identify an architecture that
strikes a good balance between complexity and performance.
Our experiments revealed that an excessive increase in the
number of hidden layers of the multi-task DNN induces
the phenomenon of gradient vanishing, and this is due
to the unsupervised nature of the training process [35]. Thus,
we chose an architecture capable of delivering remarkably
high performance while maintaining a limited number of
hidden layers. The input of the multi-task DNN is the
vector of aggregated and pre-processed large-scale fading
coefficients obtained from (22), while the outputs are the
pilot and data power control coefficients, and the pilot
indexes for each network user. The architecture comprises
three branches, each of which performs one task as shown in
Fig. 2. The power control branches perform regression tasks,
while the pilot assignment one performs a classification task
and is organized into K sub-branches, each responsible for
the allocation of a pilot to a specific user. The DL model

consists of fully connected layers with multiple neurons,
each receiving multiple inputs as follows

z = Wα + � (23)

α = f (z) (24)

where W ∈ R
out×in is the weight matrix. Here, out and

in represent the number of output and input features,
respectively. The input to the layer is represented by α ∈
R
in×1, and the bias is denoted by � ∈ R

out×1 [35]. The non-
linear activation function is denoted by f (·). This function
enables the network to learn non-linear relations between
input and output, a crucial aspect of DL models. The
number of neurons employed in each fully connected layer
is specified in Fig. 2. For instance, the number of neurons in
the fully connected layer of the pilot power control branch
is equal to K. Different non-linear activation functions have
been used for the network layers depending on their purpose.
The activation functions are applied element-wise to the layer
input vectors, whose ith element is generically denoted by
ai. The sigmoid function is used in the pilot and data power
control branches such that the optimized pilot (or data) power
coefficient, b̂i (or q̂i), for user i is

b̂i = σ(ai) = 1

1+ e−ai . (25)

We employ the exponential linear unit (eLU) function for
the hidden layer of the pilot assignment branch, defined as

eLU(ai) =
{

� · (eai − 1), if ai < 0,

ai, otherwise
(26)

where � determines the function saturation point for the
negative input values. The softmax function is used in all the
output layers of the pilot assignment branch. In particular,
the kth sub-branch activation is calculated as

vki = softmax(aki) = eaki
∑P

i=1 e
aki

(27)

where vki represents the ith element of vector vk ∈ R
P×1.

The softmax values are then mapped to the pilots as

w = arg max
i∈{1,2,...,P}

vki (28a)

φ̂k = pw (28b)

where pw is the wth pilot sequence.

C. LOSS FUNCTION
Since the optimal power control and pilot assignment
schemes are unknown, we lack the labels required for
supervised training of the neural network. Therefore, we
perform unsupervised training for the multi-task DNN using
a custom loss function specifically designed to execute power
control and pilot assignment tasks while simultaneously
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limiting user energy consumption. The proposed custom loss
function is

L
(
b̂, q̂,�;ψ

)
=

K∑

k=1

σ

(
0.3

Rk

)
− Kλ1Rmin + λ2

K∑

k=1

q̂k

+ λ3

K∑

k=1

b̂k + 2λ4

K − 1

K∑

i=1

i−1∑

j=1

ij

e�ij
. (29)

where λ1, λ2, λ3, and λ4 are the weights of the loss terms,
ψ is the vector containing all the DNN‘s weights and biases,
and vectors b̂ and q̂ are the pilot and data power coefficients
assigned to the users by the DNN. The loss function (29)
does not explicitly depend on ψ ; rather, it depends on ψ
indirectly through b̂ and q̂, which are the outputs of the
DNN. The first two terms of the loss function lay the
foundation of our approach, solving the max-min problem as
outlined in [25]. The constant 0.3 is a hyperparameter that
specifies the degree to which the network is penalized for
low or high throughput rates. We have conducted extensive
simulations varying the value of such constant from 0 to 1,
finding that 0.3 provides the best overall performance, in
accordance to [25]. We have further enhanced the joint pilot
and data power control and pilot assignment optimization
performance by incorporating three additional terms into the
loss function. The normalized sum of the assigned data power
coefficients, 1

