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Abstract: Measurements of the production cross sections of prompt D0, D+, D∗+, D+
s ,

Λ+
c , and Ξ+

c charm hadrons at midrapidity in proton-proton collisions at
√
s = 13 TeV

with the ALICE detector are presented. The D-meson cross sections as a function of
transverse momentum (pT) are provided with improved precision and granularity. The
ratios of pT-differential meson production cross sections based on this publication and
on measurements at different rapidity and collision energy provide a constraint on gluon
parton distribution functions at low values of Bjorken-x (10−5–10−4). The measurements
of Λ+

c (Ξ+
c ) baryon production extend the measured pT intervals down to pT = 0(3) GeV/c.

These measurements are used to determine the charm-quark fragmentation fractions and
the cc production cross section at midrapidity (|y| < 0.5) based on the sum of the cross
sections of the weakly-decaying ground-state charm hadrons D0, D+, D+

s , Λ+
c , Ξ0

c and, for
the first time, Ξ+

c , and of the strongly-decaying J/ψ mesons. The first measurements of
Ξ+

c and Σ0,++
c fragmentation fractions at midrapidity are also reported. A significantly

larger fraction of charm quarks hadronising to baryons is found compared to e+e− and
ep collisions. The cc production cross section at midrapidity is found to be at the upper
bound of state-of-the-art perturbative QCD calculations.
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1 Introduction

Measurements of heavy-flavour (i.e. charm and beauty) hadron production in ultra-rela-
tivistic proton-proton (pp) collisions provide fundamental tests of perturbative quantum
chromodynamics (pQCD) calculations. The transverse momentum (pT) differential pro-
duction cross section of heavy-flavour hadrons is usually calculated in pQCD by the con-
volution of three ingredients employing a factorisation approach [1]. The first ingredient
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corresponds to the parton distribution functions (PDFs), which describe the probability
distributions of the parton momentum fractions in the proton. The second term is the
partonic cross section, which defines the scattering probability calculated as a perturbative
series expansion in the strong coupling constant (αs). The third ingredient corresponds to
the fragmentation function (FF) which parametrises the non-perturbative transition of a
heavy quark into a hadron.

Factorisation can be implemented in pQCD-based calculations in different ways, for
example in terms of the transferred momentum squared Q2 (collinear factorisation) [1] or of
the parton transverse momentum kT [2–6]. Calculations for LHC energies implementing the
former approach, like the general-mass variable-flavour-number scheme (GM-VFNS) [7–12]
and the fixed order plus next-to-leading logarithms (FONLL) approach [13, 14] provide
a next-to-leading order (NLO) accuracy with all-order resummation of next-to-leading
logarithms. Calculations of heavy-flavour hadron production in the kT framework are also
able to go beyond leading-order expansions in αs [5, 6]. The most recent implementation
of kT-factorisation has also employed the variable-flavour-number scheme approach [15].
D-meson production down to low pT is calculable at pT scales far below the charm mass
with transverse-momentum dependent factorisation approach (TMD [16, 17]), and in the
low-x regime with the colour-glass condensate model (CGC [18]).

All of these models describe the production of heavy-flavour mesons within uncertain-
ties, in different kinematic regions and at different energies in pp and pp collisions [19–29].
In this article, the measured pT-differential production cross sections of prompt D0, D+,
D+

s , and D∗+ mesons at midrapidity in pp collisions at
√
s = 13 TeV are compared with

the predictions from these models, which are significantly less precise than the available
experimental measurements. The main source of theoretical uncertainty is related to the
choice of the energy scales for the validity of the perturbative regime (factorisation and
renormalisation scales). However, as explained in ref. [30], these uncertainties may become
subdominant in the calculation of cross section ratios at different rapidities and energies.
For this reason, precise measurements of charm meson-to-meson production ratios origi-
nating from charm-quark hadronisation (i.e. prompt) down to low pT (i.e. pT ≲ 5 GeV/c)
are sensitive to gluon PDFs at low Bjorken-x.

Calculations based on a collinear factorisation approach, and using fragmentation func-
tions tuned on e+e− collision data, do not describe the production of charm baryons at
midrapidity in pp collisions at the LHC [31]. The Λ+

c -baryon production cross section at
low pT and midrapidity (|y| < 0.5) in pp collisions at

√
s = 5.02 TeV [32–35] is under-

estimated by a factor 3–4 by GM-VFNS calculations adopting Λ+
c -baryon fragmentation

functions derived from the fit of OPAL data [36], and by a factor 15 by the POWHEG
predictions [37] matched with PYTHIA 6 [38] to generate the parton shower. The pre-
diction from the PYTHIA 8 Monte Carlo (MC) generator [39] with the standard Monash
tune [40], where the charm-quark fragmentation is constrained with e+e− and ep measure-
ments, underestimates the measurement by a factor 2–10 depending on pT in the region
pT < 12 GeV/c. The baryon production observed in pp collisions at the LHC challenges
the concept of “jet universality”, according to which the parton fragmentation is univer-
sal between collision systems and can be constrained from e+e− results. This implies
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the breakdown of multi-parton interaction (MPI)-based event generators implementing jet
universality [39, 41, 42].

The measured baryon production in pp collision can only be described by model calcu-
lations that account for novel hadronisation mechanisms. The data description in PYTHIA
improves when colour reconnection mechanisms beyond the leading-colour approximation
(CR-BLC) are adopted in PYTHIA simulations [43]. In these cases, the predicted Λ+

c -
baryon production is enhanced by the presence of new topologies, called “junctions”,
which preferentially fragment into baryons. Several other model calculations foresee a
relative increase of charm-baryon production with respect to that of mesons in pp col-
lisions at the LHC. In the statistical hadronisation model with relativistic quark model
(SHM+RQM) [44] the presence of a large set of mostly unobserved excited charm baryons,
which decay strongly and enrich the abundance of ground-state charm baryons, is foreseen.
These excited charm baryons are predicted by the RQM model [45]. Their abundances are
assumed to follow the thermal densities derived from the SHM [46] depending only on their
mass and spin degeneracy. Different assumptions are made in the Catania model [47], where
the charm quark can hadronise either via fragmentation, or by recombining with surround-
ing light quarks already produced from the event underlying the hard scattering. In this
model, the recombination mechanisms enhances the production of baryons at intermediate
pT. In the quark (re)combination model (QCM) [48] the charm quarks produced in the
hard scatterings hadronise by recombining with surrounding equal-velocity light quarks. In
this model, thermal weights regulate the relative abundances of different charm baryons.

Further information can be derived from the measurement of the relative production
rates of different charm hadrons as a function of pT. The measured Λ+

c /D0 ratios at
midrapidity in pp collisions at

√
s = 5.02 TeV and 13 TeV are described by the predictions

provided by these model calculations. The measurements at the two collision energies
are compatible within uncertainty, and they show an enhancement of about a factor 5 at
low pT with respect to e+e− and ep collisions. The Σ0,+,++

c /D0 ratio at midrapidity in
pp collisions at

√
s = 13 TeV [49] is described by the predictions of PYTHIA CR-BLC,

SHM+RQM, and QCM models. This ratio is severely underestimated by the PYTHIA
Monash tune simulations and is larger by around a factor 10 at pT < 6 GeV/c compared
to that observed in e+e− collisions [50]. Given the available precision, the current experi-
mental results are not sufficient to fully distinguish between the pictures described above.
Finally, further measurements of Ξ0,+

c and Ω0
c at midrapidity demonstrate that even the

hadronisation mechanisms discussed above do not provide a complete picture, since sig-
nificant tensions are observed when describing the relative abundance of charm baryons
containing a strange valence quark [51–53]. In this article, the production of Λ+

c and Ξ+
c

baryons is measured down to lower transverse momenta, extending the comparison with
the theoretical predictions in a kinematic region where the models calculations differ from
each other.

The enhancement of the relative abundance of baryons compared to that of mesons at
midrapidity in pp collisions at the LHC has a strong impact on the charm-quark fragmen-
tation fractions f(c → hc). These describe the probability of a charm quark to produce
a hadron of species hc. The measurement of f(c → hc) for a given charm hadron implies
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integrating the pT-differential production cross section and dividing it by the sum of the
pT-integrated production cross sections of all charm hadrons. It is crucial to extend the
measurements of the pT-differential production cross section down to pT = 0 GeV/c, in
order to minimise the uncertainties arising from extrapolations. The most recent mea-
surement from the ALICE collaboration in pp collisions at

√
s = 5.02 TeV [54] shows a

drop by about a factor 1.2–1.4 of the D0-meson fragmentation fraction with respect to
that observed in e+e− collisions at the B-factories and at LEP, as well as in deep-inelastic
scattering measurements in ep collisions at HERA [55]. An increase by about a factor 3.3
is observed for the Λ+

c -baryon fragmentation fraction, while the relative fraction of the Ξ0
c

baryon in pp collisions was measured to be similar to that of the D+
s meson. In this article,

the analogous result in pp collisions at
√
s = 13 TeV is proposed.

