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Abstract

The ability to adapt to changes and unexpected situations is a com-
monly acknowledged hallmark of autonomy and intelligence. In this work
we take inspiration from biology for the definition of a robot able to con-
tinuously adapt to changes. Specifically, we define its control structure
and the mechanism used to perform the adaptation. The former is based
on the Reservoir Computing framework, on which the latter acts. The
result is the design of an Online Adaptive Reservoir Computing system
based on a novel memristive reservoir: the Nanowire Network. Finally,
the robot is tested on three different tasks taking place in different arenas.
The results are then discussed and compared with a baseline algorithm.

Keywords: Phenotypic plasticity ·Online adaptation mechanism ·Nanowire
network robotics

1 Introduction

Recent technological advances have made it possible to build incredibly small
robots, till the size of tens of nanometers. Nevertheless, the current small-
est robots can perform only few predetermined actions, therefore they cannot
attain the level of adaptivity required to accomplish complex missions. Con-
versely, AI robotic software has recently made tremendous advancements and
has been proven capable of tackling difficult tasks with a high degree of relia-
bility. This software, however, cannot be run onto small size robots. A viable
way for filling this gap is provided by control programs based on unconventional
computation, such as the ones based on artificial neural networks or models of
genetic networks.

In this work we present a study on the viability of using Nanowire Networks
to control robots subject to an online adaptive mechanism. This work is a first
step towards the deployment of small robots capable of adapting their behavior
to the environment in which they operate. This is indeed the main property
required to actual autonomous embodied agents [20].
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2 Nanowire networks

One of the main innovative points introduced in this work is the use of Nanowire
Networks (NNs) for the control of a robot [3]. NNs are a novel kind of nanoscale
electrical circuit, whose interest resides in their ability to produce a neuro-
morphic behavior. This is given by their self-organizing property and intrinsic
structural and functional plasticity, mimicking biological networks [17, 18]. The
similarity resides in what is known as Hebbian Theory [12], a property that is
commonly summarized as “neurons wire together if they fire together” [15]. The
artificial equivalent of the synaptic strengthening is here represented by the be-
havior of the ion-silver-bridges that connect the wires of the network (see Figure
1 B). When subject to a voltage difference, the ions aggregate in the junction
increasing its conductance. When the stimulus is removed, the network slowly
returns to its stable state. In this work, we consider the voltage stimulation to
be the only way to modify the internal state of the NN. This dynamics rules the
network plasticity and can be seen as a short-term memory, that can be used
to process spatio-temporal data [9, 11, 7].

NNs are a promising technology in all the context that require complex
computations and have strict consumption constraints, like edge computing and
robotics.

3 Control system

NNs are powerful computing devices with promising properties for robotics, but
their use requires some ingenuity. We decided to design a robotic architecture
shaped on their specific characteristics and, in particular, based on the Reservoir
Computing (RC) framework and including an adaptive mechanism to endow the
robot with phenotypic plasticity.

3.1 Reservoir computing

Reservoir Computing is currently accepted as the de facto framework for the
use of unconventional dynamic systems for computation [19]. The working prin-
ciple consists in perturbing a reservoir and analyze its resulting state through
the use of a simple learning method, like regression or classification [13, 16]
(see Figure 1 A). This exploits the ability of the reservoir to re-project spatio-
temporal inputs to a higher dimensionality. The result is a faster and less
power-consuming training. However, despite all its benefits the use of RC in
robotics is still limited [4]. Additionally, online variants of this framework have
been explored only to a limited extent [1].

In this work, we address some of these missing explorations. Specifically, we
propose the use of NNs as reservoir. Their non-linear dynamics allow indeed
sequences of data to be evaluated differently, exploiting the intrinsic memory
arising by their structural plasticity. Additionally, we suggest in combination
the use of an online adaptive mechanism. The goal is to create a robot able
to adaptively perform advanced operations, exploiting very simple systems: the
NNs.
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Figure 1: A. The Echo State Network: one of the first instances of the Reservoir
Computing architecture. B. Microscopy image of a Nanowire Network. Picture
taken by [17] by courtesy of the authors. C. Schematic representation of the
control architecture. [S0, ..., Sn] represent the robot sensors, while LM,RM
represent the left and right motor. [α0, ..., αn] represent the weighting factor,
different for each sensor signal. β represents the influence of the motor resistance
in the electrical equivalent system.

