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Abstract

A new convection-permitting regional reanalysis, SPHERA (High Resolution

REAnalysis over Italy), has been developed over Italy and the surrounding seas

using the COSMO model at 2.2 km horizontal resolution. The reanalysis sys-

tem is nested in the global reanalysis ERA5; upper-air and surface observations

are assimilated at the convection-permitting scale by the COSMO nudging

scheme. Before the complete production of the hourly three-dimensional fields

and surface/soil parameters over the period 1995–2020, general issues regard-
ing the reanalysis set-up needed to be addressed over a shorter test period.

These include the identification of the best approach to downscale the lateral

boundary conditions from the global driver, and the definition of the bottom

boundary condition related to deep soil temperature. With respect to the

downscaling methodology, the results show a clear benefit in using lateral

boundary conditions directly from the global ERA5, despite the large resolu-

tion difference between the two modes (1:15), instead of providing them from

an intermediate resolution COSMO-based reanalysis. Moreover, the soil bot-

tom boundary condition for temperature is reconstructed from the shallower

ERA5 soil, using a site-dependent method based on a delayed running mean of

the ERA5 temperature at the deepest soil level. Finally, an evaluation of

SPHERA has been performed with respect to the skill in simulating daily pre-

cipitation over 2 years. Compared with ERA5, SPHERA shows a higher ability

in simulating moderate and intense events, markedly during summer, in terms

of skill scores, frequency of occurrence and bias.
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1 | INTRODUCTION

Reanalysis data provide a spatio-temporal consistent
description of the past atmospheric state on a regular
grid. They are usually generated using a numerical
weather prediction (NWP) data assimilation procedure to
combine model simulations and meteorological observa-
tions. Reanalysis datasets generally have a long temporal
extension, spanning from several years to several
decades, and are a fundamental tool for weather related
diagnostic and climate studies (Trenberth et al., 2008).
The need to account for high-impact weather events, and
their climatological trends, requires km-scale data assimi-
lation procedures. For this reason, the interest towards
high-resolution reanalyses has been increasing as they
enable the representation of local and rapidly evolving
processes like those related to severe precipitation and
linked to deep convection (Keller & Wahl, 2021). More-
over, downstream modelling applications in several fields
such as hydrology (Berg et al., 2018), renewable energy
sector (Doddy Clarke et al., 2021) or tracer dispersion
modelling (Ngan & Stein, 2017) could certainly benefit
from more detailed meteorological forcings. Finally, also
modern post-processing approaches (e.g. model based
risk assessment) need a sound statistical basis in the form
of spatial climatology, which can be provided by high-
resolution regional reanalyses.

Also, global reanalyses at increased resolution and
enhanced quality are now available thanks to the
improvements in NWP modelling and computational
capacity. The most recent generation of global reanalyses
includes the Modern-Era Retrospective Analysis for
Research and Applications version 2 (Gelaro et al., 2017,
MERRA-2) produced by NASA (National Aeronautics
and Space Administration), the Climate Forecast System
Reanalysis (Saha et al., 2010, CFSR) by the National Cen-
ter for Environmental Prediction (NCEP), the Japan
Meteorological Agency (JMA) 55-year Reanalysis
(Kobayashi et al., 2015). The European Centre for
Medium-Range Weather Forecasts (ECMWF) recently
produced ERA5, the first fourth-generation global reana-
lysis (Hersbach et al., 2020). The horizontal resolutions of
global reanalyses range between 125 and 31 km, with an
output frequency between 6 and 1 h. Regional reanalyses
are usually based on dynamical downscalings of global
datasets forced by a high-resolution limited-area NWP
model and coupled with a regional data assimilation
scheme.

A considerable number of regional reanalyses have
been produced so far covering several continents: the
North American Regional Reanalysis (Mesinger
et al., 2006, NARR), the China Regional Reanalysis pro-
ject (Zhang et al., 2017, CNRR), the Arctic System

Reanalysis version 2 (Bromwich et al., 2018, ASRv2) or
the regional reanalysis for the Australian and Indonesian
regions (Su et al., 2019, BARRA). In the last decade, large
efforts have been devoted to this task also in Europe. The
main examples include the regional datasets covering
part of the European CORDEX domain (Coordinated
Regional Downscaling EXperiment, cordex.org),
COSMO-REA6 (Bollmeyer et al., 2015), the HIRLAM-
based reanalysis (Dahlgren et al., 2016) and MERIDA
covering the Italian peninsula (Bonanno et al., 2019). Of
particular interest is the European Reanalysis and Obser-
vations for Monitoring (EURO4M, www.euro4m.eu) pro-
ject and its continuation UERRA (Uncertainties in
Ensembles of Regional Reanalyses, www.uerra.eu),
which are based on the collaborative effort of several
institutions aiming to demonstrate the potential of proba-
bilistic approaches in regionalization. Based on the devel-
opments of UERRA, a Regional ReAnalysis (RRA) for
Europe is available at 11-km horizontal resolution
(Schimanke et al., 2018) and an upgrade to 5.5 km is
under development within the Copernicus Climate
Change Service (CERRA1). Anyhow, deep moist convec-
tion is still parameterized in these regional reanalyses, as
the computational cost to produce datasets at km-scale
grid resolution is still very high for extended domains.
Convection-permitting (hereafter, CP) resolution has
been achieved only for national or even smaller domains.
Over Europe, CP reanalyses include MERA (Met �Eireann
ReAnalysis), over Ireland and United Kingdom with a
horizontal resolution of 2.5 km (Gleeson et al., 2017), and
COSMO-REA2, a 2-km resolution dataset covering Cen-
tral Europe (Wahl et al., 2017). They both highlight
improvements over coarser reanalyses, particularly in the
representation of local precipitation. In COSMO-REA2,
enhancements relate mainly to spatial variability and fre-
quency of precipitation, especially for high intensity
events. These ameliorations are mainly linked to the
enhanced spatial detail and to the assimilation of addi-
tional local observations, such as, for example, radar-
derived rain rates (Wahl et al., 2017). Other studies have
been performed with a pure dynamical downscaling of
global reanalyses (i.e. without data assimilation) employ-
ing regional climate models at the CP resolution. Despite
this limitation, they show the benefits associated with
deep convection explicit representation. These include an
enhanced representation of summer precipitation (Pal
et al., 2019), a more realistic representation of the diurnal
cycle of convective precipitation (Brisson et al., 2016; Dai
et al., 1999; Fosser et al., 2015; Prein et al., 2013), a better
detection of the most severe precipitation peaks (Fosser

1https://climate.copernicus.eu/copernicus-regional-reanalysis-europe-
cerra (visited in July 2022).
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et al., 2015; Kendon et al., 2012; Prein et al., 2013) and a
reduction in low-precipitation event frequency bias (Berg
et al., 2013). Similar results are widely highlighted in sev-
eral applications of convection-permitting models
(CPMs) when compared with their coarser convection-
parameterizing drivers (e.g. Clark et al., 2016; Iyer
et al., 2016; Klasa et al., 2018).