The fragmentation fractions also impact the determination of the cc production cross
section. The first measurements of the cc cross sections at

√
s = 2.76 TeV [20] and 7 TeV [22]

at midrapidity (|y| < 0.5) were derived only from D-meson cross section measurements us-
ing the fragmentation fractions from e+e− collisions. They were thus affected by an under-
estimation of the charm-baryon contribution, and they increased by about 40% when ap-
plying updated D-meson fragmentation fractions taking the measured charm-baryon yields
into account [54]. Such precise measurements of the cc cross section are not only important
tests of pQCD calculations, but they also provide a reference to study the charm dynamics
in the quark-gluon plasma (QGP) produced in ultra-relativistic heavy-ion collisions. For
example, the knowledge of the cc production cross section per nucleon-nucleon collision is
a key ingredient to determine the production of charmonia and the influence of recombina-
tion effects in the QGP [56–58]. Finally, precise results of pT-differential production cross
sections of different charm-hadron species are crucial as a reference for measurements of
the nuclear modification factor (RAA) [59].

In this article, the pT-differential production cross sections of prompt D0, D+, D+
s , and

D∗+ mesons at midrapidity in pp collisions at
√
s = 13 TeV are reported. The production

cross sections of prompt D0 and D+
s mesons in this article supersede those published in

refs. [49, 60], and provide an extended pT coverage and a finer granularity in pT than the
previous results. In addition, the first results of the Λ+

c -baryon reconstruction in both
pK−π+ and pK0

S decay channels down to pT = 0 at midrapidity at the LHC, as well
as that of the Ξ+

c baryon down to pT = 3 GeV/c, are presented. These results extend the
already published ones in refs. [49] and [52], respectively. This article then presents the first
measurements of the cc production cross section per unit of rapidity at midrapidity and the
charm-quark fragmentation fractions at midrapidity in pp collisions at

√
s = 13 TeV. Using

similar methods as in ref. [54], these measurements consider the sum of ground-state charm
hadrons D0, D+, D+

s , Λ+
c , Ξ0

c and, for the first time, Ξ+
c , and of the strongly-decaying J/ψ

mesons. Furthermore, the first measurement of the Σ0,+,++
c -baryon fragmentation fraction

is presented. The paper is organised as follows. The ALICE detector and the properties
of the data samples used in these analyses are described in section 2. The details of the
data analysis are provided in section 3 and the estimation of the systematic uncertainties
is described in section 4. The results of the analyses and their comparison with model
calculations are discussed in section 5. Finally, a brief summary is given in section 6.
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2 Experimental apparatus and data sample

The ALICE apparatus and its performance are comprehensively described in refs. [61, 62].
The charm-hadron decays were reconstructed with the central barrel detectors, which cover
the pseudorapidity interval |η| < 0.9 and are embedded in a cylindrical solenoid providing a
magnetic field B = 0.5 T along the beam direction. The trajectories of charged particles are
reconstructed with the Inner Tracking System (ITS) and the Time Projection Chamber
(TPC). The ITS detector is the innermost ALICE subsystem. It is composed of six
cylindrical layers of silicon detectors for precise measurements of track parameters in the
vicinity of the interaction point (primary vertex). The ITS detector provides a precise
determination of the track impact parameter (i.e. the distance of closest approach of the
track to the interaction point). For tracks with pT > 1 GeV/c, a resolution better than
75µm is achieved in the plane orthogonal to the beam direction (transverse plane) [63].
Therefore, this detector is crucial to reconstruct the decay vertex of heavy-flavour hadrons
(secondary vertex) and to distinguish it from the beam interaction point. The TPC provides
track reconstruction with up to 159 three-dimensional space points per track and charged-
particle identification (PID) via the measurement of the specific ionisation energy loss
(dE/dx). The charm-hadron decay products are also identified with the Time-Of-Flight
(TOF) detector, which measures the flight time of the charged particles. For triggering
and event selection, the V0 detector is used. It is composed of two scintillator arrays
located on both sides of the nominal collision point covering the pseudorapidity intervals
−3.7 < η < −1.7 and 2.8 < η < 5.1.

The pp collisions considered in the analyses presented in this article were collected at
a centre-of-mass energy

√
s = 13 TeV in 2016, 2017, and 2018 at the LHC using a mini-

mum bias (MB) trigger, requiring coincident signals in the V0 scintillators on both sides.
Background events coming from possible interactions between protons in the beam and
residual gas inside the beam pipe were rejected offline exploiting the timing information
of the V0 arrays and the correlation between the number of hits and tracks reconstructed
in the two innermost layers of the ITS consisting of silicon pixel detectors (SPD). Fur-
thermore, all events with more than one reconstructed primary vertex were rejected in the
analyses in order to exclude pile-up events within the same bunch crossing [62]. Finally,
only events with a position along the beam direction within ±10 cm from the centre of the
apparatus were considered in this analysis to grant a uniform pseudorapidity acceptance.
The number of analysed MB-triggered events corresponds to an integrated luminosity of
Lint = 31.9 ± 0.5 nb−1 [64].

Monte Carlo samples of pp collisions at the same centre-of-mass energy were used for
efficiency and acceptance corrections as well as to train the machine learning algorithm
to classify the signal and background candidates. This will be discussed in more detail in
section 3. These MC samples were generated by simulating pp collisions with the Monash
tune of the PYTHIA 8.243 event generator [43] requiring for each of them the production of
at least a cc or bb pair. The produced charm hadrons were forced to decay in the channels of
interest for the analyses discussed in this paper. The produced particles were propagated
through the detector using the GEANT3 transport code [65]. In the simulations, the
conditions during the data taking were reproduced.
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Decay channel Charm-hadron BR (%) Daughter decay BRdaughter (%)

D0 → K−π+ 3.95 ± 0.03 — —
D+ → K−π+π+ 9.38 ± 0.16 — —

D+
s → ϕπ+ → K+K−π+ 2.22 ± 0.06 — —

D∗+ → D0π+ 67.7 ± 0.5 D0 → K−π+ 3.95 ± 0.03
Λ+

c → pK−π+ 6.28 ± 0.32 — —

Λ+
c → pK0

S 1.59 ± 0.08 K0
S → π+π− 69.20 ± 0.05

Ξ+
c → Ξ−π+π+ 2.86 ± 1.21 (stat.) ± 0.38 (syst.) [67] Ξ− → Λπ− 99.887 ± 0.035

Λ → pπ− 63.9 ± 0.5

Table 1. Reconstructed decay channels for the measurement of D0-, D+-, D+
s -, D∗+-, Λ+

c -, and
Ξ+

c -hadron signals. The branching ratios (BR) are taken from ref. [66], with the exception of
BR(Ξ+

c → Ξ−π+π+) which is taken from ref. [67].

3 Data analysis

The charm hadrons and their charge conjugates were reconstructed via the decay channels
reported in table 1. The D0, D+, D+

s , and Λ+
c → pK−π+ signals were measured by

combining pairs or triplets of tracks with |η| < 0.8 and pT > 0.3 GeV/c. Only tracks
crossing at least 70 pad rows in the TPC and reconstructed with at least one hit in the
SPD detector and further selected with the track-quality criteria described in ref. [19] were
considered. The D∗+-meson candidates were formed by combining pion tracks selected
with the criteria described in ref. [19] with D0-meson candidates within about 3 standard
deviations from the PDG mass [66]. Pions and kaons were identified by requiring the
dE/dx and time-of-flight signals measured respectively by the TPC and TOF detectors to
be compatible with the expected values within 3 times the detector resolution.

For the measurement of the Λ+
c → pK0

S signal, the reconstruction of the K0
S → π+π−

candidates was performed by pairing opposite-sign tracks, selected as discussed in ref. [33],
into a neutral decay vertex displaced from the primary vertex. An additional primary
proton [68] was considered to reconstruct the Λ+

c -baryon decay.
The tracks used to reconstruct the Λ- and Ξ−-baryon signals from the Ξ+

c -baryon
cascades were selected as described in ref. [52] and references therein. For this analysis,
pion and proton tracks were identified requiring that the measured signals were compatible
with the expected values within 3 and 5 times the detector resolution in the TPC and TOF,
respectively. The Λ-baryon candidates, reconstructed as pairs of pion and proton tracks,
were combined with pion tracks with a transverse momentum larger than 0.15 GeV/c to
form the Ξ−-baryon decay vertex. The masses of the reconstructed Λ and Ξ− particles were
constrained to not deviate more than 1% from their respective PDG masses [66]. Positively
charged pion tracks with at least 3 hits in the ITS detector and a transverse momentum
larger than 0.4 GeV/c were selected and combined with the reconstructed Ξ− baryon to
form the Ξ+

c -baryon candidates.
As in ref. [19], the applied track selections affect the D-meson and Λ+

c -baryon ac-
ceptance in rapidity, which decreases rapidly for |y| > 0.5 at low pT and |y| > 0.8 for
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pT > 5 GeV/c. Therefore, a fiducial acceptance selection was applied on the D-meson and
Λ+

c -baryon rapidity, |y| < yfid(pT). The yfid(pT) factor increases with a polynomial form
from 0.5 to 0.8 in the range 0 < pT < 5 GeV/c and yfid = 0.8 above 5 GeV/c. For the
reconstruction of the Ξ+

c -baryon the acceptance criterion |y| < 0.8 was applied.