K

∑K
k=1 q̂k, penalizes the allocation of high data

power coefficients to the users during the training process,
reducing the overall network transmit power and potentially
increasing the nodes battery life. Similarly, the normalized
sum of the assigned pilot power coefficients, 1

K

∑K
k=1 b̂k

penalizes the network to reduce the pilot transmit power.
The last term of (29) promotes the reuse of pilots among
users that are far apart in the network area, limiting inter-user
interference. The penalty becomes significant when nearby
users utilize the same pilot, while it is minimized when users,
whether in close proximity or at a significant distance, are
allocated distinct pilots. The matrix � = {ij} is defined
as � = VVT , where V = [v1, v2, . . . , vK]T ∈ R

K×P. Here,
vk represents the output of the softmax operation (27) of
the kth sub-branch of pilot assignment as shown in Fig. 2.
The normalized distance between the ith and the jth users is
denoted by �ij, and is obtained dividing the actual distance
by D
√

2, where D denotes the simulation area side. As matrix
� is symmetric, we consider the sum of the elements below
the diagonal and divide the result by the number of entries,
(K2−K)/2. It is important to note that the distances between
the nodes and the APs are used solely for neural network
training. After the training phase, only the large-scale fading
coefficients are required to perform power control and pilot
assignment. To simplify the notation, the aforementioned
terms are multiplied by K, and each term is assigned a
specific weight. Such weights are designed to enhance the
model’s adaptability by prioritizing various aspects critical to
specific applications, such as minimizing power consumption
in low-power scenarios.

Algorithm 1 Training Algorithm of JPDCPA DNN
Input: χ , �, β1, β2, δ, ε

Initialization: t← 1, v0 ← 0, s0 ← 0

1: Initialize ψ t

2: while parameters do not converge do
3: {b̂, q̂, 	̂} ← ϒ(χ;ψ t)

4: �L← ∂L(b̂, q̂,�;ψ t−1)/∂ψ t−1

5: vt ← β1vt−1 + (1− β1)�L
6: st ← β2st−1 + (1− β2)�L2

7: v̂t ← vt/(1− β t1)

8: ŝt ← st/(1− β t2)

9: ψ t ← ψ t−1 − δv̂t/(
√
ŝt + ε)

10: t← t + 1
11: end while
Return: ψ

D. DNN TRAINING AND INFERENCE
The proposed JPDCPA DNN, depicted in Fig. 2, can be seen
as a function that maps the pre-processed large-scale fading
coefficients χ to the data and pilot power control coefficients
and the assigned pilots b̂, q̂, and 	̂ = [φ̂1, φ̂2, . . . , φ̂K]T ,
using the learned weights ψ , i.e.,

{b̂, q̂, 	̂} = ϒ(χ;ψ). (30)

In the training phase, the objective is to determine the
optimal parameters that define the best mapping between
the input and output. We begin by initializing the network
parameters through He initialization [36]. Then, the network
is fed with the input data, which are used to allocate the
pilot and data power coefficients and to assign the pilots
to the users. We use the Adam optimizer [37] to train the
network. The steps for the Adam algorithm are outlined in
Algorithm 1, lines 3-8, with β1, β2, the learning rate δ, and
ε as hyperparameters. We optimize the network parameters
until convergence, which is indicated by the absence of
significant changes in the parameters values.
During inference, the network utilizes the weights and

biases learned during training. We remark that, since there
is no need to evaluate the loss function for parameter
optimization during the inference stage, user location data
is no longer required. At this point, the trained network can
operate in real-time, performing pilot and data coefficient
allocation and pilot assignment based on the current pre-
processed large-scale fading coefficients of the network
users.