The main benefits of CPMs can be summarized as fol-
lows: better representation of organized convective sys-
tems, more realistic advection of microphysical species
and improved ability to simulate phenomena such as the
formation of daughter cells or self-regenerating storms
(e.g. Clark et al., 2016; White et al., 2018). Moreover,
CPMs better represent the flow interaction with small-
scale surface features such as orography and land/sea
contrast, hence enhancing the description of orographic
convection (e.g. Kirshbaum et al., 2018) or inland rainfall
penetration (Clark et al., 2016). Consequently, the predic-
tive skill of precipitation spatial patterns and their fre-
quency of occurrence, when simulated by CPMs,
increase, especially in case of intense and localized rain-
fall (e.g. Clark et al., 2016; Iyer et al., 2016; Lewis
et al., 2015; Weusthoff et al., 2010). CPMs typically pro-
vide a better representation of the diurnal cycle of con-
vective precipitation, especially with respect to the timing
of its associated peak (Baldauff et al., 2011; Lean

et al., 2008; Prein et al., 2015; Weisman et al., 2008;
Weusthoff et al., 2010; Woodhams et al., 2018). Improve-
ments in rainfall simulation are further increased when a
suitable data assimilation is coupled with the CPM (Dow
and Macpherson, 2013; Clark et al., 2016; Gustafsson
et al., 2018; Lewis et al., 2015; Seity et al., 2011).

This article presents SPHERA (High Resolution REA-
nalysis over Italy), the RRA based on the COSMO
(Consortium for Small scale MOdelling) model (Schättler
et al., 2018) at the CP horizontal resolution of 2.2 km.
The reanalysis system is nested in the global reanalysis
ERA5, after investigating the best downscaling configura-
tion for the purpose. In SPHERA, surface and upper-air
observations are assimilated at the CP scale by the
COSMO nudging scheme (Schraff & Hess, 2013).
SPHERA has been developed at ARPAE-SIMC, the
hydro-meteo-climate service of the Emilia-Romagna
Region, and its domain covers the Italian peninsula and
the neighbouring countries (Figure 1). A first description
of SPHERA performance in the representation of precipi-
tation, paying particular attention to intense rainfall
events, is included in the present work for a sample
period of 2 years to quantify the benefits over the driving
convection-parameterized reanalysis. The article is orga-
nized as follows: the experimental design is reported in
Section 2, which includes the description of the main fea-
tures of SPHERA, the definition of the nesting procedure,
the methodology developed to impose the deep soil tem-
perature boundary condition and the observational data
used for verification. Results are reported and discussed
in Section 3, while conclusions are drawn in Section 4.

2 | EXPERIMENTAL DESIGN

This section presents the configuration of SPHERA
(Section 2.1), the nesting approach used to downscale
ERA5 (Section 2.2), the definition of the bottom bound-
ary condition related to deep soil temperature
(Section 2.3), the observational dataset used for the vali-
dation of the reanalyses (Section 2.4) and the methodol-
ogy employed to assess the performance of the datasets
(Section 2.5).

2.1 | SPHERA configuration

The SPHERA reanalysis is based on the NWP limited-
area COSMO model (Schättler et al., 2018). COSMO is
used in the operational NWP suites in Italy, as well as in
several other countries (Switzerland, Germany, Greece,
Romania, Israel, Poland and Russia). At ARPAE-SIMC,
COSMO runs operationally in deterministic mode with

FIGURE 1 Geographical coverage of SPHERA reanalysis; the

colour coding over land indicates the altitude (in metres) above the

mean sea level.
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horizontal resolutions of 5 and 2.2 km, and in ensemble
mode at 2.2 km resolution only. For the set-up of
SPHERA, the model configuration is as close as possible
to that applied for the higher resolution operational run.
This aims at producing a long-term evaluation of the
COSMO model for supporting operational forecasting,
especially in cases of high-impact weather events. The
COSMO model includes three-dimensional non-hydro-
static, compressible hydro-thermodynamic equations in
advective form, which are solved numerically in the
SPHERA set-up with a third-order Runge–Kutta split-
explicit scheme (Wicker & Skamarock, 2002). The grid
structure is based on the Arakawa C-grid, with Lorenz
vertical grid staggering in a rotated (latitude/longitude)
coordinate system. The vertical coordinate is terrain-
following and in particular the Gal-Chen height coordi-
nate (Gal-Chen & Sommerville, 1975) is used. The verti-
cal axis extends up to 22,000 m and it is divided into
65 layers, with 19 layers in the lowest 1000 m. The hori-
zontal grid mesh has 576 grid points in the west–east
direction and 701 in the south–north direction, with 0.02
degree (�2.2 km) horizontal resolution. The domain is
defined by rotating the South Pole to W 10�, S 43

�
, and its

coverage is reported in Figure 1. In the soil, seven vertical
levels at depths of 0.005, 0.02, 0.06, 0.18, 0.54, 1.62, 4.86
and 14.58 m below the surface describe the near-surface,
root-level and deep soil layers. The applied physical pack-
age includes the following: a δ-two-stream radiation
scheme after Ritter and Geleyn (1992); a grid-scale cloud
and precipitation scheme with prognostic cloud water,
cloud ice and graupel; and a statistical scheme for
sub-grid clouds (Sommeria & Deardorff, 1977), a shallow
convection scheme (a reduction from Tiedtke, 1989), a
turbulence scheme based on Mellor and Yamada (1982)
at 2.5-level of their truncation hierarchy, a multi-layer
transfer scheme (Doms et al., 2018), a multi-level soil
scheme after Jacobsen and Heise (1982) based on the
direct numerical solution of the heat conduction equa-
tion, and a two-layer bulk lake scheme (Mironov
et al., 2010). Extensive descriptions of the parameteriza-
tion schemes can be found in Schättler et al. (2018). The
initial state is provided by the global reanalysis ERA5,
available at a horizontal resolution of about 31 km and
with 137 vertical levels (Hersbach et al., 2020), interpo-
lated to the COSMO grid. This pre-processing of ERA5
data is performed by a separate procedure described in
Schättler and Blahak (2017a). The production of
SPHERA is organized in 4-year-long streams. Each
stream is preceded by a 6-month-long “prerun” to
account for the soil spin-up. The COSMO model is run in
a sequence of 24-h-long integrations, starting from the
beginning of each simulation stream. For each integra-
tion, the 24-h forecast is used as the initial condition for

