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A Deep-Learning Model of Virtual Test Drivers
T. Pallacci , N. Mimmo , Member, IEEE, P. Sessa, and R. Rabbeni

Abstract—Virtual test drivers are becoming a paramount
automatic verification tool enabling car makers to test new
and advanced vehicle functionalities in a standardized,
repeatable, high-quality, and cost-saving way. In this letter,
we use modern machine-learning methodologies to build
a virtual driver able to test the hill-descent control, one of
the driver assistance systems equipping modern cars. The
experimental results show that our virtual driver performs
as a human driver involved in the same test conditions.

Index Terms—Deep learning.

I. INTRODUCTION

IN THE context of vehicles’ functionality verification and
validation phases, car manufacturers commonly use different

combinations of human, physical systems, and digital tools
with the main goal of minimizing costs, efforts, and time while
keeping the highest quality standard [1]. For example, the Hill-
Descent Control (HDC) is an advanced driver assistance system
that keeps the car’s speed constant while descending a hill.
When the HDC is active, the driver can regulate the desired
descent speed with switch buttons on the steering wheel and
with gas and brake pedals. Therefore, testing the HDC also
means following test-specific brake pedal trajectories.

Traditionally, one of the most common approaches consists
of the so-called driver-in-the-loop, in which a professional test
driver is directly involved in the control of either the simulated
or real vehicle. In this letter, the human test driver is conceived
as a system which controls the car to achieve the goal of testing
the vehicle’s functionalities [2].

On the other hand, performing automatic tests, i.e., tests
without human drivers, could represent good practice because
they can run 24/7, and are repeatable and standardized, which
are favorable features for improving vehicle systems develop-
ment. For these reasons, car makers are adopting virtual design
and testing, which are based on advanced digital technologies.

Goals: In this letter, we investigate the problem of creating
a digital twin of human test drivers, here called Virtual Test
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Driver (VTD), for testing the HDC. We aim at modeling a
VTD able to dynamically adapt its actions to stimuli coming
from road conditions and vehicle dynamics while exploring
the HDC domain. Moreover, VTD’s responses should be as
realistic as possible, i.e., they should be comparable to what
human test drivers would do in the same testing conditions [3].

State of the art: Researchers have been trying to describe,
reproduce, and simulate car drivers’ behavior since the
1950s [4] by focusing mainly on high-level tasks, i.e., speed
regulation, car-following, and lane-change [5], [6]. Section III
of [7] reports an interesting review of the most recently
developed driver models. Roughly, the current literature can
be split into model-based and data-driven methods.

The process of creation of a model, e.g., the VTD, from
data is known in the automatic control literature as system
identification. Roughly, system identification represents the
process of finding the model that relates the collected data in
the best way, concerning some measurable Key Performance
Indicators (KPIs). Deep learning represents one of the most
recent techniques in the field of machine learning and, in our
context, is seen as one of the many possible interpretations
of system identification. Deep learning has had a long and
rich history starting in the 1940s with the development of
theories of biological learning [8] via the so-called Artificial
Neural Networks (ANNs). Later in the 1980s, deep ANNs
were born as the principle of learning multiple layers of
composition [9]. ANNs can be classified as Feed-Forward
(FFNNs) and Recursive (RNNs). FFNNs organize their layers
in a cascade while in RNNs the output of some layers is
fed back to previous layers. Hochreiter and Schmidhuber [10]
introduced the Long Short-Term Memory (LSTM) network,
a kind of RNN, to model long sequences, i.e., to model
relationships between sequences rather than just fixed inputs,
see also [11]. As for machine-learning models of human
drivers, in [12], the focus is on lane-change acceptance and
the driver is modeled via feed-forward ANNs, which are
exploited to represent memoryless systems. In [13], a partly
connected multilayered perceptron was exploited to let the
VTD imitate human behavior on gas and brake pedals during
speed regulation tasks. A driver’s intention predictor taking
into account emotional factors was designed via a support
vector machine in [14]. A deep learning approach in modeling
the steering intention of human drivers was proposed in [15].