VI. NUMERICAL RESULTS
This section describes the simulation setup and numerical
results for the DL-based approach.

A. SIMULATION SETUP
Simulations are conducted for two distinct scenarios: a
UMa scenario and an industrial one. Both scenarios have
identical simulation area size and nodes and AP distributions.
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The network area is a square of side D = 1000m. For
each sample of the dataset, the positions of the users are
generated randomly and a different realization of the large-
scale fading coefficients is considered. We consider four
simulation settings with different numbers of APs, users, and
orthogonal pilot sequences, namely: 1) M = 64, K = 32,
P = 10 2) M = 121, K = 60, P = 20, 3) M = 64, K = 250,
P = 24, 4) M = 64, K = 250, P = 24. In all the simulation
settings, the number of orthogonal pilot sequences is lower
than the number of users. Furthermore, the first two settings
illustrate situations where the number of users is less than
the number of antennas, whereas in the last two simulation
settings, the number of users exceeds the number of APs.
The channel models adopted in the two scenarios are detailed
below.

1) UMA SCENARIO

We adopt Hata-COST231 propagation model as in [4], with
path-loss

PLmk[dB] =⎧
⎨

⎩

L+ 35 log10 d
UM
mk , if dUMmk > d1

L+ 15 log10 d1 + 20 log10 d
UM
mk , if d0 < dUMmk ≤ d1

L+ 15 log10 d1 + 20 log10 d0, if dUMmk < d0

(31)

where

L = 46.3+ 33.9 log10 f
UM − 13.82 log10 hAP

− (
1.1 log10 f

UM − 0.7
)
hu +

(
1.56 log10 f

UM − 0.8
)

and where fUM is the carrier frequency in MHz, dUMmk is the
distance between the kth device and mth AP in kilometers,
d0 and d1 are the threshold distances associated with the
path-loss model in kilometers, hAP is the AP antenna height
in meters, and hu is the device antenna height in meters.

2) INDUSTRIAL SCENARIO

We consider an indoor industrial scenario with the following
path-loss model [33]

PLmk[dB] = +32.40+ 23 log10 d
IN
mk + 20 log10 f

IN. (32)

where f IN is the carrier frequency in GHz and dINmk is the
distance between the mth AP and kth user in meters. The
complete list of simulation parameters is reported in Table 1.
A set consisting of 5 × 104 and 103 different samples

are used for training and testing the multi-task DNN model,
respectively. We initialize the network with He initializa-
tion [36]. The network is trained using mini-batches of 100
samples for 30 epochs adopting the Adam optimizer [37].
The initial learning rate δ is set to 0.01, which is updated
after each epoch using δi = δi−1e−0.1, where i represents the
ith epoch. We have allocated the same weight to each term,
reflecting equal importance to spectral efficiency, power
allocation, and pilot assignment, i.e., λ1 = λ2 = λ3 =
λ4 = 1. The eLU saturation parameter � is set to 0.2.

TABLE 1. Simulation parameters.

B. PERFORMANCE METRICS
The performance metrics considered in this section are per-
user network uplink throughput rate and minimum user rate,
defined as [4]

Rnetk =
τd

τc
BRk (33)

and

Rmin
k = τd

τc
min
k
Rk (34)

respectively, where τd = τc − τ is the data payload length.
We compare three algorithms to our approach: random
assignment (RA), joint power control and pilot assignment
(JPCPA), and deep learning power control (DLPC). The
minimum user rate serves as an appropriate performance
indicator for user fairness, ensuring quality service for all
users. In the RA algorithm, we allocate equal power to all
users, ensuring that the total transmit power matches our
DL approach, and assign pilots randomly. For instance, if
JPDCPA distributes 10mW among 10 users, RA algorithm
assigns 1mW to each user. In JPCPA, the focus is on
optimizing data power allocation and pilot assignment.
We employ the architecture depicted in Fig. 2 with the
omission of the pilot power allocation branch. The network
is trained for 30 epochs utilizing the loss function (29)
with λ1 = λ2 = λ4 = 1 and λ3 = 0. Conversely,
DLPC is a two-stage algorithm that combines two state-
of-the-art methods and works as follows. First, the pilot
assignment is performed using the strategy proposed in
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FIGURE 3. Cumulative distribution of minimum user rate in the UMa scenario with N = 1.