the following day's run in order to obtain a continuous
series. The lateral boundary conditions, provided by
ERA5, are updated every hour. Investigations performed
to define the nesting methodology are reported in
Section 2.2. Non-penetrative, free-slip boundary condi-
tions are imposed at the model top. At the bottom bound-
ary, free-percolation is imposed at the soil for depths
below 2.43 m, hence the soil moisture drained below this
depth is lost by the system. Despite this being the default
configuration in the COSMO model, it may cause exces-
sive drying of the soil for long-term integrations. This
would have marked consequences on the atmospheric
simulation, both at the surface (e.g. too high daily tem-
perature and low relative humidity) and in the vertical
(e.g. too low convective precipitation and reduced low
level clouds). This motivates the investigation to find the
optimal prescription for time-evolving deep soil tempera-
ture at the lowest soil level of SPHERA (14.58 m) as
derived from the vertical profile of ERA5 soil temperature
(described in Section 2.3). An investigation on the tempo-
ral trend over the production stream highlights that the
amount of soil moisture lost at this level is small (about
2%–5% of the total). Moisture is mainly lost in the first
12 months of simulation (including the 6 months of spin-
up). Moreover, this does not imply moisture trends in the
soil layers above this depth, where the temporal evolu-
tion turns out to be coherent with the soil moisture of
ERA5 (not shown). While the soil, lake and snow states
are initialized from the ERA5 state at the corresponding
time and can freely evolve during the simulation, the sea
surface temperature (SST) needs to be prescribed. Dahlg-
ren et al. (2016) pointed out the importance of a correct
update of SST in RRA applications. In SPHERA, SST is
updated every day at 00 UTC using ERA5. The data
assimilation scheme implemented in SPHERA is based
on a continuous nudging or Newtonian relaxation
approach (Stauffer & Seaman, 1990), and directly assimi-
lates in situ observations. The nudging consists of a relax-
ation of the model prognostic variables towards the
prescribed observations, within a predetermined time
window. It is performed by adding a small tendency term
(i.e. the nudging term) to the model prognostic equation
for each prognostic model variable. The nudging term
determines the relaxation rate of the model variable
towards the observations and depends on three main fac-
tors: the difference between model and observations, the
weight associated with each observation, and the elapsed
time from each observation collection. In this way, the
nudging provides a continuous adaptation of the model
values towards the observations during the integration of
the model. For a complete description of the implementa-
tion in the COSMO model, the reader is referred to
Schraff and Hess (2013). In SPHERA, the observational
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nudging is applied to a set of observations included in the
integration domain and available in the ECMWF archive.
The main types of observations nudged in the model
include SYNOP, SHIP and DRIBU sites, radiosoundings
from TEMP and PILOT and aircraft observations
(AIREP, AMDAR and ACARS). Meridional and zonal
wind components, relative humidity, temperature and
pressure are among the assimilated variables, while 2-m
temperature is not nudged. This observational set corre-
sponds to the one ingested in the operational NWP suites.
It should be noted that neither radar nor satellite data are
directly assimilated in SPHERA. Satellite information is
indirectly included through both the lateral boundary
conditions and the SST interpolated from ERA5.

2.2 | Nesting methodology

The downscaling (or nesting) methodology provides the
way to convey the meteorological information from the
large-scale driver to finer scale model. For multi-year
simulations, the weight of the initial boundary condi-
tions is negligible, as it is rapidly advected outside the
model domain (with the exception of the soil, for which
a spin-up period is used, as described later in this sec-
tion). The forcing provided by the lateral boundary con-
ditions of the driving coarser model plays a crucial role.
The CP scales can be reached by one or more nested
run(s) of the same model at higher and higher horizon-
tal (and vertical) resolutions. However, in this case, the
use of an intermediate resolution model would act in
the so-called “grey zone” (e.g. Gerard et al., 2009),
where convection is partly resolved and partly parame-
terized (Brisson et al., 2016; Marsigli et al., 2014). In
addition, a supplementary model integration increases
the overall computational cost, which is a relevant issue
for decadal-long datasets. The ratio in spatial resolutions
between coarse- and fine-mesh models usually ranges
between 2:1 and 5:1. Larger values, implying abrupt
increase in horizontal resolution, can generate strong
gradients at the lateral boundaries of the nested model
and gravity-inertia waves (Denis et al., 2003; Warner
et al., 1997). It is worth pointing out that this ratio is
sensitive to several factors, including the size of the
nested domain, the temporal update of the lateral
boundary conditions and the consistency among the
physical parameterizations of the models (Warner
et al., 1997). Furthermore, this ratio constraint has been
proven to be valid when considering free dynamical
downscalings (e.g. Pham et al., 2016), but may not hold
when a data assimilation scheme is added to the model-
ling framework. In this case, further constraints are
imposed over the dynamical evolution of the

simulations. Therefore, beyond the common guidelines,
every application needs to be tested specifically. Experi-
ments in NWP forecasting using a higher ratio between
model resolutions (e.g. from 11:1 to 18:1) have already
given comparable or weakly positive results (Marsigli
et al., 2014, MeteoSwiss forecasting system2). In order to
evaluate the effect of a direct nesting of SPHERA
(COSMO at 2.2 km horizontal resolution, hereafter
referred to as COSMO-2.2 km) into ERA5 (at 31 km hor-
izontal resolution) instead of employing an intermediate
COSMO integration run, two options have been
considered:

• SPHERA-2step (hereafter referred to as S2s): COSMO-
2.2 km one-way nested in COSMO-10 km (i.e. a
COSMO model configuration with horizontal resolu-
tion of 10 km, domain covering the whole Mediterra-
nean Sea and convection-parameterized by Tiedtke
scheme (Tiedtke, 1989)), which in turn is one-way
nested in ERA5. The ratios of spatial resolutions
between COSMO-2.2 km, COSMO-10 km and ERA5
are respectively 5:1 and 3:1. In COSMO-10 km, the soil
state is self-evolved by the COSMO model after the
first-day initialization from ERA5. Within the one-way
nesting to COSMO-2.2 km, the soil fields from
COSMO-10 km are interpolated to the 2.2 km grid
mesh and updated daily at 00 UTC.

• SPHERA-1step (hereafter referred to as S1s): COSMO-
2.2 km directly one-way nested in ERA5, with a resolu-
tion step of 15:1. The integration domain is enlarged
by 25 grid points at the border in each direction (about
55 km) with respect to the one used in S2s, in order to
mitigate any boundary effects potentially associated
with a large ratio between model resolutions. The soil
fields are updated daily at 00 UTC.

These two configurations have been tested on two
parallel suites over 1 year (2015), preceded by 6 months
of integration used to spin up the model soil fields.

2.3 | Definition of the deep soil
temperature

Another crucial point concerning reanalysis set-up is the
definition of the deep soil bottom boundary condition. In
fact, the large soil inertia and moisture reservoir can trig-
ger differences at the surface level and in the atmosphere
at long time scales (Cheruy et al., 2017). Several studies

2https://www.meteoswiss.admin.ch/home/measurement-and-
forecasting-systems/warning-and-forecasting-systems/cosmo-
forecasting-system.html, visited in July 2022.
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have focused on the issue of soil initialization for regional
reanalyses, particularly the duration of spin-up time
(Gleeson et al., 2017; Ridal et al., 2017), but less has been
done on the soil bottom boundary condition. In general,
the deep soil temperature in RRA is transmitted from the
driving model through a vertical interpolation. This is
reasonable when the deepest soil level of the driving
model is deeper than the nested model. If not, a simple
interpolation might lead to errors in the amplitude of the
seasonal temperature variation (which decreases with
depth) and to a temporal shift of the surface temperature
signal (which is delayed by depth).