3.2 Adaptive mechanism

In order to perform an online adaptation, we decided to modify the classical
RC architecture substituting the training of the readout with a stochastic op-
timization process operating on the inputs. The idea is that it is possible to
learn how to perturb the reservoir in order to induce a desired internal state.
The approach consists in performing a reconnection and weighting of the input
signals to different nodes of the network (see Figure 1 C). The affected connec-
tions are a stochastically chosen sub-set ranging from 10% to 40% of the total.
Network nodes eligible for reconnection must differ from previous ones and be
k-nodes distant from the outputs1. The weighting consists in attenuating or
intensifying the input signal through the use of a multiplier. Its initial value is
chosen with a normal distribution centered in 1, and is then adapted adding the
result of a normal distribution centered in 0. This parameter allows to balance
the influence of specific inputs in the computation. A possible application is
when some sensors are more useful than others for a specific task, and we want
to enhance their role (e.g., front sensors in collision avoidance). Alternatively,
this feature may help to balance measures of different physical properties, or
in different environmental conditions where the signals homogeneously change
(e.g., average brightness during day or night).

The proposed strategy is a variant of a methodology used for the adaptation
of robots controlled by Boolean Networks (BNs) [6]. The novelty consists in
the weighting of the input signals. This modification takes advantage of the
analogic working mode of the NNs, that adds both a complexity and a potential
compared to BNs. As the inspiring vision of this work is that of a micro-
robot, the adaptation mechanism used in the experiment is minimalistic, so as
to facilitate the construction for real applications.

1In our experiments k is 2.
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Figure 2: Mapping between the control systems of the biological and artificial
agent. On the left, the sensing path is represented. On the right, the control
path is shown.

3.3 Robotic architecture

The robotic architecture we designed is inspired by biological organisms. Specif-
ically, our model is shaped on the Central Nervous System (CNS), which for-
wards and transforms the signals from the sensors to the cortex, and from the
cortex to the muscles. The final version of this architecture (see Figure 1 C)
was obtained by an iterative refactoring, trying to match the technical with
the biological part. The first step concerned the individuation of five macro-
areas: i. sensing (S0, ..., Sn), ii. input weighting and reconnection (α0, ..., αn),
iii. reservoir, iv. output reconnection (β), v. actuation (LM,RM). Each of them
is mapped into its biological correspondent (see Figure 2). The sensing appara-
tus (i.) is equivalent to the biological sensors. The transmission and processing
of the input signals (ii.) is represented by the thalamus; its role is indeed to
forward all the incoming signals and to redirect feedbacks to the correct loca-
tion [21]. Additionally, it controls the flow of information and transforms the
signals acting like a filter [5, 8]. In fact, this is a simplification since in humans
the transformation of the inputs does not happen in a single point, but along
the entire afferent CNS2.

The NN reservoir (iii.) performs most of the computations of the artificial
control system. Because of that, we consider this component equivalent to the
cortex. The transmission of the motor commands (iv.) from the cortex is rep-
resented by the pyramids. As for the afferent tract, this is also a simplification
of the biological world. The efferent fibers3 are indeed redirected to the muscles
in many points of the descending tract. Finally, the motors (v.) are mapped on
the biological muscles. This choice is straightforward, since both operate as an
actuation apparatus.

In a nutshell, the basic idea of the control architecture is that the sensory
inputs are weighted and forwarded to specific points of the network, influencing
the “reasoning” of the robot. Accordingly, motion commands are taken from
specific points and used to control the actuators.