[38, Algorithm 4.1] [17]. Then, we obtain power coefficients
through the DNN proposed in [25], which is designed to
optimize power control when the number of active users is
less than that of the APs.

C. MINIMUM USER RATE
Fig 3 shows the cumulative distribution of minimum user
rate in the UMa scenario. Specifically, Fig. 3(a) shows the
results for the scenario where the number of APs exceeds
the number of users. It can be observed that, with M = 64
and K = 32, DLPC yields the best performance, whereas
RA exhibits the worst performance. Specifically, for M = 64
and K = 32, RA, DLPC, and JPDCPA achieve 95%-
likely minimum user rates of 0.004, 0.2648, and 0.1719
bits/s/Hz, respectively. However, for M = 121 and K = 60,
JPDCPA outperforms the other approaches yielding 0.2265
bits/s/Hz 95%-likely minimum user rate. Furthermore, the
performance of DLPC decreases considerably as the scenario
size increases, indicating a scalability issue.
The plot in Fig. 3(b) clearly indicates a substantial

increase in the minimum user rate in JPDCPA compared to
other approaches in the UMa scenario. Specifically, when
the number of users exceeds that of the APs, DLPC exhibits
limited performance, yielding only marginal improvements
compared to RA. The JPCPA model achieves a lower median
value of 0.019 bits/s/Hz for the minimum user rate on
the test set compared to 0.055 bits/s/Hz through JPDCPA
with M = 64,K = 250. The median of the empirical
cumulative distribution function (CDF) of minimum user
rate exhibited a substantial increase of approximately 56%
from the simulation scenario with M = 64,K = 250 to
M = 121, K = 500 with JPCPA. In contrast, with JPDCPA,
the curves overlap, with the performance for M = 121,K =
500 showing a marginal improvement compared to M = 64,

K = 250.

To demonstrate the adaptability of our approach, we tested
the proposed multi-task DNN in the industrial scenario
with M = 64 and M = 121 configuration. The empirical
CDF for the minimum user rate is depicted in Fig. 4(a),
where the number of APs exceeds the number of users.
DLPC outperforms the other approaches when M = 64 and
K = 32. Conversely, for M = 121 and K = 60, JPDCPA
outperforms both DLPC and RA. Precisely, JPDCPA pro-
vides 0.2652 bit/s/Hz, whereas DLPC and RA results in
0.1818 and 0.0043 bit/s/Hz 95%-likely minimum user rate,
respectively.
The minimum user rate in the industrial scenario where

the number of users exceeds the number of APs is illus-
trated in Fig. 4(b). It is evident from the figure that the
JPDCPA outperforms the baseline approaches considerably.
Specifically, in a simulation setting with M = 64,K = 250
and M = 121,K = 500, JPDCPA exhibits an increase of
157% and 89% in the of 95%-likely throughput rate from
JPCPA, respectively. The JPDCPA performs slightly better
in a smaller scenario, i.e., M = 64,K = 250, showing
an opposite behavior compared to the UMa scenario. This
discrepancy arises due to the difference in the path-loss
models and large-scale fading intensities between the two
scenarios. In UMa scenario, the channel is more selective
in space, which decreases interference and slightly boosts
performance in M = 121 compared to M = 64.

In Fig 5, we report the minimum user rate when
considering multiple antennas APs for JPDCPA, DLPC,
and RA algorithms. It can be observed that increasing the
number of antennas at each AP yields tangible improvements
in minimum user rates for all algorithms. Specifically,
for JPDCPA we observe an increase in the 95%-likely
throughput rate, escalating from 0.036 bits/s/Hz (for N = 1)

to 0.14 bits/s/Hz (for N = 4) and 0.26 bits/s/Hz (for N = 8).
Furthermore, in terms of the median value of the minimum
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FIGURE 4. Cumulative distribution of minimum user rate in the industrial scenario with N = 1.