The approach used to deal with this issue is examined
by assessing the simulation feedback associated with a
change in the deep soil temperature at 14.58 m depth
(i.e. the deepest soil level in COSMO). To define the long-
term constraint of the bottom boundary condition, three
different prescriptions are tested. They are all based on
the simplified analytic solution of the heat transfer equa-
tion of soil (assuming sinusoidal annual wave of tempera-
ture and vertically homogeneous soil):

Tz2 tð Þ¼Tz1 þATz1e
� z2�z1ð Þ=d sin ω t� tmð Þ� z2� z1

d

h i
,

where Tz2 and Tz1 are the soil temperatures at depths
z2 and z1 respectively, ATz1 is the amplitude of the annual
wave of temperature at depth z1, while d indicates the
damping depth of the annual wave, which depends on
the thermal soil diffusivity α and on the angular velocity
of Earth's rotation ω with the relation:

d¼
ffiffiffiffiffi
2α
ω

r
:

The time variable is indicated by t, and tm is the time
when Tz1 is equal to Tz2 . The overbar represents the
annual average. The considered algorithms are as
follows:

1. The simplified analytic solution of the temperature
wave in which the thermal diffusivity is described by
the amplitude algorithm (Horton et al., 1983), hereaf-
ter referred to as M1:

α¼ω

2
z2� z1

log ATz1=ATz2ð Þ
� �2

;

2. The simplified analytic solution of the temperature
wave in which the thermal diffusivity is described by
the phase algorithm (Horton et al., 1983), hereafter
referred to as M2:

α¼ω

2
z2� z1
φz2�φz1

� �2
,

where φz2 and φz1 are the initial wave phases at depths z2
and z1; the three-yearly running mean of the time series
of the deepest soil temperature available in ERA5
(at 1.95m depth), with a time delay defined by the simpli-
fied analytic solution in which the thermal diffusivity is
parameterized by the phase method M2. The time lag is
computed as Δt¼ z1� z2=dω. This method is hereafter
referred to as M3

M1 and M2 methods are among the most known
algorithms to estimate the thermal soil conductivity. The-
oretically, the two methods are identical for vertically
homogeneous dry soil. However, several studies
highlighted better performance for the former or the lat-
ter, depending on the soil type, texture and moisture con-
tent (e.g. Adeniyi & Nymphas, 2012; Verhoef et al., 1996).
Vice versa, the M3 option is based on the hypothesis that
the amplitude of the annual thermal wave is very small
at 14.58 m depth, thus the temperature can be approxi-
mated by a multi-year running mean of ERA5 soil bot-
tom temperature at 1.95 m depth delayed by a proper lag
due to soil inertia. Ideally these approaches should be
compared with real soil observations in order to identify
the best performing one over the domain of interest and
at the required depth. However, over Europe, very few
sites offer continuous multi-year time series of the soil

FIGURE 2 Time series of the soil temperature at 12 m depth

observed at Potsdam (in red with solid dots) and reconstructed by

the three parameterizations M1, M2 and M3 (in orange, dark red

and red lines respectively). In light blue are plotted the time series

of ERA5 at its deepest soil level (1.95 m) and the interpolation from

the observations at the same level.
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temperature at depths lower than 1 m, and to the
authors' knowledge, only the weather station at the Uni-
versity of Potsdam (52

�
24 N, 13�10 E, Germany) provides

a multi-year time series at a depth comparable to the dee-
pest soil level of the COSMO model. For this reason, the
observed data at this location are used to investigate
which method to employ for the long-term constraint of
the bottom boundary condition related to deep soil
temperature.

Figure 2 reports Potsdam recorded data3 at 12.00 m
depth against the time series reconstructed by the three
methods at the same depth, considering the closest grid
point to the observation station.

It can be noticed that ERA5 (blue solid line) compares
well to the observations interpolated at the model levels
(i.e. 0.04, 0.18, 0.64 and 1.95 m). For the deepest ERA5
soil level, a small time shift and a slight underestimation
of the annual mean are detected, while the model ampli-
tude is coherent with the observed. This gives a good con-
fidence in using ERA5 data as input for the algorithms in
this specific location. As for the three proposed methods,
M1 shows a correct annual amplitude compared with the
observations at 12.00 m depth, but with an opposite
phase. On the other hand, M2 underestimates the wave
amplitude and shows an inter-annual trend non-coherent
with real data. The difference in the annual amplitude
estimates derives from the damping depth, which results
larger using the phase method (M2) than using the
amplitude case (M1) (respectively, 4.89 and 2.53 m).
Finally, M3 does not estimate the annual wave amplitude
(it is null per definition), but the inter-annual trend
appears coherent with the observed one. The quantitative
scores (i.e. RMSE and correlation index, reported in
Table 1) computed for the time series suggest that M2
and M3 methods are qualitatively similar, and both out-
perform M1. Since the M3 method is simpler to imple-
ment, it is chosen for reconstructing the deep soil
temperature in SPHERA. The parameterization is applied
to each grid point of the parent domain (ERA5), taking
as input the time series of the soil temperatures at the
model level depths of 0.64 and 1.95 m. The output is pro-
vided by the daily fields of the soil temperature at a depth
of 12.00 m, then remapped on SPHERA grid.

To evaluate the effect of the prescribed deep soil tem-
perature in SPHERA, two parallel simulations are run for
2 years (2015–2016), preceded by 6 months of initializa-
tion used to spin-up the model soil fields. The first simu-
lation (‘SPHERA-cTdeep’) sets the SPHERA deep soil
temperature to the ERA5 deepest soil level (1.95 m) at
the initialization time (1 July 2014) and keeps this value
constant along the model integration (for 2 years). The
other simulation (‘SPHERA-vTdeep’) updates daily
(at 00 UTC) the deep soil temperature at 14.58 m depth
using the M3 method.

The summary of the tests performed for the definition
of the nesting method and the deep soil temperature pre-
scribed in SPHERA are reported in Table 2.

2.4 | The observational dataset

The performances of the different tests are evaluated
through the comparison of reanalysis estimates with rain-
fall and temperature observations provided by the
national network of meteorological stations available on
Dewetra, the Italian Civil Protection database of non-
GTS (Global Telecommunications System) stations
(Italian Civil Protection Department, CIMA Research
Foundation, 2014). Their data are independent from the
reanalyses as they are not assimilated during the produc-
tion of the datasets. About 5500 rain-gauges homoge-
neously covering the Italian territory and supplying
hourly data are considered. The daily aggregated precipi-
tations are calculated from hourly measurements after
being quality checked. Furthermore, since special
emphasis is given to the evaluation of precipitation
extremes, additional manual quality controls are per-
formed to verify the highest accumulations reported in
the dataset (i.e. daily accumulations exceeding 500 mm).
Anyhow, these data are inevitably affected by various
limitations due to their nature: that is, a low pluviometric
coverage in specific regions (e.g. mountainous areas),
which may cause erroneous performance assessments
especially in cases of localized and severe events, and a
too low fraction of heated rain-gauges, which may cause
an underestimated and delayed detection of precipitation
in case of snowfalls (e.g. Grossi et al., 2017; Mair
et al., 2016). On the other hand, surface temperature

TABLE 1 RMSE and correlation

index (R) computed for the three

parameterizations of the soil

temperature at 12.00 m depth against

the measurements in Potsdam station,

Germany

Name Parameterization RMSE (�C) R

M1 Analytic solution using amplitude method 1.17 �0.015

M2 Analytic solution using phase method 1.04 0.39

M3 3-yearly running mean with time lag 1.07 0.38

3Available at: http://www.pik-potsdam.de.
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sensors amount to about 1000 and include data from the
high-resolution regional network Dewetra as well as from
the SYNOP stations (that are not assimilated within
SPHERA).