It is worth noting that the cited models have been developed
for classic driving tasks such as speed regulation and
car-following. Unfortunately, these models could be useful for
testing car functionalities only in regular driving conditions.
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On the opposite, we are interested in testing car functionalities,
especially in off-design conditions.

Contributions: In the context of the creation of a human-
inspired VTD, in this letter, we adopt a deep learning-based
system identification strategy which relies on real-world data
collected during test campaigns performed by professional test
drivers. We took the inspiration from the driver’s architecture
depicted in [16]. In particular, we modeled the VTD as a
system of two modules called decision-maker and executor.
Both consist of LSTM-NN whose datasets have been properly
specialized. The decision-maker elaborates on environmental
data acquired by exteroceptive sensors, such as camera and
lidar, and, based on the vehicle state, decides the manoeuvres
the executor should undertake. Then, the executor, which
embeds manoeuvre primitives, performs the action com-
manded by the decision-maker while gathering information
from both exteroceptive and proprioceptive sensors, e.g., IMU.
One of the pros of this architecture is its modularity. Indeed,
the classes of decisions and the base manoeuvres can be
extended independently from each other. This makes the appli-
cability of our VTD easily extendable to driving contexts more
generic than HDC testing considered in this preliminary work.

In this letter, the driver’s model architecture is not divided
into car-following and lane-change sub-modules. Instead, we
consider simpler basic manoeuvres, such as accelerating and
steering, as primitives. Moreover, we improve the seminal
decision-making module by [16] by changing its modeling
approach. Differently from [16] we do not rely on statistical
rules to define when to start and finish each manoeuvre, which
seems quite complicated and makes the managing of each con-
dition non-trivial. Moreover, the framework proposed in [16]
had an additional sub-module placed between the decision
and the execution ones. This further module, called planning,
links the environment to the expected effect of executed
manoeuvres and it was used to define the driver’s intention.
The planning module provides constant values, which makes
hard the use of recurrent neural networks, such as LSTM,
for modeling the executor. Despite commonalities with our
VTD, the driver model of [16] was proposed to simulate local
traffic scenarios. Contrarily, we took inspiration from [16] to
develop a more sophisticated driver model specifically testing
vehicle functionalities. Moreover, our VTD’s decision-making
part extends the applicability of that defined in [16].

We tested our VTD in many challenging hill-decent sce-
narios, characterized by time-varying slopes and curvatures,
in which the comparison with human test drivers has demon-
strated the high accuracy of our solution. Our VTD shows a
human-like behavior as detailed in Section III-E.

II. BASIC NOTIONS, PROBLEM STATEMENT,
AND PROPOSED SOLUTION

A. Basic Notions

Learning algorithms learn from experience concerning
some class of tasks, T , and are evaluated via measur-
able performance indices J. More in detail, we define the
experience on a specific task T as the collection of examples,
i.e., a dataset D. In turn, an example is a collection of features
that has been measured during experiments. As an example,

Fig. 1. LSTMS-ANN: at each time step k, the network is fed by input
data μ(k), elaborates the output υ(k), and computes the future states
z1(k+1) and z2(k+1).

in the context of HDC, the task is that of driving a car
while activating/deactivating and regulating the functionality
via buttons and pedals. We symbolise the ith example as the
composition of input and output matrices Yi ∈ R

p×ni and Ui ∈
R

q×ni , with p, q, ni ∈ N, where each row represents a feature
and each column is the sampling of that feature at a given time
instant. In the case of HDC, pedal positions, button status, and
IMU data are examples of features. One of the most common
machine-learning tasks includes the so-called regression. More
in detail, assuming that m examples are available, we denote
the sets to which belong the columns of Yi and Ui, for i =
1, . . . , m, with Y ⊆ R