FIGURE 5. Cumulative distribution of minimum user rate in the UMa scenario with
M = 64, K = 250, P = 24, considering multiple antennas at the APs.

user rate, JPDCPA with N = 1 antenna yields five times
better performance than the DLPC with N = 1.

D. PER-USER UPLINK NET THROUGHPUT
The empirical CDFs for the per-user uplink throughput rate
in a UMa scenario for configurations with M = 121, K = 60
is depicted in Fig. 6(a). In this configuration, JPDCPA,
JPCPA, and DLPC exhibit similar performance in the lower
region of the curves, but DLPC takes the lead in the upper
region. More precisely, in terms of the median value of the
per-user uplink throughput rate, DLPC shows an increase of
9.54% and 15.17% over JPCPA and JPDCPA, respectively.

In the simulation setting with M = 64,K = 250 as
depicted in Fig. 6(b), our approach yields a significantly
higher 95%-likely per-user net uplink throughput rate of 1.89
Mbits/s. In contrast, RA and DLPC attain only 0.08 Mbits/s
and 0.21 Mbits/s, respectively. Furthermore, JPDCPA aligns
with the trajectory of JPCPA, exhibiting a slight improvement
in the lower region of the curve in both scenarios. For
the simulation setting with M = 64, K = 250 depicted
in Fig. 6(b), JPDCPA observe an increase of 20% in
the 95%-likely per-user net throughput with respect to
JPCPA. Similarly, 8% increment in 95%-likely per-user
net throughput with respect to JPCPA can be observed in
Fig. 6(c).
The per-user uplink throughput in the industrial scenario

where the numbers of APs exceed the number of users
is depicted in Fig. 7(a). It can be observed that DLPC,
JPCPA, and JPDCPA exhibit similar performance, whereas
RA demonstrates the worst performance. More precisely,
JPDCPA, JPCPA, and DLPC show median values of 20.16
Mbits/s for the empirical CDF of the per-user net throughput
rate in M = 121,K = 60 scenario. Conversely, Fig. 7(b) and
Fig. 7(c) show the curves for the scenario, where the number
of users exceeds the number of APs. Notably, JPDCPA
exhibits 1.19 Mbits/s and 2.06 Mbits/s 95%-likely per-user
uplink throughput rate in M = 64,K = 250 and M = 121,
K = 500 scenarios, respectively. Moreover, the median of
the empirical CDF of the per-user uplink throughput rate
in JPDCPA is 1.21 and 1.38 times that of the DLPC in
M = 64, K = 250 and M = 121,K = 500, respectively.
JPDCPA demonstrates a slight improvement over JPCPA in
terms of both 95%-likely and median of the empirical CDF.
For instance, with M = 64,K = 250, JPCPA achieves 1.59
Mbits/s, whereas JPDCPA obtains 1.92 Mbits/s 95%-likely
per-user uplink throughput rate.
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FIGURE 6. Cumulative distribution of per-user net throughput in the UMa scenario with N = 1.

FIGURE 7. Cumulative distribution of per-user net throughput in an industrial scenario with N = 1.

E. PER-USER POWER USAGE
To demonstrate the advantage of the proposed method in
terms of energy efficiency, we compute the average per-user
pilot and data transmit powers as

PpC =
ρ̄p

KS

S∑

i=1

K∑

k=1

b̂k,i (35)

and

PC = ρ̄

KS

S∑

i=1

K∑

k=1

q̂k,i (36)

respectively. Here, S represents the number of test samples.
The result of this analysis is shown in Table 2. DLPC and
JPCPA transmit the pilot with maximum power, resulting in
an average per-user power usage of 20 dBm. In contrast,
JPDCPA includes the term