3.1 Analyses with charm-hadron secondary vertex reconstruction

The reconstruction of charm-hadron signals in exclusive hadronic channels is characterised
by a substantial combinatorial background arising from the erroneous association of charged
tracks to the charm-hadron decays. Given the typical proper lifetime of a few hundred
micrometres (cτ ≈ 120–300µm [66]) the measurement of D0-, D+-, D+

s -meson, and Ξ+
c -

baryon signals was based on the reconstruction of the decay-vertex topologies displaced
from the primary vertex. The spatial separation between the production and the decay
vertices, allowed the signal-to-background separation to be improved exploiting variables
related to the displaced vertex decay topology.

The topological variables considered in the analyses reported in this article are similar
to those already used in previous works [19, 20, 23, 49, 52]. Some of them are the track
impact parameter in the transverse plane, the distance between the primary and decay
vertices (decay length, L), and the pointing angle of the reconstructed charm-hadron mo-
mentum to the primary vertex (θpointing). As the D∗+ meson decays strongly, its decay
vertex cannot be resolved from the primary one, and so topological selections are only used
on the reconstructed D0 daughter.

The Ξ+
c → Ξ−π+π+ secondary vertex was reconstructed from the decay channels

Ξ− → Λπ− and Λ → pπ− together with their charge conjugates using a Kalman Filter (KF)
vertexing algorithm [69]. The algorithm provides a full description of the decay particle
both at its production and decay vertex. As discussed in ref. [52], the KF software gives
the possibility to set constraints to the mass and the production point of the reconstructed
particles using information about the uncertainties of the daughter particle trajectories.
Setting the mass constraint to the reconstructed decay products of a decay chain helps to
improve the mass and momentum resolution of the reconstructed mother particle, while the
production point constraint can be used to determine whether the particle emerges either
from the primary or from a displaced vertex. A χ2 is calculated for the reconstructed
particle, which quantifies the probability of the hypothesis that the particle truly emerges
from the assigned vertex. In this analysis the mass constraint was applied to the Λ-
and Ξ−-baryon candidates. Furthermore, the topological constraint was applied to the
reconstructed trajectory of the Ξ+

c baryon by fitting it to the primary vertex of the collision.

3.2 Background rejection of D+, D+
s , and Ξ+

c hadrons with Boosted Decision
Trees

To further reduce the background contribution for the reconstruction of the D+
s -, D+-, and

Ξ+
c -hadron signals, machine-learning approaches based on Boosted Decision Trees (BDT)

with the gradient boosting algorithm XGBoost [70, 71] were adopted. The algorithm was
provided with signal examples of D+, D+

s , and Ξ+
c hadrons from simulations based on the

PYTHIA 8 event generator as described in section 2, while the background samples were
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obtained from data using candidates in regions of the invariant mass distribution far from
the signal peak. For the D+ mesons, these regions were defined by requiring at least 4σ
difference from the expected D+-meson mass in data, where σ indicates the width of the
signal in MC simulations. For the D+

s mesons the intervals 1.72 < M(KKπ) < 1.83 GeV/c2

and 2.01 < M(KKπ) < 2.12 GeV/c2 were considered. These intervals were specifically
chosen for the D+

s mesons to exclude contributions from D+ mesons decaying through the
same decay channel. For the training sample of Ξ+

c -baryon background the invariant mass
intervals 2.168 < M(Ξππ) < 2.411 GeV/c2 and 2.525 < M(Ξππ) < 2.768 GeV/c2 were
considered. The regions correspond to a separation of at least 8σ from the signal in data.

Signals decaying either directly to the expected final state or via resonances were
weighted in the training according to their natural abundances [66]. Loose selection criteria
were applied to the D-meson and Ξ+

c -baryon candidates before the training, following
the same procedures as described in refs. [19, 23, 52]. For D+

s -meson candidates, the
reconstructed invariant mass of the K+K− pair was further required to match the world-
average ϕ-meson mass within ±15 MeV/c2. The main information provided to the BDT to
classify signal candidates from background ones relates to the decay-vertex topology and
PID. In addition, the χ2 of the Ξ+

c baryons to the primary vertex, and the distance of
closest approach between the daughters of the Ξ− baryon as well as between the daughters
of the Ξ+

c baryons were considered to discriminate the Ξ+
c -baryon signal. Independent

BDTs were trained in the different pT intervals of all the analyses, and samples with signal
and background similar to those used for the training were employed to test and validate
the trained models. Subsequently, they were applied to the real data sample presented in
section 2, in which the type of candidate is unknown. The output of the BDT is related to
the candidate probability to be a charm hadron or combinatorial background. Selections
on the BDT outputs were optimised to obtain a large statistical significance for the signal
along with a high fraction of prompt charm hadrons.

3.3 D0-meson and Λ+
c -baryon reconstruction down to pT = 0

For tracks with pT ≲ 500 MeV/c, the spatial resolution of the impact parameter mea-
surement is poor (≳ 100µm), weakening the effectiveness of selections based on displaced
decay-vertex topology. Furthermore, such selections at low pT would favour the recon-
struction of hadrons originating from beauty-hadron decays (non-prompt), which are by
construction more displaced than the prompt ones given the larger proper lifetime of beauty
hadrons. For these reasons, the reconstruction of prompt D0 mesons and Λ+

c baryons down
to pT = 0 did not apply any topological selections, and instead was performed by simply
building pairs and triplets of identified decay tracks.

The measurement of the D0-meson signals exploited the reconstruction of its secondary
vertex, as discussed above, only for candidates with pT > 1.5 GeV/c. In the interval
pT < 1.5 GeV/c, D0-meson candidates were reconstructed by pairing opposite-charged
tracks compatible with the kaon and pion hypotheses without selection criteria on the
displaced decay topology. A similar procedure was also used for the prompt D0-meson
measurement in pp collisions at

√
s = 5.02 TeV [19], where the pT cut-off value between

the two techniques was 1 GeV/c. In the present work, the D0-meson signal was measured
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without reconstructing the secondary vertex up to pT = 1.5 GeV/c to reduce the total
uncertainty. In fact, this reconstruction technique grants a higher efficiency. In addition,
the statistical uncertainties of the measured signal at low pT were reduced compared to the
same measurement in pp collisions at

√
s = 5.02 TeV, given that the analysed data sample

is larger by about a factor 1.8.
The reconstruction of the Λ+

c baryons was performed as reported in ref. [49] and refer-
ences therein. Given that cτ(Λ+

c ) ≈ 61µm, which is below the spatial pointing resolution
at the primary vertex for pT < 1 GeV/c, the candidate reconstruction for pT < 1 GeV/c
does not exploit the reconstruction of the Λ+

c -baryon secondary vertex. In this analysis, the
Λ+

c → pK−π+ signal was reconstructed for the first time in the interval 0 < pT < 1 GeV/c
by combining triplets of tracks identified as a charged pion, kaon, or proton using the
Bayesian PID approach based on the “maximum probability criterion” [72]. The Λ+

c → pK0
S

signal measurement in the same pT interval was performed as in ref. [49]. To select
Λ+

c → pK0
S signals, a machine-learning approach based on BDTs with AdaBoost was

adopted [73]. The BDTs were trained to disentangle signal from background candidates ac-
cording to the kinematics of the K0

S decay. Some variables utilised in the training were the
reconstructed cτ and the π+π− invariant mass, the impact parameter to the primary ver-
tex of the K0

S candidate and its decay daughters, and the PID information of the bachelor
track. More details can be found in ref. [33].

3.4 Raw-yield measurement from an invariant mass analysis

The pT-differential charm-hadron raw yield was measured in the range 0 < pT < 50 GeV/c
for D0 and D+ mesons, 1 < pT < 50 GeV/c for D∗+ mesons, 1 < pT < 36 GeV/c for D+

s
mesons, 0 < pT < 1 GeV/c for Λ+

c baryons, and 3 < pT < 4 GeV/c for Ξ+
c baryons. A

binned maximum-likelihood fit of the invariant mass distributions of candidates surviving
the selection criteria mentioned above was performed. The signal peak was parameterised
with a Gaussian function, whose variance was left free for the D mesons and fixed to the
value observed in the simulations for the baryons. For the D0-meson signal extraction, the
background was described with a polynomial of second order for pT < 2 GeV/c and an
exponential function in all other pT intervals. The combinatorial background contribution
to the invariant mass of Kπ pairs reconstructed in pT < 1.5 GeV/c was described with the
track-rotation technique discussed in ref. [19]. Following this method, for each candidate
Kπ pair, 19 background candidates were built by rotating the kaon-track momentum in the
transverse plane from π/10 to 19π/10 radians. The resulting combinatorial background
was finally subtracted before fitting the invariant mass distribution of the reconstructed
Kπ pairs. In all the considered pT intervals, the contribution of D0 candidates in the
invariant mass distribution reconstructed with the wrong decay particle mass assignment
(reflections) was included in the fit. This contribution corresponds to the invariant mass
distributions of the reflected signal in MC simulation, as discussed in ref. [19].