p and U ⊆ R
q. In regression, we

aim at learning a parameterized function �� : Y × R → U ,
in which � represents the parameter vector, that correlates
the input and output data over time. In detail, we aim at
tuning � to reduce the so-called training error, i.e., an error
computed on the training dataset, which represents a subpart
of D. For the specific case of the HDC, we want the learning
to predict the test driver braking actions. More specifically, we
aim at minimizing the difference between actual and estimated
pedal positions. Besides, to evaluate the abilities of a machine
learning algorithm, we are interested in how well the algorithm
performs on data that it has not seen before, i.e., the so-called
validation set. The ability to perform well on the validation
set is called generalization. Naturally, we want to reduce also
the generalization error and, to do so, we usually tune the so-
called hyperparameters. As an example, a hyperparameter are
the dimensions of �.

Among the several kinds of parametric functions proposed
by the ANN literature, the so-called Long Short-Term Memory
(LSTM)-ANNs demonstrated to perform well on time-series
data. In particular, �� is conceived as the composition of the
sigmoid and hyperbolic tangent functions σ and tanh organized
in n cells, with n ∈ N. LSTM-ANNs are discrete-time non-
linear systems with input μ ∈ R

ni , states z1 ∈ R
n and z2 ∈ R

n,
and output υ ∈ R

n, with ni, n ∈ N, see Figure 1. In detail, the
state and output of an LSTM-ANN evolve accordingly with

z1(k + 1) = c(k)z1(0) = 0

z2(k + 1) = d(k)z2(0) = 0

υ(k) = d(k) (1a)

in which

c(k) := σ
(

af(k)
)

� z1(k) + σ
(

ai(k)
)

� tanh
(
ac(k)

)

d(k) := σ
(
ao(k)

) � tanh(c(k)), (1b)

for all k ∈ N0, and where � represents the Hadamard product.
Then, the so-called activation functions af, ao, ai, and ac are
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determined as

af(k) := bf + Wfz2(k) + Rfμ(k)

ai
i(k) := bi + W iz2(k) + Riμ(k)

ao(k) := bo + Woz2(k) + Roμ(k)

ac
i (k) := bc + Wcz2(k) + Rcμ(k) (1c)

with bf, bi, bo, bc ∈ R
n, Wf, W i, wo, wc ∈ R

n×n,
and Rf, Ri, Ro, Rc ∈ R

n×ni . Roughly, z1 accumulates new
information, contained in tanh(ac) and weighted by σ(ai), with
a time-varying forgetting rate given by σ(af). Moreover, z2
represents a memory cell which keeps the last output value υ,
which is computed as the normalized version of the next-step
z1, i.e., tanh(c), weighted by σ(ao).

Usually, LSTM-ANNs are connected to the input data y and
the output u through FF-ANNs. The input FF-ANN elaborates
y for using the LSTM-ANN while the output FF-ANN trans-
lates the LSTM’s output into u-compatible output. Let “i" and
“o" be the subscripts for input and output. Define �i, �o ∈ N

as the number of input and output layers. Then, the input and
output networks are defined as

h#
1(k) = σ

(
b#

1 + W#
1 y(k)

)

h#
j+1(k) = σ

(
b#

j + W#
j h#

j (k)
)

j = 1, . . . , �# − 1

μ(k) = σ
(
b#
�#

+ W#
�#

h#
�#

(k)
)

(1d)

in which # ∈ {i, o}. The vectors hi
j and ho

j represent the
so-called hidden-layer variables. Differently from (1c), the
(vectors and matrices of) parameters bi

j, W i
j , bo

j , and Wo
j in (1d)

may have different dimensions for each layer.
The set of vectors and matrices b, W, R (from which we

have hidden all the super- and sub-scripts to keep the notation
light), appearing in (1c)–(1d), represents the network param-
eters � which is determined through the training process.
Conversely, the number of cells n, the number of input and
output layers �i and �o, and the dimensions of bi

j, W i
j , bo

j , and
Wo

j are considered hyperparameters.