∑K
k=1 b̂k in the loss function,

that penalizes the network for high power allocation for
pilot transmission. Consequently, JPDCPA yields the lowest
average per-user pilot transmit power.
Regarding data transmit power, DLPC shows the highest

consumption as its loss function lacks a penalty term for
high data transmission power. On the other hand, both
JPCPA and JPDCPA incorporate the term

∑K
k=1 q̂k in the loss

function to penalize high data power allocation. Specifically,

for M = 121, K = 500 in the UMa scenario, DLPC
results in 16.81 dBm per-user data power consumption,
while JPCPA and JPDCPA achieve significantly lower power
consumption of 1.58 dBm and 1.64 dBm, respectively.
Furthermore, JPDCPA has the lowest data transmit power
for M = 64,K = 32 and M = 121,K = 60 scenarios.
However, JPCPA yields the lowest power consumption for
data transmission for M = 64,K = 250 and M = 121,K =
500 scenarios. Nevertheless, considering both pilot and
data transmit power, JPDCPA provides the least power
consumption overall.
It is noteworthy that for JPCPA and JPDCPA, the data

transmit power increases as the number of APs decreases.
Specifically, in both UMa and industrial scenarios, the data
transmit power for the M = 121,K = 60 (M = 121,K =
500) scenario is lower than that for the M = 64,K = 32
(M = 64,K = 250) scenario, respectively. A similar trend is
observed for JPDCPA and JPCPA in terms of pilot transmit
power. This is because, with an increase in the number of
APs, users are in proximity to the APs, which allows them
to transmit with less power compared to the scenario with
lower AP density, where the distance between APs and the
user is greater. Furthermore, in the UMa scenario, JPDCPA
exhibits lower pilot transmit power in comparison to data
transmit power.
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TABLE 2. Average per-user transmit power in dBm.

TABLE 3. Average per-user transmit power (dBm) in UMa scenario, with and without
the third and fourth loss function terms.

F. LOSS FUNCTION EVALUATION
The proposed loss function (29) is specifically designed to
address the max-min problem (18); however, the third and
fourth terms of (29) are intended to penalize the allocation
of high per-user data and pilot transmit power, respectively.
We perform a comparative analysis to assess the benefits
provided by these terms. Specifically, we evaluate the pilot
and data transmit power after training the DNN with and
without the third and fourth terms in the considered UMa
scenario. The results of this analysis are provided in Table 3,
where “PC” indicates the inclusion of these terms, and “No
PC” indicates their exclusion from the loss function. The
table clearly shows that introducing the power control terms
significantly reduces network power utilization. Precisely, for
M = 64,K = 500, the pilot and data transmit powers are
reduced by a factor of 90.54 and 5.32, respectively. The data
transmit power decreases as the scenario size increases. For
instance, the data transmit power decreases from 11.57 dBm
to 8.71 dBm when moving from M = 64,K = 32 to
M = 121, K = 500.
The last term of the loss function aims to minimize inter-

user interference by discouraging the assignment of identical
pilots to users who are located near each other. To assess the
performance improvement resulting from the addition of the
last term to the proposed loss function, we have conducted
a comparative evaluation. We have trained the network with
only the first four terms in (29), and compared it to the model
trained considering all five terms. In Fig. 8, we present the
CDFs for the minimum user rate for M = 64 and M = 121
in the UMa scenario. It can be observed that incorporating

FIGURE 8. Cumulative distribution of the minimum user rate in the considered UMa
scenario. Performance comparison between the DNN trained using the first four loss
terms and the DNN trained using all loss terms.

the last term yields a gain of 5 − 6% in the median value
of the minimum user rate. Similarly, an increase of 7− 9%
can be seen in the minimum user rate at the 95% likelihood
threshold.

G. COMPUTATIONAL COMPLEXITY
The computational complexity of the algorithms is evaluated
in terms of FLOPs. The real addition, subtraction, and
multiplication, are taken as a single FLOP while division and
exponential operations as 4 and 8 FLOPs, respectively [39].
The operations argmax(v) and argmin(v) applied to vector v
of length V are assumed to require V − 1 FLOPs.