For the D+- and D+
s -meson signal measurement, the background was described with

an exponential function. To grant a better stability in the measurement of the D+
s -

meson signal, an independent Gaussian function was used to fit the peak related to the
D+ → K+K−π− reconstructed signal. The D∗+-meson raw yield was measured consider-
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ing a threshold function multiplied by an exponential for the background (a
√

∆M −mπ ×
eb(∆M−mπ)), where ∆M is the mass-difference M(Kππ) −M(Kπ), mπ is the pion mass,
and a, b are free parameters.

For the Λ+
c measurement in 0 < pT < 1 GeV/c, the combinatorial background in

the invariant mass distributions of pK−π+ triplets and pK0
S pairs was described with a

polynomial of third and second order, respectively. The combinatorial background for the
Ξ+

c → Ξ−π+π+ raw yield measurement was fitted with an exponential.
Figure 1 shows examples of fits to the invariant mass distributions for D-meson candi-

dates in different pT intervals. This is also shown for Λ+
c and Ξ+

c baryons in figure 2, where
the invariant mass distributions after the subtraction of the parametrised background are
shown in the sub-panels together with the Gaussian function describing the signal.

3.5 Cross sections

The pT-differential cross section of prompt charm hadrons was measured as follows:

dσH

dpT

∣∣∣∣∣
|y|<0.5

= 1
2

1
∆pT

×
fprompt ×NH+H

|y|<yfid.

c∆y(Acc × ε)prompt
× 1

BR × 1
Lint

. (3.1)

The term NH+H
|y|<yfid.

refers to the raw yield, the sum of reconstructed particles and antipar-
ticles obtained from the invariant mass fits shown in figures 1 and 2. This quantity was
divided by 2 to obtain the averaged yields between particles and antiparticles, and it was
scaled by the prompt fraction fprompt to correct for the charm-hadron signal originating
from beauty-hadron decays. The raw yield was corrected by the c∆y(Acc × ε)prompt term,
which accounts for the rapidity coverage, the detector acceptance, and the reconstruction
and selection efficiency of the prompt charm hadron signal [19]. The production cross sec-
tion in each pT interval was obtained by further scaling the raw yield by the pT-interval
width (∆pT), the branching ratio of the decay channel chosen to reconstruct the signal
(BR), and the integrated luminosity (Lint).

Figure 3 shows c∆y(Acc × ε) as a function of pT for prompt and non-prompt D0, D+,
D∗+, and D+

s mesons, where the non-prompt D mesons are those produced in beauty-hadron
decays. Given the average larger displacement from the primary vertex of beauty-hadron
decay vertices due to their long lifetime, the selection criteria applied on the decay length
in general enhance the c∆y(Acc × ε) factor of non-prompt D mesons with respect to that
of prompt ones, especially at low pT. The c∆y(Acc × ε) values of non-prompt D0 mesons
for pT > 1.5 GeV/c are higher than those of prompt ones. On the other hand, the values
for prompt and non-prompt D0 mesons are compatible for pT < 1.5 GeV/c, because in this
interval no selection criteria based on the intrinsic displacement of the decay are applied.
This explains the significant drop of the efficiency at pT = 1.5 GeV/c, as shown in the
top-left panel of figure 3. The c∆y(Acc× ε) factor of prompt and non-prompt D∗+ mesons
are compatible above pT = 5 GeV/c, while the c∆y(Acc × ε) factor for prompt D+ and D+

s
mesons is larger than that of non-prompt mesons for pT higher than 5 GeV/c. Conversely,
in the low-pT region, the trend is reversed.
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Figure 1. Invariant mass or mass-difference distributions of D0-meson candidates (top-left), D+-
meson candidates (top-right), D∗+-meson candidates (bottom-left), D+

s -meson candidates (bottom-
right), and charge conjugates in 0 < pT < 0.5 GeV/c, 0 < pT < 1 GeV/c, 1.5 < pT < 2.0 GeV/c,
and 1 < pT < 2 GeV/c, respectively. The blue solid lines show the total fit functions as described
in the text and the red dashed lines represent the background. In the case of D0, the combinatorial
background estimated with the track-rotation technique was subtracted, the red-dashed line is the
residual background, and the green line represents the contribution of the reflections. In the case
of D+

s , the peak at lower invariant mass represents the reconstructed D+ → K+K−π+ signal. The
values of the mean (µ) and the peak width (σ) of the signal peak are reported together with the
signal counts (S). The reported uncertainties are only the statistical uncertainties from the fit.
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Figure 2. Invariant mass distributions of Λ+
c - and Ξ+

c -baryon candidates and charge conjugates at
low transverse momentum in pp collisions at

√
s = 13 TeV. The blue solid lines show the total fit

functions as described in the text and the red dashed lines represent the background. The values of
the mean (µ) and the peak width (σ) of the signal peak are reported together with the signal counts
(S). The bottom panels report the charm-baryon invariant mass distribution after the subtraction
of the background candidates parametrised as detailed in the main text (S − B). The Gaussian
σ are fixed to values from MC simulations. The reported uncertainties are only the statistical
uncertainties from the fit.
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Figure 3. Correction factors c∆y(Acc × ε) for the prompt and non-prompt D0-meson (top-left),
the D+-meson (top-right), the D∗+-meson (bottom-left), and the D+

s -meson (bottom-right) as a
function of pT.

The c∆y(Acc × ε) term for the prompt and non-prompt Λ+
c → pK−π+ signal recon-

struction without selections on topological variables is about 3% in the interval 0 < pT <

1 GeV/c, while that for the Λ+
c → pK0

S in the same pT interval with selections based on the
BDT classification is about 11% for the prompt signal and about 10% for the non-prompt
one. The same term for the prompt and non-prompt Ξ+

c -baryon reconstruction in the
interval 3 < pT < 4 GeV/c is around 0.7%. In the case of the Ξ+

c baryon, the efficiency
was calculated after weighting the simulated pT distributions to match the Ξ0

c-baryon pT-
differential cross section measured in pp collisions at

√
s = 13 TeV following the procedure

described in ref. [52]. The c∆y(Acc × ε) correction factors of all mesons and baryons were
computed taking into account all the possible resonant channels which produce the final
states chosen for the reconstruction, as described in refs. [33, 52, 74].
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The measured raw yield was further corrected by the fraction of prompt reconstructed
hadrons (fprompt). This fraction was calculated similarly to previous measurements (see
e.g. refs. [19, 22]) adopting the beauty-hadron production cross sections from FONLL cal-
culations, the beauty-hadron decay kinematics modelled with PYTHIA 8 [39], and the
efficiencies reported in figure 3 for the non-prompt D mesons. In the beauty-hadron pro-
duction cross section calculations from FONLL, the beauty-quark fragmentation fractions
were taken from LHCb measurements [75] for b → Λ0

b and the averaged results from LEP for
B mesons [76]. A prediction for the non-prompt Ξ+

c -baryon cross section was made by scal-
ing the prediction for the non-prompt Λ+

c -baryon cross section with the ratio of the sums
of the beauty hadron fragmentation fractions times branching ratios,

∑
hb

b → hb → Ξ+
c

and
∑

hb
b → hb → Λ+

c . Using the fragmentation fractions from LHCb measurements [75]
and the BR from PYTHIA 8 [39] simulations the ratio of the beauty-hadron sums can be
approximated as (b → Ξ0,−

b → Ξ+
c )/(b → Λ0

b → Λ+
c ). Furthermore, the b → Ξb fragmen-

tation fraction was assumed to be equal to c → Ξc and the non-prompt Ξ+
c /Λ+

c ratio was
taken to be equal to the prompt ratio. Under these assumptions the scaling factor for
the non-prompt Λ+

c -baryon cross section can be approximated as the prompt cross section
ratio of Λ+

c - and Ξc-baryons, which was taken from ref. [52].
For D0, D+, D∗+, and D+

s mesons, the values of fprompt range between 81% and 96%
depending on the D-meson species and pT interval. The fprompt fractions for Λ+

c baryons
reconstructed in 0 < pT < 1 GeV/c in the pK−π+ and pK0

S decay channels are about 98%
and 97%, respectively. The same quantity for Ξ+

c baryons was found to be 97% in the pT
interval 3 < pT < 4 GeV/c.