B. Problem Statement

We define x, u, w, and y to be the state, the input, the
uncertainties, and the output describing a car, whose dynamics
are modeled via the following sampled-time system

x(k + 1) = f (x(k), u(k), w(k))x(0) = x0

y(k) = h(x(k), w(k)). (2)

in which x0 denotes the initial condition. The output y ∈ R
p

is generic and contains classic sensor outputs, such as IMU,
GNSS, radar, and more recently available data such as the
RGB and depth values of cameras, point clouds, and so forth.
Classic vehicular inputs, u ∈ U ⊂ R

q, are the steering wheel
angle, the brake and acceleration pedals, the gear selector,
the buttons used for (de)activating and regulating automatic
functionalities, and so forth. In this letter, we assume that
the input vector u is measurable. Moreover, we assume all
the inputs are constrained within a bounded domain U . In
our formulation, w collects both exogenous disturbances, such
as the wind and the road grade, and the sensors’ noise.
Finally, the state x represents a design choice and may contain

Fig. 2. The data-provider plant consists of a human test driver,
performing the task T , i.e., testing the vehicle functionalities, in closed-
loop with a vehicle which can be a physical or virtual prototype. Both
inputs u and output y are sampled and collected into a dataset D.

variables such as the car’s position, speed, attitude, and so on.
Moreover, we assume (2) being controlled by a human test
driver as depicted in Figure 2.

We model the VTD as a dynamic system, whose state is z,
whose input is y, and whose output is û. In more detail, we
conceive two functions g and ι such that

z(k + 1) = g(z(k), y(k))z(0) = z0

û(k) = ι(z(k), y(k)). (3)

Now, we assume that m ∈ N drive runs have been performed
during which ni ∈ N, with i = 1, . . . , m, samples of inputs
and outputs have been collected into the matrices

Yi := [
y(ni), y(ni − 1), . . . , y(1)

]

Ui := [u(ni), u(ni − 1), . . . , u(1)]. (4)

Regarding Section II-A, each drive run represents an example
while the input/output matrices (4) are the collection of fea-
tures. We divide M := {1, . . . , m} into two disjoint subsets,
namely Mt and Mv. We define Dt := ⋃

i∈Mt
(Yi, Ui) and

Dv := ⋃
i∈Mv

(Yi, Ui) and we call them training and validation
set. In this context, the identification process consists of
exploiting D to design g, ι, and z0 solving the following multi-
objective optimization problem

Jt := min
g,ι,z0

1

nt

∑
i∈Mt

e
(
ûi, ui

)

Jv := min
g,ι,z0

1

nv

∑
i∈Mv

e
(
ûi, ui

)
, (5a)

subject to (2) and (3), where nt and nv denote the dimensions
of Mt and Mv, and

e
(
ûi, ui

)
:= 1

ni

ni∑
k=1

‖ûi(k) − ui(k)‖2 (5b)

is the Mean-Squared-Error (MSE) associated with the couple
(ûi, ui). Roughly, we want to find a VTD model exploiting the
training set D to foresee, as well as possible, the control inputs
u of a test driver in the case when only the actual measurement
y is available. This problem is usually reported in the literature
as a simulation problem [[17], §16.4] and it differs from
the so-called prediction problem in which the future output
is forecast based on both input and output past data. We
remark that LSTM-ANNs fit well and better than the so-
called Temporal Convolutional Networks into the simulation
framework. Moreover, we want to minimis both the training
and the validation errors Jt and Jv.



PALLACCI et al.: DEEP-LEARNING MODEL OF VTDs 1153

Fig. 3. The proposed VTD is composed of two parts, a decision-maker
and a manoeuvre executor. The VTD takes data from the environment
and the vehicle state and feeds the vehicle with driving inputs.

C. Proposed Solution

This section describes the algorithm we propose for solving
problem (5). We modeled the VTD as a composition of
two main parts, i.e., a decision-maker and an executor, see
Figure 3.