2The tract of the CNS going from the sensors to the cortex.
3Fibers of the human body carrying signals from the cortex to the muscles.
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Figure 3: The adaptation cycle that is continuously run by the robot. The gray
dashed block and lines are an addition to the basic idea of adaptation.

3.4 Adaptation cycle

The main goal of the adaptation mechanism is the emergence and optimiza-
tion of a successful behavior, showing what is in biology known as phenotypic
plasticity. This is the ability of a genotype to produce a visible response that
depends on and adapts to the environmental conditions. To provide this ability
the adaptation runs continuously during robot’s life, and is therefore said to
work online (see Figure 3). The initial configuration is set at a random (i.e.,
a set of inward and outward connections and weights is sampled at random),
and is evaluated during a fixed period of time and saved. This is then adapted
by the adaptive mechanism previously described. The result is tested and, if
better than the best one found, it is saved. Otherwise, the previously-found
best-configuration is kept for future adaptations. The process repeats adapting
the best found configuration and evaluating the quality of the adaptation. The
quality is internally calculated by the robot itself in terms of a utility function,
which is the agent internal driving force [2]. As the cycle continues perpetually,
the robot has the opportunity to continuously improve its behavior and adapt it
to possible changes in the working environment. As a consequence, each robot
undergoes its own development, as typically happens in ontogenetic processes
and historical processes in general [14].

During the experiments, we noticed that the optimization of some poor
configurations slows down the adaptation. In order to speed up the process,
we tested the use of a threshold value to early discard unsatisfactory solutions.
Instead of them, new random ones are generated and evaluated.
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Figure 4: The corresponding arena of each task: A. Collision Avoidance, B.
Area Avoidance, C. T-Maze. 1 & 2 represent the T-maze end-points; 0 the
starting-point).

4 Experiments

We evaluated the robotic system on three tasks taking place in three different
simulated environments (see Figure 4): i. Collision Avoidance (CA), ii. Area
Avoidance (AA), iii. T-maze (TM). The experiments run within the Webots
simulator and consist in the test of 250 unique NNs. The NN-based architecture
is adapted 300 times, each generating a configuration. Each configuration is then
tested during an epoch. The duration of each epoch depends on the task and
on the size of the arena:

• 20s for the CA,

• 100s for the AA,

• 100s for the TM.

Each assignment is defined by specific Objective Function (OF), that the robot
self-evaluate and try to maximize.

The performance of this mechanism is compared with that of a stochastic
mechanism, whereby the adaptation does not take place and the new configu-
rations are generated randomly at each step. In other words, in the stochastic
mechanism the best configuration is never adapted, but instead a new one is
created from scratch at each epoch. This is used as a baseline to evaluate the
quality of the adaptive mechanism.

4.1 Collision avoidance

In the Collision Avoidance task the robot is required to avoid collisions while
going as fast as possible on a straight line. Therefore, the corresponding OF
penalizes excessive turns and time spent near to obstacles:

fitness = (1−√
pmax) · (1− |vl − vr|) ·

vl + vr
2

(1)

where:
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pmax ∈ [0, 1] is the normalized maximum proximity4,

vl, vr ∈ [0, 1] are respectively the normalized left and right motor speeds5.

In Equation 1, the proximity undergoes a square root in order to increase
the sensibility of the OF to collisions6. The goal is to reward configurations that
stay far from the obstacles, reducing the influence of the trajectory and speed.

The arena consists in a central obstacle and a set of external walls (see
Figure 4 A). The result is a circuit in which the robot has to run avoiding
collisions. The passages on the left and right are stricter than the top and
bottom ones, adding a minimal complexity to the task.