1) JPDCPA

The computational complexities of the pilot power allocation,
data power allocation, and pilot assignment branches are
analyzed separately. The total complexity is then calculated
by summing the individual contributions.
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Pilot Power Allocation: The computational complexity
of the fully-connected layer in terms of FLOPs can be
calculated as

CPP
FC = 2K2.

The sigmoid function requires 13 FLOPs for each evaluation.
As the sigmoid function is evaluated K times, the total num-
ber of FLOPs required is 13K. Thus, the total computational
complexity of the pilot power allocation branch is

CPP
tot = 2K2 + 13K. (37)

Data Power Allocation: Following the same method-
ology used for pilot power allocation branch, the overall
computational complexity of the data power allocation
branch is

CDP
tot = 2K2 + 13K. (38)

Pilot Assignment: The computational complexity of the
first fully-connected layer of the pilot assignment branch is

CPA
FC1
= 20K.

This layer utilizes the eLU activation function. For negative
inputs, the computational cost is 10 FLOPs, whereas it
is 1 FLOP for positive inputs. Considering the worst-case
scenario, we can assume a cost of 10 FLOPs per eLU
operation. Considering that the eLU operation is executed
10 times, the overall complexity of the activation layer is

CPA
eLU = 10 · 10 = 100.

The pilot assignment branch is then divided into K sub-
branches. The cumulative computational complexity of K
fully-connected layers is

CPA
FC2
= 20PK.

The softmax layer consists of P exponentials, P− 1 sum-
mations, and P divisions. Following the softmax operation,
we need to determine the maximum value of vector vk, which
involves P − 1 FLOPs. These two operations are iterated
K times, corresponding to the number of sub-branches,
contributing to the overall computational complexity

CPA
softmax = 14PK − 2K.

Therefore, the total computational complexity of the pilot
assignment branch is

CPA
tot = CPA

FC1
+ CPA

eLU + CPA
FC2
+ CPA

softmax

= 34PK + 18K + 100. (39)

2) TOTAL COMPUTATIONAL COMPLEXITY

The total computational complexity of the JPDCPA is

Ctot = CPP
tot + CPD

tot + CPA
tot

= 4K2 + 44K + 34PK + 100. (40)

TABLE 4. Computational cost in FLOPs.

3) JPCPA

The JPCPA follows the same architecture as the JPDCPA,
with the omission of the pilot power assignment branch.
Thus, the computational complexity is

Ctot = CPD
tot + CPA

tot

= 2K2 + 31K + 34PK + 100. (41)

4) DLPC

The pilot assignment algorithm consists of two stages. In
the first stage, each pilot is randomly assigned to a user,
with a complexity of P FLOPs. In the second stage, each
of the remaining users identifies the AP with which it has
the strongest channel, requiring (M − 1)(K − P) FLOPs.
Subsequently, each remaining user calculates, for each pilot,
the sum of the average channel gains towards the selected
AP of the users already assigned to that pilot. The pilot that
results in the lowest sum interference is then assigned to the
respective user. Assuming that the already calculated sums
are stored in memory and do not need to be recalculated,
this process requires K(P − 1) FLOPs. Thus, the overall
complexity is:

CPA
tot = M(K − P)+ K(P− 2)+ 2P. (42)

Considering the proposed network architecture, the total
computational complexity of data power allocation through
the DNN [25] is

CDP
tot = 525K + 131584.