The vehicle is equipped with an image processor collect-
ing environmental data through a camera and elaborating
high-level information such as the presence of surrounding
automobiles and their position and speed relative to the
ego vehicle, time series of position and speed relative to
the ego vehicle of surrounding automobiles, road conditions,
road slope and curvature, and the current speed of the ego
vehicle. The decision-maker takes the inputs from the image
processor and elaborates a decision, i.e., a signal that exclu-
sively activates one of the manoeuvres among a prescribed
set. For example, in this preliminary work, our VTD can
choose between brake and accelerate. Then, the decision to
brake or accelerate is passed to the executor who modulates
the pedal deflections based on the current vehicle state and
environmental data.

We divided z into two parts, namely zd and ze, the former for
modeling the decision-maker and the latter for the executor.
Then, accordingly to the architecture of Figure 3, we modeled
the decision-maker as

zd(k + 1) = gd(zd(k), y(k))zd(0) = zd,0

ud(k) = ιd(zd(k), y(k)). (6a)

The input y represents the data provided by the image
processor and the proprioceptive vehicular sensors while the
output ud represents the decision signal. Similarly, the executor
takes the form

ze(k + 1) = ge(ze(k), ud(k), y(k))ze(0) = ze,0

û(k) = ιe(zd(k), ud(k), y(k)). (6b)

which receives as input ud and y and elaborates the control
action û ∈ U . In particular, we model (6a) and (6b) as a
network having the following structure (see Section II-A): an
input network with �i = 1, an n-cell LSTM network, and an
output network with �o = 2. That is, (6a) and (6b) are systems
in the form (1) with parameters �d and �e respectively. The
dimensions of �d and �e represent hyperparameters whose
tuning is detailed in Section III-C.

III. EXPERIMENTAL RESULTS

This section describes the details of the proposed VTD
specialized in testing the HDC. The data used in this letter are
protected by an NDA and cannot be made public. However,
they are common to vehicles equipped with stereo cameras
or 3D lidars, range sensors, a GPS receiver, IMUs, and
potentiometers.

A. Dataset Preparation

We collected data from a fleet of test vehicles equipped
with HDC, and driven with HDC active and inactive, on
highways, urban, and peri-urban roads in Europe and North
America to let the VTD perform well in broadly different
driving scenarios. We used a Controller Area Network (CAN)
bus and a data logger to collect and synchronize proprioceptive
and exteroceptive vehicular data. Finally, we improved the data
quality through a Butterworth denoising filter.

Some of the trips on downhill roads were removed from D
and used for the performance test described in Section III-E.
In detail, let us denote with Dp ⊂ D the subset of data used
for the performance assessment. Then, we divided the dataset
D \ Dp into two parts, namely Dd and De, with the former
dedicated to the training and validation of the decision-maker
and the latter to the executor. Indeed, since this latter is trained
only on braking manoeuvres, we eliminated data relative to
phases in which the gas pedal was in action. The dataset Dd

consists of more than 51,900 trips, amounting to about 6,000
drive hours. In this preliminary work, the dataset De includes
only braking manoeuvres for more than 368,800 examples,
amounting to about 4,800 drive hours. Finally, we split Dd

in two disjoint subsets Dd,t and Dd,v, and De into De,t and
De,v, with Dd,t and De,t representing the decision-maker and
executor training sets, and Dd,v and De,v denoting the decision-
maker and executor validation sets. Approximately the 85% of
Dd and De were used to train nets, and the 15% for validating
them.

The VTD inputs are the ego vehicle dynamics, the inter-
vehicle distances, and the road curvature. It is important to
mention that the decision-maker considers the three closest
vehicles, whereas the executor takes into account only the
closest one. Indeed, we found a tight correlation between
the test driver’s braking response and the relative position of
the nearest vehicle. Moreover, we tested that providing the
ANN with more information does not improve the VTD’s
performance. Finally, it is worth mentioning that we feed the
VTD with a look-ahead road curvature instead of the curvature
at the current car’s location.