4.2 Area avoidance

The Area Avoidance task is similar to the CA one, but requires the robot to
avoid virtual areas identified only by the ground color. The obstacles stop to be
physical and become instead intangible. This complicates the tasks because the
robot has to react faster. A slow response would indeed push the robot deeper
into the forbidden area, reducing the score of future actions. In this task the
system is driven by a single sensor, allowing to test how much the weighting
of the signal is useful in achieving a good result. Additionally, it shows that
it is possible to obtain a wandering behavior and still avoiding obstacles with
a computationally limited system. The performance of the robot at a specific
step in the AA task is computed with the following OF:

fitness = (1− |vl − vr|) ·
vl + vr

2
− 100 · c (2)

where:

c ∈ {0, 1} is 1 if the robot is on the illegal area, 0 otherwise,

vl, vr ∈ [0, 1] are respectively the normalized left and right motor speeds7.

In Equation 2, hovering an illegal area is associated with a strong penalty.
This is independent of the direction of the robot or its speed. The result is that
the adaptation leads to a behavior that mostly avoid the illegal areas, while the
quality is tuned by the speed and direction of the movement.

The arena consists of few illegal areas that the robot cannot hover (white
blocks in Figure 4 B). Additionally, it is limited by the presence of virtual and
physical borders, assigning a deserter robot negative scores while preventing it
from going too distant. The goal is to allow every configuration to go back to
a legal area, also if it starts in a disadvantageous position. Finally, every illegal
area is surrounded by a neutral zone that informs the robot that is approaching
a forbidden space.

40 represents a far object, 1 represents a near one.
50 represents an anticlockwise revolution, 0.5 a still state and 1 a clockwise revolution.
6Being the range of value in [0, 1], the square root increases the value of proximity.
70 represents an anticlockwise revolution, 0.5 a still state and 1 a clockwise revolution.
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4.3 T-Maze

In the T-Maze task the robot is required to reach the correct end-point of a
T-shaped maze (see 1 & 2 in Figure 4 C). The goal destination depends on
the color of the floor at the start of the run (see 0 in Figure 4 C): right for
black, left for white. This requires the adaptive mechanism to exploit the NN
plasticity to somehow memorize this initial input, and behave accordingly also
when the signal stop to be perceived. In order to test the behavior, the robot
is periodically kidnapped and placed back at the start of the maze. The OF for
the TM task is the following:

fitness = 2 · α · β − α (3)

where:

α ∈ {0, 1} is 1 if the ground color is the same as the starting one,

β ∈ {0, 1} is 1 if the ground is gray.

The Equation 3 highlights the presence of a gray color. This is the color of
the ground outside the starting and ending points. In this region, the fitness of
the robot does not change. Instead, the performance is penalized if the robot
remains in the starting area or if it reaches the wrong end point. If the robot
reaches the correct end point, its score is increased by 2 at each step of the
permanence. This helps in slightly reducing the simulation time. One aspect
not considered in Equation 3 is the speed of the robot. The design of the task
in combination with the epoch duration implicitly requires the robot to not be
slow: in the opposite case, it would not have enough time to reach the end point.

5 Results

The results of the experiments are compared considering performance increment
and distribution. The value at each time-step represents the average of the best
score obtained by each robot since the start of the simulation. This is therefore
never decreasing, and is a good compromise to represent the ability to adapt [6].

The adaptive mechanism always shows higher performance than the random
one. The difference between the results of the two approaches seems to be
strictly related to the task that we are considering. In the CA, the results gap is
not impressive (see Figure 5). Indeed, although the adaptation leads to a slightly
better performance, the random mechanism still allows to obtain good results.
We can explain this behavior with the low complexity of the task and the high
correlation of the signals from the sensors. Their disposition around the robot
cause many of them to perceive the same obstacles. This allows the system to
be intrinsically more resistant to faults, but also to perform well with just few
sensors correctly connected. Additionally, in the given task the importance of
the sensors is not homogeneous, with the front ones being more useful than the
back ones.

When we consider the AA task the improvement is more evident, especially
in the score distribution (see Figure 6). This is due to the finer tuning of
the weighting parameter, that helps to exploit all the information contained
in the single input signal. Nevertheless, at the same time, the presence of a
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Figure 5: CA results in terms of average fitness along the iterations (left) and
distribution of the best results achieved in the 250 replicas of each experiment
(right).