2.5 | Performance evaluation

The comparison among SPHERA different configurations
and ERA5 is performed in terms of verification against
observations for daily accumulated precipitation and 2-m
temperature. As for the verification of precipitation, a neigh-
bourhood (‘fuzzy’) method (Ebert, 2008, 2009) is preferred
to the ‘nearest-point’ technique (i.e. comparison between
each observation and the nearest model grid point), in order
to reward closeness rather than the perfect point-to-point
match between model and observation. Neighbourhood
approaches relax the exact match constraint as they require
the agreement of the model–observation pair in a spatial
window surrounding the forecast and the observed points.
For this reason, they are more suitable to assess the model
skill in representing precipitation, especially for CP models.
Due to the intrinsic limitations in the predictability of con-
vection (e.g. Hohenegger & Schar, 2007), model simulations
of convective processes can often be affected by small dis-
placements and/or temporal shifts, causing a penalty in
standard verification scores (Ebert, 2008; Theis et al., 2005).
Among the neighbourhood techniques, this work considers
an upscaling method (Marsigli et al., 2008; Weygandt
et al., 2004; Yates et al., 2006), by aggregating the precipita-
tion fields, of both observations and renalayses, over a com-
mon coarser grid to provide a single forecast–observation
pair for each box of the verification domain. Because of the
large differences in grid resolutions between the two reana-
lyses considered (i.e. 0.02 � 0.02� for SPHERA and
0.3 � 0.3� for ERA5), a fair comparison is achieved by
upscaling SPHERA to ERA5 grid over the Italian domain.
The comparison is performed by considering the maximum
and the average of daily accumulated precipitation, as well
as the 95th percentile of daily distributions in each box
between model and observations. This allows us to evaluate

different properties of the simulated precipitation fields
(more details can be found in Marsigli et al., 2008). In fact,
by considering different parameters of precipitation statisti-
cal distributions such as the maximum (or 95th percentile)
or the average, it is possible to evaluate respectively the per-
formance in the representation of the most extreme events
(the tail of the distribution) as well as of the average precipi-
tation within the time period considered. This type of com-
parison is useful to understand the extent to which
deviations from the observed state are attributable to the
method chosen to aggregate the fields. To avoid errors due
to both the inevitable dishomogeneities arising from an het-
erogeneous spatial distribution of the rain-gauges, and from
the larger domain covered by reanalyses grids compared
with that of the observations, an observational mask is
applied (similar to Marsigli et al., 2008) to retain only
those boxes presenting an appropriate closeness between
reanalysis and observed distributions. Furthermore, boxes
containing less than five rain-gauges, indicative of an under-
sampling of the observed distributions, are withdrawn from
the analysis not to incur in misrepresentations of the results
due to the lack of representativeness of the used data. A cat-
egorical approach is then applied to quantify the perfor-
mance of the reanalyses in representing precipitation: in
each box, a 2 � 2 contingency table is calculated for a set of
rainfall thresholds, which are used to describe the joint dis-
tribution between the binary observations and the binary
outcome of the simulations. From the results of the contin-
gency table, a series of dichotomous scores is calculated to
evaluate different aspects of the reanalysis simulations,
namely: the probability of detection (POD), the false alarm
ratio (FAR) (that can be expressed as the success ratio
[SR = 1 � FAR]), the threat score (TS) and the frequency
bias. TS combines POD and SR information, measuring the
correspondence between observed and modelled events
when correct negatives are removed from consideration.
POD, SR and TS range between 0 and 1, where 1 indicates
a perfect score, while the frequency bias ranges between
0 and ∞, with a perfect score of 1 for an unbiased forecast.
The results are reported in the performance diagram
(Roebber, 2009), which exploits the geometric relationships
between these multiple verification indices. Additionally, to
consider the full set of fields of the contingency tables,
including the correct negatives, the Heidke skill score (HSS)
is calculated (Heidke, 1926), where HSS = 1 represents per-
fect forecasts and HSS = 0 indicates no skill. Hence, the
values of the scores are aggregated over the whole verifica-
tion domain and reported for different temporal ranges
related to summer and winter seasons of the year (JJA and
DJF, respectively). For a detailed description of the scores,
the reader is referred to Wilks (2019).

For the verification of 2-m temperature, the nearest-
point method is chosen by associating each observation

TABLE 2 Summary of the tests performed for setting up the

nesting modality and the prescription for the deep soil temperature

for SPHERA

Test
Nesting
method

Deep soil
temperature
prescription

Years of
simulation

1 S1s c-Tdeep 2015–2016

2 S2s c-Tdeep 2015

3 S1s v-Tdeep 2015–2016
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to the closest grid point, which is common practice for
the verification of continuous meteorological fields like
temperature (conversely to highly discontinuous vari-
ables like precipitation). Then the bias and RMSE
scores are calculated every 3 h. Height altitude correc-
tion is not applied, but data with a height difference
between model and observation larger than 500 m are
not used.

3 | RESULTS AND DISCUSSION

This section analyses the results concerning the nesting
method and the prescription of the deep soil temperature

for the optimization of SPHERA's set-up. Furthermore, a
first evaluation of the performance of the new reanalysis
and a comparison with its driver for the simulation of
daily accumulated rainfalls over a period of 2 years
(2015–2016) is presented.

3.1 | Nesting impact

The comparisons between the two SPHERA implementa-
tions with different nesting methods (i.e. S2s and S1s,
respectively, corresponding to Test 2 and the first year of
Test 1 in Table 2) and ERA5, for different precipitation
thresholds during winter (DJF) and summer (JJA) of

FIGURE 3 Performance diagrams for JJA (a, c) and DJF (b, d) of daily accumulated precipitation during 2015 when maximum (a, b)

and average (c, d) values over boxes of the interpolated domain over ERA5 grid are considered. Different reanalysis set-ups (S1s, S2s and

ERA5) are reported with different colours. The threat score is indicated in different shades of grey, and the results pertaining to various daily

precipitation thresholds (ranging from 1 to 50 mm/day) are shown with different symbols. The frequency bias can be estimated from the

deviations from the 45� black line, indicating an unbiased forecast (i.e. frequency bias = 1). Cross-hairs indicate the uncertainty related to

the sampling variability of the data and are calculated from a resampling with bootstrapping of 1000 new samples.
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2015, are reported with performance diagrams (Figure 3)
and HSSs (Figure 4). Both the maximum and the average
values of the boxed rainfall distributions are considered.
As for maxima, both S1s and S2s perform better than
ERA5 for precipitation values higher than 25 mm/day
(15 mm/day considering HSS), both during summer and
winter (Figures 3a,b and 4a,b). This result can be related
to the improved representation of convective cells in
SPHERA and the higher ability to detect the correct
intensity, particularly for high thresholds. This is in
agreement with what is observed in operational forecast
modelling and represents one of the major advantages of
the increased resolution (Baldauf et al., 2011; Kendon
et al., 2012; Weusthoff et al., 2010), as will be discussed in
more detail in Section 3.3. Regarding the SPHERA set-
ups, the diagrams show that S1s performs better than S2s
at every threshold in both seasons when considering the
maximum of the precipitation distribution. The improve-
ment, associated with a smaller bias and higher SR, TS
and HSS in S1s, is larger during summer. In both seasons,
but particularly during summer, S2s shows a higher POD
at every threshold. This is due to an excessive amount of
simulated precipitation as supported by the associated
very small SR values. This is confirmed by the time series
of differences in daily accumulated precipitation between
S1s and S2s averaged over the domain in Figure 5. S2s is

wetter than S1s during all the year, with major diver-
gence between the end of summer and the beginning of
autumn. In this period, strong convective events over the
Italian domain are favoured by the frequent occurrence

FIGURE 4 Heidke skill scores (HSS) for JJA (a, c) and DJF (b, d) of daily accumulated precipitation during 2015 when maximum (a, b)

and average (c, d) values over boxes of the interpolated domain over ERA5 grid are considered. SPHERA set-ups (S1s, S2s) and ERA5 are

reported with different dot fillings and colours.