4 Systematic uncertainties

The systematic uncertainties of the prompt charm-hadron production cross sections were
estimated taking into account the following sources: (i) the stability of the signal extrac-
tion from the fits to the invariant mass distribution described in section 3; (ii) the track
reconstruction efficiency; (iii) the selection efficiency of charm hadrons; (iv) the PID se-
lection efficiency; (v) the shape of the generated pT distribution for charm hadrons in
MC simulations; (vi) the detector material budget description in MC simulations; (vii)
the estimation of the fraction of prompt hadrons; (viii) the branching ratios of the decay
channels used in the analyses; (ix) the collected luminosity. The values of the estimated
uncertainties in some representative pT intervals are reported in tables 2 and 3 for the
prompt D mesons and charm baryons, respectively. The total uncertainties in the analyses
of each cross section measurement were calculated as the quadratic sum of these contribu-
tions. The uncertainty sources were assumed to be uncorrelated among the charm-hadron
species, with the exception of (ii), (vi), (vii) and (ix). In the following, the strategies used
to estimate the values of each source of uncertainty are briefly described. More details on
the methodologies used to estimate the systematic uncertainties can be found in previous
publications (see refs. [19–23, 49, 51–53]).

The systematic uncertainty of the charm-hadron raw yield extraction was estimated in
each pT interval by repeating the fits several hundred times by varying the fit configurations.
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D0 D+ D∗+ D+
s

pT (GeV/c) 0–0.5 36–50 0–1 36–50 1–1.5 36–50 1–2 24–36

Signal extraction 9% 5% 10% 5% 10% 2% 8% 5%
Tracking efficiency 4% 6% 5.5% 8% 4.5% 6.5% 4% 8%
Selection efficiency negl. 3% 7% 2% 10% 2% 10% 3%
PID efficiency negl. negl. negl. negl. negl. negl. negl. negl.
pT shape in MC 1% negl. 5% negl. 3% negl. 1% negl.
Material budget in MC negl. negl. negl. negl. negl. negl. negl. negl.

Prompt fraction +2.4%
−2.3%

+1.8%
−0.8%

+6.1%
−6.0

+0.9%
−0.8%

+8.6%
−8.6%

+1.2%
−0.8%

+6%
−6%

+2%
−2%

Branching ratio 0.8% 1.7% 1.1% 2.7%
Luminosity 1.6%
Total uncertainty 10% 9% 16% 9% 18% 7% 15% 11%

Table 2. Relative systematic uncertainties of the measured cross section of prompt D0, D+, D∗+,
and D+

s mesons in pp collisions at
√
s = 13 TeV. The values reported in this table are those from

the lowest and highest pT intervals considered in the analyses. Uncertainties found to be negligible
are indicated as such (negl.).

Λ+
c → pK−π+ Λ+

c → pK0
S Ξ+

c

pT (GeV/c) 0–1 0–1 3–4

Signal extraction 12% 11% 9%
Tracking efficiency 5% 5% 6%
Selection efficiency 10% 5% 3%
PID efficiency 5% 1% negl.
pT shape in MC 1% negl. 3%
Material budget in MC negl. 4% 4%

Prompt fraction +0.9%
−1.3%

+1.6%
−2.1%

+2.9%
−3.3%

Branching ratio 5.1% 5.0% 44.4%
Luminosity 1.6%
Total uncertainty 18% 15% 46%

Table 3. Relative systematic uncertainties of the measured cross section of prompt Λ+
c and Ξ+

c
baryons in pp collisions at

√
s = 13 TeV. The systematic uncertainties evaluated for the two Λ+

c -
baryon decay channels are reported separately. Uncertainties found to be negligible are indicated
as such (negl.).
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Such variations included, for example, the change of the lower and the upper limits of the
fit range and of the background fit function. The same approach was considered using
a method based on bin counting after subtracting the background estimated from a fit
of the sidebands to test the description of the line shape of the signal. The uncertainty
was assigned by calculating the RMS of the distribution of the signal yields obtained from
all these variations. The uncertainty for the D-meson measurements ranges from about
2% to 10% depending on the pT interval and the particle species. The uncertainty for
the Ξ+

c baryon is about 9% in 3 < pT < 4 GeV/c. For the Λ+
c -baryon signal in the

interval 0 < pT < 1 GeV/c, additional trials to further test the stability of the background
parametrisation were included, similarly to what was done for the Σ0,++

c -baryon signal
measurement in ref. [49]. The combinatorial background was described with a template
distribution multiplied by a parabola. The template was obtained by recalculating the
invariant mass after rotating a daughter track similarly to what was done for the D0-
meson signal extraction at low pT (see section 3). The uncertainty for the Λ+

c -baryon raw
yield measurement in 0 < pT < 1 GeV/c was estimated to be about 12% and 11% in the
analyses of the pK−π+ and pK0

S channels, respectively.
The systematic uncertainty of the track reconstruction efficiency accounts for possible

discrepancies between data and MC in the TPC-ITS track prolongation efficiency and in
the selection efficiency due to track-quality criteria. The per-track systematic uncertainty
was evaluated by varying the track-quality selection criteria in the TPC detector and by
comparing the prolongation probability of the TPC tracks to the ITS hits in data and MC
simulations. They are subsequently propagated to the charm-hadron candidates via their
decay kinematics evaluated with MC simulations. For the D mesons, this source introduces
an uncertainty that grows with increasing pT from about 4% at low transverse momenta
up to about 7% in the highest pT intervals. For the Λ+

c - and Ξ+
c -baryon reconstruction,

the value of this uncertainty is about 5% and 6%, respectively.
The systematic uncertainty related to the selection efficiency was studied by repeating

the full analyses with varied selection criteria compared to the reference ones, resulting
in a noticeable modification of the efficiencies, raw yield, and background values. The
magnitude for this source of uncertainty was then assigned considering the dispersion and
the shift of the production cross sections with respect to the reference one. The value of
this uncertainty generally decreases with increasing pT. For the D mesons, it ranges from
roughly 10% at low pT to about 2% at high pT. In the case of the D0-meson analysis at
pT < 1.5 GeV/c, where no selections on the displaced decay vertex topologies are applied,
the stability was tested against variations of the single-track pT selection, and no systematic
effect was observed. With a similar procedure, a 10% uncertainty was assigned in the
Λ+

c → pK−π+ analysis. The uncertainties for the Λ+
c → pK0

S and the Ξ+
c -baryon selection

amount to 5% and 3%, respectively.
The systematic uncertainty of the PID selection efficiency for the D-meson species was

estimated by comparing the PID selection efficiencies in the data and in the simulation
for pions and kaons. A pure sample of pions was isolated considering decays of strange
hadrons. To evaluate the systematic uncertainty of the kaon identification using the TPC
information, a pure sample of kaons was isolated applying a strict selection on the TOF
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information, and vice versa. The resulting per-track uncertainty was then propagated to the
D mesons using their decay kinematics. As an additional test, the analyses were repeated
without any PID requirement on the candidate D-meson daughter tracks. The systematic
uncertainty of the PID selection efficiency was found to be negligible in the analysed pT
intervals. A similar strategy was adopted to estimate an uncertainty related to the PID
selections adopted for the Λ+

c → pK0
S candidate reconstruction before the BDT application,

and a 1% uncertainty was assigned in this case. For the Λ+
c → pK−π+ reconstruction, this

uncertainty was estimated as done in refs. [33, 49, 60], namely repeating the cross section
measurement using the threshold probability criterion for the application of the Bayesian
PID approach. The assigned uncertainty in this case is around 5%.

Possible differences between the generated hadron pT distributions from simulation
and the spectra observed in data influence the calculation of the c∆y(Acc × ε) factor and
introduce an additional source of systematic uncertainty. To estimate this effect, the simu-
lated pT distributions were weighted to match the charm-hadron pT spectra from different
model calculations. The c∆y(Acc×ε) correction factor was recomputed using the weighted
spectra and an uncertainty was assigned based on the difference between the charm-hadron
production cross sections obtained with the default and the weighted c∆y(Acc × ε). For
D mesons, this uncertainty was estimated using FONLL as an alternative with respect to
PYTHIA 8 to simulate the D-meson pT distributions. It was found to range between 1%
and 5% for pT < 2 GeV/c depending on the D-meson species, and to be negligible at higher
pT. For the Λ+

c -baryon analyses, the reconstruction efficiency was recalculated by consid-
ering the shape from the PYTHIA 8 Monash tune, which is the default adopted in the MC
simulations, and that of PYTHIA 8 CR-BLC Mode 2. The assigned uncertainty is about
1%, corresponding to the maximum variation observed in the efficiency-times-acceptance
quantity. In a similar way, spectra from Catania, SHM+RQM, QCM, and PYTHIA 8
CR-BLC Mode 0, 2, 3 were considered for recalculating the reconstruction efficiency for
the Ξ+

c -baryon signal and an uncertainty of 3% was assigned.
To provide an unbiased efficiency correction, the real detector geometry must be ac-