B. Implementation Technicalities

The VTD was trained in MATLAB with input sequences’
length of tens of samples, describing short-time manoeuvres,
for the executor and tens of thousands samples, collected
along whole trips, for the decision-maker. Both networks
were trained using Adaptive Moment Estimation (ADAM).
For the desktop-computer executions, we used a workstation
with an Intel Gold 6242R CPU and 128 GB RAM, running
MATLAB 2021a. It takes about 1.3 seconds to simulate
10 seconds of the synthetic environment in which the executor
and decision-making LSTM-ANNs were called 107 and 113
times respectively, requiring approximately 0.4s each.

The output of the decision-making LSTM-NN, ud, ranges
from 0 to 1 and activates the braking module. Let T ∈ [0, 1]
be a threshold to discriminate braking manoeuvres. Then, the
output of the decision-maker is pre-processed by the executor
through an ideal Schmitt trigger, i.e., a comparator with hys-
teresis, whose domain has been centred at the threshold T . The
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width of the hysteresis and T are some of the hyperparameters
we tuned during the validation step.

Remark 1: Instead of having a continuous output ud ∈
[0, 1], later quantized with the procedure described above,
one could have designed (6b) with a single binary output. We
observed during preliminary tests that this optional solution
works worse than ours.
The output of the braking module, û, represents the pedal
deflection and is defined in the domain [0, 1].

C. Training

We trained the decision-maker and the executor on the
datasets Dd,t and De,t respectively. Both the nets were trained
with no dropout layers. Therefore, to prevent overfitting, we
applied L2 regularization [18] and we stopped the training
when the loss function Jt was not improved for ne con-
secutive epochs, where ne ∈ N is a design parameter. The
aim of introducing an ne-based stopping criterion was to
enhance the training while reducing the training time. The
network parameters were estimated through Adaptive Moment
Estimation, which performs well in the class of problems
considered in this letter, as documented in [19]. More in
detail, we found the learning rate 5e-3 representing a good
compromise between estimation accuracy and convergence
time. Finally, we normalized all the data to prevent scaling
effects. The decision-maker network has 5 LSTM layers with
200 hidden units/layer while the executor has 7 LSTM layers
with 100 hidden units/layer.

D. Validation

The generalization ability of the trained decision-maker and
executor was assessed by calculating Jv, see (5a), restricted on
Dd,v and De,v. In Figure 4 we documented the distribution of
the (square root of) e(ûi, ui), i.e., the MSE defined in (5b) and
computed on Dd,v and De,v for the decision-maker and the
executor respectively. The mean of e(ûi, ui) for the decision-
maker and the executor are approximately 0.16 and 0.06.
Roughly, the larger variance of the decision-maker error is
due to the large variety of conditions inducing the test drivers
to decide to anticipate or postpone the braking. On the
other hand, once the braking action has started, the executor
replicates well the braking pedal trajectory.

E. Performance Test Campaign

After training and evaluating the decision-maker and the
executor individually, we focused on the performance assess-
ment of the VTD as a whole. Later, we synthetically
characterized the VTD macroscopic behavior through some
quantitative KPIs.

For the performance test described in this section, the
VTD was deployed in a Hardware-In-the-Loop setup where
the VTD’s controls are sent to a virtual car via CAN. In
detail, the test bench includes actual vehicle wiring and the
main ECUs. Moreover, the vehicle and engine dynamics and
the environment are simulated through a dedicated real-time
emulator. As for the environment, we created digital twins
of downhill roads, with possibly varying curvature, by using

Fig. 4. Distribution of Root-MSE (RMSE) of Decision-Making Process
(top) and Braking Execution (bottom) LSTM-NNs on their validation sets.

GNSS data. Vehicles and objects surrounding the ego vehicle
were perceived via a 30◦-field-of-view simulated camera.