FIGURE 5 Time series of the difference between the

precipitation of S2s and S1s averaged over the domain during 2015
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of deep troughs over the Atlantic-Mediterranean region
with associated moist flows impinging over the Italian
orography. The excessive precipitation (and lower skill)
in S2s might be associated with several reasons: spurious
gravity waves may develop using the multiple interpola-
tion procedure in S2s compared with S1s (as they might
be excited at the lateral boundaries and further contami-
nate part of the integration domain, Warner et al., 1997)
or an overestimation of precipitation in the intermediate
resolution (convection-parameterized) COSMO integra-
tion may produce a too wet soil in S2s (indeed the soil
state in S2s has been imposed as a lower boundary condi-
tion from the intermediate resolution COSMO integra-
tion). On the other hand, the lower precipitation (and
enhanced performance) of S1s may also be attributed to
the large resolution jump from ERA5 to 2.2 km that
would prevent the propagation or the spin up of convec-
tive events entering the domain, while the 10 km model
would already allow for some explicit convection to prop-
agate (Fosser et al., 2020). Independently from the rea-
son, the comparison with the observations indicates the
lower precipitation of S1s for the box maxima as a benefit
with respect to S2s.

As for the average values of precipitation (Figures 3c,
d and 4c,d), the benefit of SPHERA compared with the
driver is reduced and the values of the scores at all
thresholds are more similar. However, ERA5, besides
presenting higher TS and HSS scores than both S1s and
S2s, especially during JJA, underestimates the number of
precipitation events. The undersampling increases with
rainfall intensity, as shown by the downward deviation
from the unity frequency bias line in the performance
diagrams, even if less systematically than for the maxi-
mum counterparts. This highlights the greater difficulty
of ERA5 in producing an adequate number of events also
when considering the central part of the precipitation dis-
tributions and not only the tail of extreme events. Con-
cerning the comparison between the two SPHERA
nestings, a general decrease of POD, SR and HSS scores
comparing the average to the respective maximum values
is detected, especially during JJA. However, a general
tendency to produce an excessive number of rainfall
events is detected for S2s (frequency bias always >1),
which always presents higher PODs at the expense of
lower SRs compared with S1s, while regarding HSS the
two nestings report very similar results. Consequently,
S2s is affected by an oversampling also when considering
the average of the distributions, while S1s presents a
close-to-1 frequency bias in both seasons, but particularly
in summer.

As for the verification of temperature with different
nesting methods (Figure 6), the three-hourly bias and
RMSE scores are comparable or weakly better for S1s in

both summer and winter (similar results are obtained
also for spring and fall, not shown). It is interesting to
note that, as compared with ERA5, both the RRA set-ups
improve the RMSE by about one-third and reduce the
bias to about 0.5�C, probably due to a better representa-
tion of topography implied with an enhanced horizontal
resolution.

On the basis of these results, it is decided to adopt the
S1s nesting approach to extend the production of
SPHERA and to carry out the performance analyses
reported hereafter.

3.2 | Impact of deep soil temperature

To quantify the impact of different deep soil temperature
prescriptions in SPHERA, a comparison is performed
between the two parallel simulations described in
Section 2.3, namely ‘SPHERA-cTdeep’ and ‘SPHERA-
vTdeep’ (corresponding respectively to Test 1 and Test
3 in Table 2). In SPHERA-vTdeep, the deep soil tempera-
ture remains relatively constant over time, with an aver-
age seasonal variability of about 0.1�C (Figure 7). On the
domain average, SPHERA-vTdeep is about 0.9�C colder
than SPHERA-cTdeep at 14.58 m depth. This difference
propagates upwards into the soil and after 24 months
the signal is visible at 0.54 m depth, with a temperature
difference of about 0.1�C. Above this soil level, the aver-
age signal has smaller amplitude and at the surface is
null (Figure 7). However, when considering the spatial
distribution, surface differences in specific sites can be
larger than 0.5�C (Figure 8). Despite these differences at
soil level, significant changes are not found in total pre-
cipitation nor in temperature and relative humidity at
near-surface and upper atmospheric levels at the end of
the 24-month simulation (not shown). However, it
should be borne in mind that SPHERA outputs are pro-
duced in streams of 4 years; at the beginning of each
stream, soil data are reinitialized, and then let to change
based on atmospheric forcing. Since the length of each
stream exceeds the testing period, and the soil variations
amplify with time (Figure 7), the surface or the atmo-
sphere might be affected in the second part of each sim-
ulation stream, beyond the range described in the test
dataset.

On the basis of these results, the SPHERA-vTdeep
approach is adopted for the production of SPHERA.

3.3 | Evaluation of daily precipitation

Before proceeding with the production of the complete
25 years dataset, an evaluation of the performance of
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SPHERA is carried out for 2 years of integration (i.e. 2015
and 2016) with the selected setting (corresponding to Test
3 in Table 2). Past climate and climate projections are
often evaluated in terms of Essential Climate Variables.
Since climate change is expected to increase the severity
and number of high-impact weather events, past and
future climate should be evaluated also with respect to
the change in frequency and intensity of these events.
The evaluation is carried out focusing on 24-h accumu-
lated precipitation whose maxima are usually connected

with major flood events (e.g. Luino, 1999, Fiori et al.,
2011). The analysis is performed using the dense observa-
tional dataset from the Italian Civil Protection described
in Section 2.4. SPHERA is assessed against the driver
model ERA5 to evaluate the impact of the increased hori-
zontal resolution, which is linked especially to the possi-
bility of switching off the parameterization of deep
convection. As regards intense and localized precipita-
tion, km-scale models should be verified by considering
the loss of predictability at the pixel scale
(e.g. Hohenegger & Schar, 2007). To reduce the penalty
that would arise for high-resolution models if point-to-
point matches between observation and reanalysis are
requested (Ebert 2008, 2009), the neighbourhood tech-
nique described in Section 2.5 is adopted. The model
pixel scale is aggregated both for the reanalyses and for
the observation dataset at the scale of the coarser resolu-
tion model ERA5, and considering the maximum, the
95th percentile and the average of daily precipitation
values within each grid box (Marsigli et al., 2008). This
choice is consistent with what is done at ARPAE-SIMC
for the verification of operational numerical forecasts.

3.3.1 | Spatial distribution

As a first investigation, the spatial distribution of precipi-
tation is analysed over the years 2015–2016. The choice
of the distribution parameter used for aggregating the
rainfall distributions in the upscaled domain significantly
influences the results. In fact, when coming to spatially
distributed fields, considering exclusively the maximum
would give a non-robust estimation tailed towards the

FIGURE 6 Bias (grey lines) and RMSE (black lines) of temperature at 2 m in S1s (dashed), S2s (solid) and ERA5 (dotted) averaged on

the day hours for summer 2015 (a) and winter 2015 (b). In the legends the respective seasonal averages of the scores are reported.