curately implemented in the MC simulations. Recent investigations based on the recon-
struction of photons in the material of the ALICE apparatus highlighted a difference of
24% and 7% in the current MC simulations for the material budget description of the
silicon pixels in the ITS and the thermal shield in the TPC inner containment vessel [77].
Such discrepancies may introduce biases in the description of multiple scattering and ab-
sorption probability in the material. This may affect in particular the heaviest particles
(i.e. protons), for which such effects are expected to be more significant. The c∆y(Acc× ε)
term was recomputed in dedicated MC productions covering the material budget variations
mentioned above. A systematic uncertainty was assigned according to the difference to the
c∆y(Acc × ε) correction factor calculated with the default MC simulations used to correct
the data. A value of 4% corresponding to the maximum observed variation was assigned to
the measurement of the Λ+

c → pK0
S and Ξ+

c signals. No significant effects were observed for
the prompt Λ+

c → pK−π+ and D0-meson signal reconstruction, given the looser selections
employed in the reconstruction, as well as in the other D-meson analyses. Therefore, no
systematic uncertainty was assigned in these cases.
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The systematic uncertainty related to the correction for the fraction of charm hadrons
originating from beauty-hadron decays accounts for the uncertainties accompanying the
several ingredients adopted in the calculation of fprompt, as described in section 3. The
uncertainties for the D mesons were estimated by varying the FONLL parameters, namely
the b-quark mass, the renormalisation (µR), and factorisation scales (µF), as discussed in
ref. [19]. The assigned values range from 1% to 9% depending on the pT interval and the
D-meson species. Similarly, those assigned to the Λ+

c -baryon analyses range from 1% to
2%. For the estimation of the fraction of prompt Ξ+

c baryons, the uncertainties of the non-
prompt Λ+

c -baryon cross section were taken into account. In addition, in order to account
for possible differences between the Ξ0

c/Λ+
c and Ξ−

b /Λ0
b ratios, the latter cross section ratio

was scaled up by a conservative factor of 2. The lower uncertainty of the ratio was obtained
by scaling it down by a factor of 0.05 to capture the Ξ−

b /Λ0
b value measured at forward

rapidity by the LHCb collaboration [78]. The upper and lower limits of the uncertainty
band of fprompt were taken as the quadratic sum of the two described contributions. The
systematic uncertainty assigned to the Ξ+

c -baryon measurement is around 2%.

5 Results

5.1 Prompt D-meson pT-differential cross sections

The pT-differential production cross sections of prompt D0, D+, D∗+, and D+
s mesons at

midrapidity (|y| < 0.5) in pp collisions at
√
s = 13 TeV are shown in figure 4. Statistical

and systematic uncertainties are depicted as vertical lines and empty boxes, respectively.
The pT-differential production cross sections of prompt D0 and D+

s mesons are compatible
with previously published results [49, 60], providing an extended pT coverage and a finer
pT binning.

The measured prompt D-meson pT-differential cross sections are compared in figure 5
with results from pQCD calculations performed with different schemes: FONLL [13, 14]
(not available for the D+

s mesons), GM-VFNS framework [7, 8], and a calculation based on
the kT-factorisation approach [15]. The theoretical uncertainties of the predictions based
on these calculations are depicted as boxes.

In the case of FONLL, the theoretical uncertainty includes the variation of the fac-
torisation and renormalisation scales, the variation of the charm-quark mass value, and
the uncertainties on the PDFs employed on the calculations from the reference case
(CTEQ6.6 [79]), as discussed in refs. [14, 30]. The D-meson fragmentation fractions,
f(c → D) adopted in the FONLL calculations were taken from ref. [76].

The configuration of the GM-VFNS calculations was the same as the one employed
in ref. [23]. The CTEQ6.6 PDFs [79] are used as default. The factorisation and renor-
malisation scales µF and µR used for the central values correspond to those adopted in
ref. [19]. The calculations based on GM-VFNS were performed in the same pT intervals as
the measurements, except for the first interval of the D0- and D+-meson results that start
from 0.5 GeV/c. According to the authors, calculations down to pT = 0 at such values of√
s were compromised by numerical instabilities.
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Figure 4. pT-differential production cross sections of prompt D0, D+, D∗+, and D+
s mesons at

midrapidity (|y| < 0.5) in pp collisions at
√
s = 13 TeV. The vertical bars and boxes report the

statistical and systematic uncertainties, respectively. The total systematic uncertainties reported
in the plots do not include the contributions of the luminosity and the branching ratio, which are
reported separately. The measured prompt D∗+-meson production cross section was scaled by a
factor of 1/5 for better visibility reasons.

A variable-flavour-number scheme was adopted in the case of QCD calculations within
the kT-factorisation framework. The kT-factorisation calculations overcame the factorisa-
tion scheme employed in the predictions reported in refs. [22, 23] for the estimation of the
unintegrated PDFs and the final production cross section. As discussed in ref. [15], the
variable-flavour-number scheme was demonstrated to be more efficient, resumming to all
orders some large logarithms ln(p2

T/m
2
Q) thanks to the heavy-quark distribution function.

The authors also demonstrated the importance of excitation quantum processes to correctly
describe the production of charm quarks. The theoretical uncertainties were estimated by
varying the µF scale.

In analogy to what was observed at
√
s = 5.02 TeV [19, 23] and

√
s = 7 TeV [22], the

pQCD calculations implementing the factorisation approach describe within uncertainties
the measured D-meson production cross sections in pp collisions at LHC energies. In the
case of FONLL calculations, the data systematically lie on the upper edge of the theoretical
uncertainty up to pT = 36 GeV/c. In the interval 36 < pT < 50 GeV/c, the data are in
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Figure 5. pT-differential production cross sections for prompt D mesons in comparison with pQCD
calculations: FONLL [13, 14], GM-VFNS [7, 8], and kT-factorisation [15]. The uncertainty on the
predictions is depicted as coloured boxes. The ratios of the data to the theoretical predictions are
shown in the lower part of each panel. The statistical (systematic) uncertainties are depicted as
vertical bars (boxes).
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Figure 6. pT-differential production cross sections of prompt Λ+
c , Ξ0

c , Ξ+
c , and Σ0,++

c baryons
at midrapidity (|y| < 0.5) in pp collisions at

√
s = 13 TeV [49, 52]. The statistical (systematic)

uncertainties are shown as vertical bars (boxes). The shaded boxes report the BR uncertainty.

agreement with the upper edge of the calculations within about 2σ. The central values
of the calculation in the GM-VFNS framework slightly underestimate (overestimate) the
data in the low-(high-)pT region. The kT-factorisation calculation is in good agreement
with the data in the low-pT and intermediate-pT region. However, the ratio between the
measurement and the calculation is not flat as a function of pT, and the model prediction
tends to overestimate the data at high pT.

5.2 Prompt charm-baryon measurements down to low pT

A compilation of the pT-differential production cross sections of prompt charm baryons
measured at midrapidity (|y| < 0.5) in pp collisions at

√
s = 13 TeV is shown in figure 6.

The pT-differential cross section of prompt Λ+
c baryons for pT > 1 GeV/c and that of Σ0,++

c
baryons are those published in ref. [49].

The new measurement of the prompt Λ+
c -baryon production cross section in the interval

0 < pT < 1 GeV/c was obtained by averaging the Λ+
c -baryon cross sections measured via

both the Λ+
c → pK−π+ and Λ+

c → pK0
S decay channels, which are compatible within about

2σ. The weights adopted in the average were calculated using the relative uncertainties of
the sources assumed as uncorrelated between the two decay channels, and accounting for
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the partial correlation between their branching ratios. The strategy was the same as the
one followed in ref. [49].

The production cross section of the prompt Ξ+
c baryons in the interval 3 < pT <

4 GeV/c is the first measurement of the prompt Ξ+
c -baryon cross section down to pT =

3 GeV/c, and it extends the Ξ+
c -baryon results already published in ref. [52]. Within the

current uncertainties, especially those related to the branching ratio of the Ξ+
c baryons, the

pT-differential cross sections of the Ξ+
c and Ξ0

c baryons do not show any significant charge
dependence in the common range of the measurements.

5.3 Charm-hadron cross section ratios

5.3.1 Meson-to-meson ratios

The ratios of the pT-differential cross sections of prompt D+, D∗+, and D+
s mesons

to prompt D0 mesons as well as prompt D+
s to prompt D+ meson in pp collisions at√

s = 13 TeV are reported in figure 7. In the evaluation of the systematic uncertainties,
the contributions of the yield extraction and selection efficiency were considered as un-
correlated, while those of the prompt-fraction correction, the tracking efficiency and the
luminosity were treated as fully correlated among the different D-meson species.

The results in pp collisions at
√
s = 13 TeV are compared with the ones obtained at√

s = 5.02 TeV [19, 23] and
√
s = 7 TeV [22]. A hint of increase with pT is visible for the

D+
s /D0, D+

s /D+, and D+
s /(D0 + D+) ratios in the interval pT < 8 GeV/c. In the other

cases, the pT-differential cross section ratios do not show any significant dependence on
the pT of the D mesons considering the uncertainties. No appreciable dependence on the
collision energy is observed within the current experimental uncertainties. This suggests
common fragmentation functions of charm quarks to pseudoscalar and vector mesons and
to mesons with and without strange quark content at different LHC energies.