We focused only on the braking manoeuvres to test the
HDC functionalities. In detail, we defined Dp by selecting
from D a family of Np ⊂ M examples associated with these
testing conditions. Besides, we tested the VTD in a family
of Ns ⊂ N braking manoeuvres synthetically generated. Let
pi ∈ R be a performance parameter computed for the ith
manoeuvre and define Pp := {pi}i∈Np and Ps := {pi}i∈Ns

as the sets of validation and synthetic parameters. Then, to
compare the human and virtual test drivers, we defined the
following absolute and relative KPI functions

κa(Pp,Ps
) = 1

ns

∑
i∈Ns

pi − 1

np

∑
j∈Np

pj

κr(Pp,Ps
) = np

κa
i

(
Pp,Ps

)
∑

j∈Np
pj

, (7)

where nv and ns are the dimensions of Nv and Ns. As for the
choice of performance parameters, let ni ∈ N and 	Ti > 0
be the number of samples and the sample time of the ith
braking manoeuvre. Moreover, let ui(k), vi(k), ai(k) be the kth
sample of the brake pedal position, the vehicle speed, and the
vehicle acceleration of the ith manoeuvre, with k = 1, . . . , ni.
Then, we defined the mean and minimum acceleration (max-
imum decelerations), amean

i := n−1
i

∑ni
k=1 ai(k) and amin

i :=
infk=1,...,ni ai(k), braking duration, Ti := ni	Ti, maximum
brake pedal position, umax

i := supk=1,...,ni
ui(k), and initial and

ending braking speed, v0
i := vi(1) and vT

i := vi(ni), for each
i = 1, . . . , nv. To exploit (7), we defined the sets Amean

# :=
∪i∈N# amean

i , Amin
# := ∪i∈N#amin

i , T# := ∪i∈N# Ti, Umax
# :=

∪i∈N# umax
i , V0

# := ∪i∈N# v0
i , and VT

# := ∪i∈N# vT
i , for each

# ∈ {p, s}. The values of the KPIs determined on these sets
are reported in Table I. Errors in the mean and maximum
deceleration during braking manoeuvres, κa(Amean

v ,Amean
s )

and κa(Amin
v ,Amin

s ), and mean duration, κa(Tv, Ts), show that
the intensity of braking actions was comparable to the average
behavior observable from the real-world data. Moreover, VTD
was not too aggressive or too cautious, it did not slam on the
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TABLE I
VTD PERFORMANCE IN BRAKING MANOEUVRES

Fig. 5. Comparison between the average human test driver behavior
and the VTD one, involved in the same performance test, regarding the
braking response.

brakes or push the pedal too light or too heavy. This conclusion
is corroborated by the error on the maximum position of
the braking pedal, κr(Umax

v ,Umax
s ), which is lower than 4%.

On the other hand, the small speed errors at the beginning
of braking manoeuvres, κr(V0

v ,V0
s ), suggest that VTD is as

sensitive to speed as human drivers and that it starts braking
in similar conditions. Similarly, small speed errors at the end
of braking manoeuvres, κr(VT

v ,VT
s ), suggest that VTD brakes

as human drivers. In general, the relative errors in Table I are
smaller than 10% and the absolute ones are not significant
from a macroscopic point of view. The ability to replicate the
human test driver brake pedal profile is appreciable in Figure 5
in which we superposed the VTD brake pedal to the average
of all the human test driver brake pedals in the same VTD
test conditions. Therefore, VTD can potentially be used in
automated tests to emulate human braking actions.

IV. CONCLUSION AND FURTHER DEVELOPMENTS

In this letter, we have described a new approach for
automated tests without human drivers. As a first application,
we focused on HDC testing. The obtained results show that
the behavior of the proposed VTD is comparable with humans
in terms of decision and execution of braking manoeuvres. As
a further development, additional modules could be added to
deal with other manoeuvres, aiming at an ultimate VTD able
to cover the whole testing domain.
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