FIGURE 7 Temporal evolution of the difference in soil

temperature at different depths (as indicated in the legend)

averaged over the domain between the simulations performed by

SPHERA-vTdeep and SPHERA-cTdeep
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most extremal events (as it derives from a single parame-
ter of the entire distribution in a box). On the other hand,
the mean value assesses the average skill of the reana-
lyses, implying an abrupt cutting of the tails related to
severe precipitation events (for which we are seeking the
benefits of the high resolution). For these reasons, the
95th percentile of the distributions is chosen to assess the
spatial behaviour of the simulated precipitation fields,
with a focus towards intense rainfall events. The results
(Figure 9), on the annual term, show the largest values of
observed daily accumulated precipitation (Figure 9a),
between 6 and 9 mm/day, over the Alpine and Apennine
regions. Conversely, in the Po Valley in Northern Italy,
in some regions in Sardinia and Sicily, and in southeast-
ern Italy, lower amounts of about 3 mm/day and below
are recorded (the reader is referred to Figure 1 for geo-
graphical references). Compared with the observational
dataset, ERA5 presents a dry negative bias over almost
the whole Italian territory (Figure 9c), particularly
marked over specific spots in mountainous areas, while it
performs well over the plains (well visible in the Po Val-
ley). The ERA5 daily bias calculated for each cell of the
upscaled grid and averaged over the whole Italian
domain (hereafter referred to as mean bias per box) on
the annual term (i.e. the spatial average of Figure 9c)
amounts to -1.3 mm. SPHERA for the annual aggregation
shows a wet bias (with a mean bias per box of 1.6 mm)
mainly over the Po Valley and the southern regions
(Figure 9b). The opposite tendencies of the two reana-
lyses biases are confirmed also by the density histograms
reported in Figure 9d.

To better understand the behaviours of reanalyses on
different temporal aggregation scales, the seasonal biases
are also reported in Figure 9 for summer (JJA) and winter
(DJF). During summer, ERA5 underestimates precipita-
tion over the whole Italian peninsula (Figure 9g), with a
mean bias at the box of �1.3 mm, and high spatial

coherence with the annual bias. Conversely, SPHERA
presents a marked wet bias over the western Po Valley,
and a less pronounced wet bias along the western sectors
of the peninsula and over the Islands (Figure 9f). The
daily average bias over summer per box is 2.8 mm, while
the bias density histogram reports a weakly drier median
centred around 2.5 mm/day (Figure 9h). It has to be
pointed out that the overestimation in summer precipita-
tion when considering the extreme tail of the rainfall dis-
tribution is, at least partly, attributable to the limits in the
ability to sample the observed state of the pluviometers
network: if observations are not sampled with the suffi-
cient spatial frequency (as it could be the case, see
Section 2.4), it is likely for the high-resolution system to
overestimate the rainfall fields in the bias calculation
between the 95th percentiles of SPHERA and the sam-
pled real-state. Consequently, the wet bias is at least in
part expected, and it may suggest the potential of
SPHERA in simulating very high rainfall rates. During
wintertime, SPHERA reports significantly smaller bias in
precipitation (Figure 9j), with a mean bias at box of
0.4 mm, indicating an overall quasi-unbiased spatial dis-
tribution. On the other hand, ERA5 in DJF shows a less
spatially systematic dry bias (Figure 9k), presenting a
mean value per box of �1.1 mm, with important ‘hot
spots’ of rainfall underestimation in the northern Apen-
nines and over the southern Apennines in southern Italy.
This spatial distribution is explained by the seasonality of
orographic precipitation over these mountainous areas
(as visible from the observed pattern in Figure 9i). Here
precipitation is particularly enhanced during winter as a
consequence of the predominant characteristics of meso-
scale humid flows impinging over the orography
(e.g. Krichak et al., 2015). In this case, the difficulties in
adequately representing orographic precipitations are
also shown by SPHERA, which, however, reports a less
accentuated and more localized dry bias over the

FIGURE 8 Difference in soil temperature at depth 14.58 m (a), 0.18 m (b) and 0.00 m (c) between the simulations performed by SPHERA-

vTdeep and SPHERA-cTdeep averaged over the last month of simulation considered (December 2016) after 24 months from the initialization
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northern Apennines (Figure 9j), and no predominant
biases over the southern Italian Apennines. These fea-
tures are confirmed by the comparison of the density his-
tograms of the two reanalyses during winter (Figure 9l):
in this case, SPHERA shows a sharper and slightly posi-
tively biased distribution, in contrast to a more blunted
and negatively centred distribution related to ERA5.

3.3.2 | Rainfall relative frequencies

In the following, the normalized relative frequencies of
daily precipitation intensities for SPHERA and ERA5
against the observational dataset, in terms of maximum
and average values of the boxed distributions, are consid-
ered (Figure 10) to add further details to the validation
exercise. The histogram related to the maxima (left plot)
reveals relevant differences among the three datasets:
while ERA5 slightly overestimates the number of low-
precipitation events (i.e. with intensities lower than
10 mm/day), excluding the range of dry days (<1 mm/
day), SPHERA slightly underestimates the number of
events in the range <5 mm/day. On the contrary, for
larger precipitations, ERA5 shows an undersampling for
accumulations >10 mm/day, worsening as the amount
increases. This result can be attributed to the difficulty in
simulating severe rainfall events, likely to be associated
with deep moist convection processes, which character-
izes coarse and convection-parameterized models
(e.g. Clark et al., 2016; Iyer et al., 2016). On the other
hand, SPHERA clearly overpredicts the number of pre-
cipitation occurrences, with the maximum overestima-
tion in the range of 25–50 mm/day. A similar analysis of
frequency distribution was performed with the other CP
reanalysis based on the COSMO model and produced
over the German territory, that is, COSMO-REA2, does

not report any tendency to overestimate the number of
intense rainfall events (Wahl et al., 2017). Hence, the
behaviour exhibited by SPHERA should not be attribut-
able to an intrinsic bias of the COSMO model. However,
we must point out that COSMO-REA2, conversely to
SPHERA, makes use of a latent heat nudging scheme
for assimilating radar data, which puts further con-
straints to the model simulation, compared with a nudg-
ing approach. Furthermore, in contrast to Wahl et al.
(2017), in the present work, the frequency analysis is
based on the distribution of precipitation after the box
aggregation, which is a crucial point. In fact, the choice
to consider the box maximum can be, at least in part,
responsible of the frequency overestimation for intense
rainfall events: due to the larger amount of SPHERA
grid points compared with rain-gauges per box, it is
more likely for SPHERA to catch a higher precipitation
peak than it is for the less dense observational network.
In the same way, part of the large ERA5 underestimate
can be attributed to the choice to consider the maximum
per box, which penalizes its coarser resolution. To better
understand the impact of the statistical parameters used
for the aggregation, the relative frequency histogram for
the average values in the boxes is considered
(Figure 10b). In this case, SPHERA tends to simulate
always a more adequate number of events than ERA5 at
all intensities, with a very good agreement with the
observations in the range <25 mm/day, and an under-
sampling for larger intensities. ERA5 is characterized by
larger errors than SPHERA in sampling events at all
intensities, with a significant oversampling for accumu-
lations in the range of 1–25 mm/day, and an undersam-
pling always stronger than SPHERA for events
>25 mm/day. This further confirms the dry bias affect-
ing ERA5 in this range of rainfall intensities, previously
detected when considering the maximum values,

FIGURE 10 Comparison of the normalized frequency histograms of the distributions of daily rainfall occurrences over 2015–2016
among observations, SPHERA and ERA5 datasets, when maximum (a) and average (b) values of the distributions over boxes obtained with

the interpolation over ERA5 native grid are considered. For a better visualization the sub-distributions for the highest thresholds are

highlighted in black-framed subplots.
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indicating the general tendency of the global reanalysis
to underestimate intense rainfall regardless of the
method employed for the statistical aggregation (even if
a smaller gap with SPHERA is shown when considering
the average values).