5.3.2 Baryon-to-meson ratios

The ratio of the pT-differential cross sections of the prompt Λ+
c baryons to D0 mesons

at midrapidity (|y| < 0.5) in pp collisions at
√
s = 13 TeV is shown in the left panels

of figure 8. The measurement at pT > 1 GeV/c was performed with the prompt Λ+
c -

baryon cross section published in ref. [49], which was extended down to pT = 0 with the
measurement in 0 < pT < 1 GeV/c from this paper. The ratio was then obtained by using
the prompt D0-meson cross section reported in section 5.1 as denominator. In the ratio, the
systematic uncertainties related to the tracking efficiency, the prompt fraction correction,
and the luminosity were propagated as correlated, while those from other sources were
treated as fully uncorrelated.

The results were compared with several model calculations, namely different tunes
of PYTHIA 8, the Catania and QCM models implementing quark recombination, and
the SHM+RQM model based on statistical hadronisation with additional excited charm-
baryon states. The uncertainty band assigned to the predictions from Catania model
is related to the variations on the width of the Wigner function used to calculate the
probability of baryon formation. The uncertainty band assigned to the predictions from
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Figure 7. Ratios of production cross sections as a function of pT of prompt D+/D0, D∗+/D0,
D+

s /D0, D+
s /D+, and D+

s /(D0 + D+) mesons in pp collisions at
√
s = 5.02 TeV [19, 23],

√
s =

7 TeV [22], and
√
s = 13 TeV. Vertical bars (boxes) report the statistical (systematic) uncertainties.
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Figure 8. Top left: ratio between the pT-differential cross sections at midrapidity (|y| < 0.5) of
prompt Λ+

c baryons and D0 mesons in pp collisions at
√
s = 5.02 TeV [32, 33, 35], 7 TeV [74] and

13 TeV [49]. The measurement of Λ+
c /D0 ratio in pp collisions at

√
s = 13 TeV for pT > 1 GeV/c uses

the Λ+
c -baryon cross section published in ref. [49]. Bottom left: ratio between the pT-differential

cross sections at midrapidity (|y| < 0.5) of prompt Λ+
c baryons and D0 mesons in pp collisions at√

s = 13 TeV compared with the predictions from PYTHIA Monash tune [40], PYTHIA CR-BLC
Mode 0, 2 and 3 [43], SHM+RQM [44], Catania [47], QCM [48], and POWLANG [80] models in pp
collisions at

√
s = 13 TeV. Top right: pT-differential Ξ+

c /D0 ratio in pp collisions at
√
s = 13 TeV

and Ξ0
c/D0 ratio in pp collisions at

√
s = 5.02 TeV [51] and

√
s = 13 TeV [52]. The Ξ+

c /D0 ratio
in pp collisions at

√
s = 13 TeV for pT > 4 GeV/c uses the Ξ+

c published in ref. [52]. Statistical
(systematic) uncertainties are reported as vertical bars (open boxes). The shaded boxes show the BR
uncertainty. Bottom right: pT-differential Ξ0

c/D0 and Ξ+
c /D0 ratio in pp collisions at

√
s = 13 TeV

compared with the predictions from the models reported above.

– 24 –



J
H
E
P
1
2
(
2
0
2
3
)
0
8
6

the SHM+RQM model accounts for the uncertainty on the branching ratios of resonance
decays to ground-state charm hadrons. As discussed in ref. [49], the measured baryon-
to-meson ratio is underestimated in the interval pT < 5 GeV/c by a factor 4–5 by the
prediction from PYTHIA 8 with the Monash tune, which is not able to describe the pT
dependence of the measurement. On the other hand, the predictions from the PYTHIA 8
CR-BLC Mode 0, 2, 3, SHM+RQM, and Catania models describe the measurement within
uncertainties in the full range (pT > 0), but the current precision and granularity of the
measurement does not allow one model to be favoured over the others. The prediction
from the QCM model is compatible with the measured Λ+

c /D0 ratio within 2σ, tending to
overestimate it in the interval 3 < pT < 8 GeV/c.

In the bottom-left panel of figure 8, the prompt Λ+
c /D0 baryon-to-meson ratios in pp

collisions at
√
s = 13 TeV are compared also with the predictions from the POWLANG

model [80]. In these calculations, the formation of a small, deconfined, and expanding
fireball even in pp collisions is assumed, where the same in-medium hadronization mecha-
nism developed for heavy-ion collisions is employed. In this model, the formation of charm
baryons is promoted by the recombination of charm quarks with light diquark excitations
in the hot medium. The first predictions from this model were provided in pp collisions
at

√
s = 5.02 TeV for the prompt Λ+

c /D0 ratio at midrapidity in ref. [80], employing trans-
port coefficients calculated by weak-coupling (Hard-Thermal-Loop, HTL) and the most
recent lattice-QCD calculations [81]. The model predictions were found to qualitatively
describe the measurement, tending to overestimate the magnitude of the ratio in the in-
terval 3 < pT < 8 GeV/c. In the bottom-left panel of figure 8, the same comparison for the
prompt Λ+

c /D0 ratio in pp collisions at
√
s = 13 TeV, extended down to pT = 0, is shown.

In particular, in the interval 0 < pT < 1 GeV/c the prediction tends to underestimate
the measurement. Overall, the model does not describe the pT dependence of the prompt
Λ+

c /D0 ratio in pp collisions at
√
s = 13 TeV.

The Λ+
c /D0 ratio in pp collisions at

√
s = 13 TeV is also compared to the same results

obtained in pp collisions at
√
s = 5.02 TeV [32, 33, 35] and

√
s = 7 TeV [74]. Within

the current uncertainties, no significant energy dependence is observed in pp collisions at
midrapidity at the LHC.

In the top-right panel of figure 8, the pT-differential ratio of prompt Ξ+
c /D0 at midra-

pidity in pp collisions at
√
s = 13 TeV is reported. This result was obtained from the

Ξ+
c -baryon measurement in pT > 4 GeV/c published in ref. [52] and it was extended with

the Ξ+
c -baryon measurement in 3 < pT < 4 GeV/c reported in this paper. The same strat-

egy as for the Λ+
c /D0 measurement was used for the error propagation. The results are

also compared with the Ξ0
c/D0 ratio at midrapidity in pp collisions at

√
s = 5.02 TeV [51]

and
√
s = 13 TeV. The Ξ+

c /D0 and Ξ0
c/D0 ratios in pp collisions at

√
s = 13 TeV are found

to be compatible within uncertainties (top-right panel of figure 8). Also in this case no
significant energy dependence is observed for the pT-differential baryon-to-meson ratio.

As visible in the bottom-right panel of figure 8, only the Catania and POWLANG
models are compatible with the measured Ξ+

c /D0 ratio within about 1σ. The other model
predictions are compatible with the measurement within about 2σ, even if they system-
atically underestimate the Ξ+

c /D0 ratio for all pT. None of these models is significantly
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disfavoured by the measurement. Given the better precision of the measured Ξ0
c/D0 ra-

tio, only the predictions from Catania, POWLANG and QCM coalescence models are in
agreement within at most 3σ with the measured Ξ0

c/D0 ratio. On the other hand, a larger
tension with SHM+RQM prediction and PYTHIA predictions is observed in all the pT
intervals. As discussed in ref. [53], only coalescence models including contributions from
strong decays of additional excited charm baryons can describe the measured productions
of strange-charm baryons. This comparison suggests that the coalescence models provide
the best description of the data. Meanwhile, the tension between the measured Ξ0

c/D0

ratio and the SHM+RQM suggests that additional excited charm baryons predicted by the
RQM are not enough to account for the Ξ0

c- and Ξ+
c -baryon abundance, despite the good

description of Λ+
c /D0 ratio.

5.3.3 Ratios of charm-hadron cross sections at different collision energies

To further investigate the dependence of the D-meson production on the pp collision centre-
of-mass energy, the ratio of the pT-differential D-meson cross sections at

√
s = 13 TeV to

the ones at
√
s = 5.02 TeV [19, 23] was computed for the different D-meson species. The

results are shown in the left panel of figure 9. The systematic uncertainties were propagated
as fully uncorrelated between the results at the two energies, with the exception of those
related to the prompt-fraction correction, and the branching ratio which were propagated
as correlated. The latter uncertainties cancel out in the ratios. The ratios for the different
D-meson species are compatible within the uncertainties and show a common increase with
increasing pT. This effect is similar to that seen for the D-meson production cross sections
ratios between

√
s = 7 TeV and

√
s = 5.02 TeV [19]. Furthermore, as discussed in ref. [19],

these results are in agreement with pQCD calculations, which benefit from the cancellation
of a portion of the uncertainties in the ratio. This cancellation enables a precise description
of the observed trend in the data.