Thus, the total computational complexity of DLPC is

Ctot = M(K − P)+ K(P+ 523)+ 2P+ 131584. (43)

The computational complexities for JPDCPA, JPCPA,
and DLPC are presented in Table 4. The computational
complexities of the algorithms increase with the scenario
size. The table clearly shows that DLPC offers highest
computational complexity for settings M = 64,K = 32
and M = 121,K = 60 while the lowest computational
complexity for the settings M = 64,K = 250 and M = 121,
K = 500. This suggests that the JPCPA and JPDCPA are
more significantly impacted by an increase in the number
of users and pilots compared to DLPC. For instance, for the
M = 121,K = 60 scenario, the complexity of DLPC is 9.1
times that of JPDCPA, whereas, for the M = 121,K = 500
scenario, the complexity of JPDCPA is 3.9 times that of
DLPC. Including the pilot power control branch in JPDCPA
results in 2K2 + 13K more FLOPs than JPCPA.
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VII. CONCLUSION
In this paper, we proposed a scalable multi-task DNN-
based solution called JPDCPA for joint pilot and data
power allocation and pilot assignment in CF-mMIMO
scenarios. We considered a massive access scenario where
the number of users exceeds the available orthogonal
pilots. The adaptability of JPDCPA is demonstrated by
assessing its performance in a UMa and indoor industrial
scenarios. Numerical results show that the proposed multi-
task DNN effectively addresses the joint power control
and pilot allocation problem, surpassing a state-of-the-art
approach in terms of both achievable network throughput and
minimum user rate. Furthermore, the unsupervised training
of the JPDCPA using the proposed loss function not only
outperforms alternative methods in enhancing users’ spectral
efficiency but also leads to a significant reduction in average
transmit power per user compared to the considered state-
of-the-art solution.

APPENDIX
To derive the closed-form expression for the achievable
rate given in (19), we need to compute DSk, E{|BUk|2},
E{|IUIkk′ |2}, and E{|TNk|2}.

A. COMPUTE DSK
The term DSk can be expressed as [4], [15]

DSk = √ρqkN
M∑

m=1

γmk. (44)

B. COMPUTE E{|BUK |2}
The expression, following the derivation outlined
in [4], [15], is

E{|BUk|2} = ρN
M∑

m=1

qkγmkβmk (45)

C. COMPUTE E{|IUIKK ′ |2}
The term can be calculated as

E{|IUIkk′ |2} = ρE

⎧
⎨

⎩

∣∣∣∣∣

M∑

m=1

N∑

n=1

ĝ∗mnkgmnk′
√
qk′

∣∣∣∣∣

2
⎫
⎬

⎭.

Substituting ĝ∗mnk = cmkỹ∗mnk yields to (46), shown at the
bottom of the page. Since w̃mn = φHk wmn ∼ CN (0, 1) is
independent of gmnk, the term A is

A = ρqk′N
M∑

m=1

c2
mkβmk′ .

Recalling that E{|X+Y|2} = E{|X|2}+E{|Y|2} where X and
Y are two independent random variables and E{X} = 0, B
can be expressed as in (47), shown at the bottom of the
page. Manipulating B1 we obtain (48), shown at the top of
the next page. Manipulating B2 yields (49), shown at the
top of the next page. By incorporating the expressions for
A, B1, and B2 into (46) we obtain

E{|IUIkk′ |2} = ρqk′ |φHk φk′ |2N
(

M∑

m=1

γmk

√
bk′βmk′√
bkβmk

)2

+ ρqk′N
M∑

m=1

γmkβmk′ . (50)

D. COMPUTING E{|TNK |2}

E{|TNk|2} = E

⎧
⎨

⎩

∣∣∣∣∣

M∑

m=1

N∑

n=1

ĝ∗mnkνmn

∣∣∣∣∣

2
⎫
⎬

⎭ = N
M∑

m=1

γmk. (51)

Substituting (44), (45), (50), (51) into (16) yields (19).

E{|IUIkk′ |2} = ρE

{∣∣∣∣∣

M∑

m=1

N∑

n=1

cmkgmnk′
√
qk′

(
√

τρp

K∑

i=1

√
bigmniφ

H
k φi + φHk wmn

)∗∣∣∣∣∣∣

2}

= ρqk′E

⎧
⎨

⎩

∣∣∣∣∣

M∑

m=1

N∑

n=1

cmkgmnk′
(
φHk wmn

)∗
∣∣∣∣∣

2
⎫
⎬

⎭
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