3.3.3 | Quantitative evaluation by statistical
indices

To quantitatively assess the performance of the reana-
lyses in simulating precipitation, the performance

FIGURE 11 As Figure 3 but for the aggregation of the data over 2015–2016 and relative to SPHERA (empty symbols) and ERA5 (black

symbols)

FIGURE 12 Heidke skill scores (HSS) for JJA and DJF (in red and blue colours respectively) of daily accumulated precipitation during

2015–2016 when maximum (a) and average (b) values over boxes of the interpolated domain over ERA5 grid are considered, for SPHERA

(in empty dots and dashed lines) and ERA5 (in solid dots and continuous lines)
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diagrams and the HSSs for daily maximum and average
values for JJA and DJF during 2015–2016 are reported
(Figures 11 and 12 respectively). The results concerning
SPHERA show similar behaviours to those of the test ver-
sion S1s4 previously investigated in Figure 3.

Considering the maximum (Figures 11a,b and 12a),
SPHERA presents for every precipitation intensity a
higher or similar POD and a lower SR compared with
those of ERA5 for both seasons. This indicates a higher
performance in detecting the actually occurred rainfall
events in SPHERA, especially for significant accumula-
tions, coming with a worse ability to avoid false alarms.
This recalls the tendency of SPHERA to overpredict the
number of precipitation events, particularly for intense
rainfall events, already shown in the frequency analysis
(Figure 10a), and further confirmed by the greater-
than-1 frequency bias for all thresholds (Figure 11a,b).
ERA5 reports the opposite behaviour, with a great abil-
ity to avoid false alarms, almost constantly for all the
intensities, at the expense of too few detected rainfall
cases, markedly during summer and for moderate and
intense events. This picture is associated with the ten-
dency of ERA5 to underestimate the rainfall frequencies
for thresholds larger than 15 mm/day, as shown by the
frequency bias lower than 1 and by the frequency distri-
bution (Figure 10a). TS and HSS result to be higher for
SPHERA for both seasons for moderate and intense
daily precipitation events (i.e. >10 mm/day), while they
are both higher for ERA5 for low-intensity rainfall
cases. This indicates that the added value of SPHERA
over its driver is in the representation of precipitation
cases with intensity from medium to heavy, in terms of
detection of occurrence and intensity, in agreement with
the results of CP models against their convection-
parametrizing drivers (e.g. Clark et al., 2016; Iyer
et al., 2016; Klasa et al., 2018). Moreover, the added
value of SPHERA is slightly more evident in summer
where a better performance than ERA5 is shown start-
ing from events with lower intensities compared with
winter.

On the other hand, when considering the average
values (Figures 11c,d and 12b), we notice similar skills of
the verification scores for the two reanalyses, with a
slightly better performance of ERA5 in predicting the
average amounts of precipitation, as indicated by the
superior HSS and TS compared with SPHERA at all
thresholds and seasons. However, in terms of the fre-
quency bias, ERA5 undersamples the number of high-
precipitation events in both seasons more evidently than

SPHERA. This highlights that the two reanalyses have a
similar skill in representing the average daily precipita-
tion over Italy, which is justified by the substantial
removal from the sample of the occurrences related to
tailed events presenting large and extreme daily
accumulations.

4 | SUMMARY AND
CONCLUSIONS

In this article, a new convection-permitting regional rea-
nalysis SPHERA (High Resolution REAnalysis over Italy)
is presented. One main focus of this work is the defini-
tion of the best model set-up ahead of the reanalysis inte-
gration. Two points are considered: the downscaling
procedure and the deep soil temperature boundary condi-
tion strategy. With regard to the first issue, results suggest
to nest SPHERA directly in ERA5, although the consider-
able leap in resolution, as the usage of an intermediate
step does not produce an improvement but rather a slight
detriment of the simulation quality. Concerning the bot-
tom boundary condition, important to avoid spurious
drifts during the multi-year integration, three different
deep soil temperature prescriptions are considered to
transfer the information from ERA5 bottom soil level
(1.95 m depth) to SPHERA's counterpart (14.58 m depth).
The three-yearly running mean of ERA5 bottom soil level
time series with a time delay is the one showing the best
accordance with the observed deep soil temperature state
and the simplest to be implemented in the model, there-
fore it is chosen for the extension of the dataset. The sec-
ond purpose of this work is to evaluate and compare the
performance of SPHERA with ERA5 in representing pre-
cipitation over a testing period of 2 years (2015–2016), in
preparation for the multi-decadal model integration. Var-
ious aspects of daily rainfall simulations are assessed,
considering their spatial distributions, the relative fre-
quencies of the events and employing dichotomous
methods for quantifying different attributes of the simu-
lations through statistical scores. The main improvement
of the CP reanalysis over the global counterpart concerns
moderate and heavy daily rainfalls. SPHERA performs
significantly better both regarding the frequencies of
occurrence and in terms of more skilful representations
of the actually occurred events. On the other hand, ERA5
is more reliable in simulating low to moderate accumula-
tions with an increasing negative frequency bias when
moving to higher intensities. This is expected when com-
paring high-resolution CP reanalyses with lower resolu-
tion convection-parametrizing datasets, resulting from
the enhanced representation of localized convective pro-
cesses and of topography (especially in presence of very

4The only difference between the currently considered SPHERA
simulation and S1s is the assigned deep soil temperature (see Test 1 and
Test 3 in Table 2).
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complex terrains) that is gained through finer grid
meshes. The results are in accordance with the perfor-
mance shown by other CP reanalyses for similar precipi-
tation intensities (e.g. Fosser et al., 2015; Prein
et al., 2013; Wahl et al., 2017). Even if the quality of
ERA5 simulations is already high, particularly when
coming to avoiding non-observed events, the possibility
to improve the simulation of cases having relevant inten-
sity is undoubtedly a pivotal element for the definition of
the past, present and future climate. The clear improve-
ment in the representation of precipitation shown by
SPHERA was essential to proceed with the production of
the dataset for the entire 25-year period (1995–2020). It is
anyway important to stress that the sample of data used
in the present analysis is appropriate to get a first insight
into the potential of the new dataset, but it is certainly
too small to permit a robust and comprehensive assess-
ment of SPHERA. Additionally, given the high temporal
resolution of 1 h of SPHERA simulations, a sub-daily
analysis of precipitation is expected to highlight even
more the added value in the description of high-impact
weather events (Prein et al., 2015). A follow-up paper
focused on an extensive and more detailed validation of
the multi-decadal dataset of SPHERA has already been
submitted.
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