Figure 6: AA results in terms of average fitness along the iterations (left) and
distribution of the best results achieved in the 250 replicas of each experiment
(right).

single sensor reduces the complexity of the connection, allowing also the random
mechanism to perform well. This cause the effectiveness of the adaptation to
be limited to the optimization of the input weight.

Finally, the TM task sees the highest improvement in performance (see Fig-
ure 7). This is due to the increasing complexity, requiring a finer tuning. The
ability to change direction is indeed strictly related to the way the system stores
information in the NN. In order to make it influential, the mechanism has to
accurately balance the stimulation from the ground sensor. This strongly sug-
gests that the adaptation might become more useful as the complexity of the
task increase, eventually becoming essential.

6 Discussion

The results presented in the previous section highlight a consistent gap between
the scores obtained by the two compared mechanisms. The adaptation produces
indeed overall better performances. Nevertheless, it is also evident that this
difference is not impressive. One explanation is found in the amount of network
nodes and epochs. Due to the complexity of the simulation, the tested NNs only
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Figure 7: TM results in terms of average fitness along the iterations (left) and
distribution of the best results achieved in the 250 replicas of each experiment
(right).

Wires Junctions
AA 68 120
CA 166 381
TM 166 381

Table 1: Average number of wires and junctions in the used NNs. The difference
between the AA task and the others is due to the creation density.

contain a small amount of wires and junctions (see Table 1). Those are clearly
much less than the number of epochs. This means that during the adaptation
each sensor can possibly connect with any network node. Together with the
intrinsic correlation of some sensor signals8, and with their different influence9,
an effective solution may be found properly connecting just few sensors. In the
full set of possible permutations of the input nodes, the amount of adequate
configurations is therefore fairly high. This means that the number of trials
needed to obtain a good behavior is relatively small.

The previous consideration is not completely satisfying, in that it would still
suggest better performances of the adaptive method already from the initial
epochs. The improvement is instead visible only after some tens of iterations.
Therefore, another point to consider is the working mode of the NNs. Their
relations with electrical circuits and the presence of the stimulation makes the
choice of the connection node generally less important than in other network
based systems (e.g., Boolean networks). Indeed, there is no risk for the input
to disappear when reconnecting to neighbor nodes10, but instead its influence
on the actuators will only slightly change. Because of this working principle,
the most important point in connecting to a NN seems to be related to the
balance between the signals. This overall reduces the complexity of the wiring,
but also limits the amount of complex behaviors that we can characterize from
the network.

8Neighbor sensors often perceive same or similar information.
9Not all the sensors have the same utility in a task. For example, back sensors are usually

less useful than front ones in the CA.
10Neighbor nodes in the graph representation of the NN. Two spatially near wires might

indeed not be connected.
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The result is that an adaptive reconnection, although useful, might not per-
form dramatically well compared to a random approach. It helps mainly when
the complexity of the task is high or the size of the network grows, and when
a more tuned balance between the input signals is needed. This idea is sup-
ported by the results obtained in the various tasks, seeing the performance gap
increasing according to the complexity.

7 Conclusion

The goal of this work is to allow robots endowed with NNs to present the arti-
ficial correspondent of phenotypic plasticity. To achieve this goal we designed
a control architecture based on NN and inspired by human CNS. The resulting
system has been tested on three different tasks and environments. The results
show that the robot is able to adapt its behavior to different tasks, attaining
good performance. Additionally, they show that the adaptive mechanism allows
to successfully exploit the intrinsic memory of the NNs. We conjecture that
the limited advantage of an adaptive mechanism over a random one can be at-
tributed to the complexity of the task, the size of the NN, and its working mode.
Therefore, we plan to test larger networks in harder tasks and environments.
Other explorations may consider the use of local search techniques, exploiting
a heuristic bias in the choice of the connections. As long term goal, we aim to
design hardware adaptive mechanisms for the creation of microscopic robots,
for example through the use of technologies like self-assembling wires [10].
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