An analogous study was performed in the baryon sector by measuring the ratios of
the Λ+

c -, Ξ0
c-, and Ξ+

c -baryon pT-differential cross sections at
√
s = 13 TeV to the ones at√

s = 5.02 TeV [32, 33, 35, 51]. For the Ξ+
c baryon, the ratio was computed with respect

to the measurement of the Ξ0
c baryon, since due to isospin symmetry the two baryons are

expected to be produced with equal yields. This was supported by the fact that their
pT-differential cross sections were found to be fully compatible in the measured pT range
at

√
s = 13 TeV [52]. The ratios for the baryon sector are reported in the right panel of

figure 9, and they share a similar increasing trend as a function of pT. This result suggests
a compatible pT-spectrum hardening between mesons and baryons from

√
s = 5.02 TeV

to
√
s = 13 TeV.

5.3.4 Ratios of D0-meson cross section at different rapidities and collision
energies

The rapidity dependence of the D-meson production in pp collisions at
√
s = 13 TeV

was studied by computing the ratio between the presented measurements at midrapidity
and the results from the LHCb collaboration at forward rapidity at the same collision
energy [27]. Figure 10 shows the ratios between the D-meson production cross sections
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Figure 9. Left: ratios between prompt D0, D+, D∗+, and D+
s mesons production cross sections

in pp collisions at
√
s = 13 TeV and those in pp collisions at

√
s = 5.02 TeV [19, 23] as a function

of pT. Right: ratios between the prompt Λ+
c -, Ξ0

c-, and Ξ+
c -baryon production cross sections in pp

collisions at
√
s = 13 TeV and those in pp collisions at

√
s = 5.02 TeV [32, 33, 35, 51] as a function

of pT. Vertical bars (boxes) report the statistical (systematic) uncertainties.

measured by ALICE at midrapidity and by LHCb in three intervals at forward rapidity
(top-left: 2 < y < 2.5, top-right: 3 < y < 3.5, bottom-left: 4 < y < 4.5) in pp collisions at√
s = 13 TeV. The uncertainties of the measurement involved in the ratios were propagated

as fully uncorrelated. Within current uncertainties, a common trend and magnitude are
observed among the different D-meson species in all three rapidity intervals. The significant
increase at high pT of such ratios when going to more forward regions suggests softer pT-
spectra at forward rapidity. Such behaviour is reproduced by FONLL calculations, as
discussed in refs. [19, 22].

As discussed in ref. [30], the uncertainty on the PDFs in FONLL calculation can be
severely constrained at small values of Bjorken-x (10−4–10−5) [30] by performing precise
measurements of ratios at different centre-of-mass energies of D-meson production cross sec-
tions in different rapidity intervals. The computation of such ratios between measurements
at different energies and rapidity intervals was performed considering the pT-differential
cross section of the prompt D0 mesons measured at midrapidity (|y| < 0.5) and those
measured at forward rapidity by the LHCb collaboration [27, 28]. The choice of using the
prompt D0 mesons for this study is motivated by the observation that the pT dependence of
the cross sections of the different D-meson species are compatible among each other (as can
be seen in figure 10) and that the measurements of prompt D0 mesons are the most precise
down to pT = 0. The ratios are shown in figure 11 and compared with FONLL predictions.
In the top row, the pT-differential ratios between the prompt D0-meson production cross
section at midrapidity and that at forward rapidity (left: 2 < y < 2.5, middle: 3 < y < 3.5,
right: 4 < y < 4.5) measured by the LHCb collaboration are shown in pp collisions at√
s = 5.02 TeV and 13 TeV. The results at the two energies are fully compatible within

uncertainties when the forward rapidity interval 2 < y < 2.5 is considered. However, when
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Figure 10. Ratios of D-meson production cross sections per unit of rapidity at midrapidity (|y| <
0.5) to those measured by LHCb [27] in three rapidity intervals: 2 < y < 2.5 (top-left panel),
3 < y < 3.5 (top-right panel), and 4 < y < 4.5 (bottom-left panel), as a function of pT. Statistical
(systematic) uncertainties are reported as vertical bars (boxes).

moving to more forward rapidities the ratio in pp collisions at
√
s = 5.02 TeV gets system-

atically higher than the one at
√
s = 13 TeV, with a hint of a harder pT shape for the ratio

at lower energy. This behaviour reflects the different Bjorken-x values, which depend on√
s for the same hadron rapidity and pT, that are probed by measuring a charm hadron

in several rapidity intervals at different centre-of-mass energies. Such values at low pT go
from x ∼ 10−4 at midrapidity to x ∼ 10−6 at y = 4.5.

The results obtained at
√
s = 13 TeV can be further divided by those at

√
s = 5.02 TeV

for each rapidity interval, providing the “double ratios” that are useful to constrain the
PDF uncertainties, as discussed in ref. [30]. The resulting double ratios

ρ =
(
σ13 TeV

mid-y

/
σ13 TeV

forward-y

)/ (
σ5.02 TeV

mid-y

/
σ5.02 TeV

forward-y

)
, (5.1)
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Figure 11. Ratio between pT-differential cross sections of prompt D0 mesons at midrapidity
(|y| < 0.5) in pp collisions at

√
s = 5.02 TeV [19] and 13 TeV and those at forward rapidity in three

rapidity intervals (left: 2 < y < 2.5, middle: 3 < y < 3.5, right: 4 < y < 4.5) measured by the
LHCb collaboration [27]. The double ratios ρ, defined in eq. (5.1), are shown in the middle and
bottom rows together with FONLL calculations employing the CTEQ6.6 [79] (middle row) and
NNPDF30 [82] (bottom row) PDF sets. The statistical (systematic) uncertainties are shown as
vertical bars (boxes).

where the symbol σ indicates the pT-differential production cross section of prompt D0

mesons, are shown in the middle and bottom rows of figure 11. Both the statistical
and systematic uncertainties associated to the measurements were propagated as uncorre-
lated. The double ratios are compared with FONLL calculations performed employing the
CTEQ6.6 [79] and NNPDF30 [82] PDF sets respectively. The CTEQ6.6 PDF set is the
same used for the FONLL calculations shown in figure 5, as well as in comparison with
the measured ratio of the prompt D0-meson production cross section at midrapidity with
that at forward rapidity in pp collisions at

√
s = 5.02 TeV and

√
s = 7 TeV [19, 83]. The
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NNPDF30 PDF set is the one considered in ref. [30]. It was obtained with a more robust
and efficient fitting code to include also LHC measurements, as discussed in ref. [82].

The different sources of uncertainty in the FONLL calculations are shown separately
as coloured bands. They correspond to: (i) the value assumed for the charm-quark mass,
by default mc = 1.5 GeV/c2 and varied to 1.3 and 1.7 GeV/c2; (ii) the values assumed for
the factorisation and renormalisation scales, as discussed in ref. [84]; (iii) the uncertainty
on the PDFs. The calculation of the theoretical uncertainties related to the charm-quark
mass and scale variations was performed by computing the double-ratio considering the
same variation for all the four cross sections involved, and the uncertainty band of each
source corresponds to the envelope of the calculated double ratios. The bands associated
to the PDF uncertainty were provided by the authors of ref. [30], employing the recipes
prescribed for the CTEQ6.6 and NNPDF30 PDF sets in ref. [79] and ref. [82] respectively.
The theoretical predictions reproduce both the magnitude and the pT-dependence of the
measured double ratios computed in all the three forward rapidity ranges. The uncertainties
of the FONLL calculations employing the CTEQ6.6 PDF sets (middle row in figure 11) are
significantly lower than the experimental uncertainties for pT > 2 GeV/c, while at lower
pT their magnitude is of the same order. In this case, the uncertainties are dominated by
the variations of the charm-quark mass and the µF,R scale values. The uncertainties of the
PDFs become dominant for pT < 2 GeV/c when employing the NNPDF30 PDF sets in the
FONLL calculations (bottom row in figure 11), as discussed in ref. [30]. In this pT range,
the measured double ratios are within the PDF uncertainty band of the calculations and
the measured uncertainties are about a factor 2–3 smaller than the PDF ones.

The comparisons of ρ between data and FONLL indicate that the measured double
ratios of prompt D0 mesons shown in figure 11 are precise enough in the range pT < 2 GeV/c
to put quantitative constraints on the gluon PDFs employed in the NNPDF30 set. For
this PDF set, the PDF uncertainties become equivalent to the scale ones at high pT.
This happens at about pT = 2 GeV/c for the double ratios considering the forward-y
range 2 < y < 2.5. This threshold increases up to pT = 6 GeV/c going to more forward
rapidities, where the PDF uncertainty remains dominant in a wider pT interval. At high
pT, the overall uncertainties become negligible compared to the experimental ones and the
calculations reproduce the decreasing trend of the measurement, which becomes steeper
going to 4 < y < 4.5. As discussed in ref. [30], (double-)ratios at such forward rapidity and
at high pT (pT ≳ 20 GeV/c) would probe gluon densities in the range of Bjorken-x ∼ 0.2,
which has not been well constrained by the experiments so far. However, given the lack
of measurements at forward rapidity for pT ≳ 15 GeV/c, this regime cannot be tested
experimentally with the current measurements.

5.4 Charm-quark production in pp collisions at
√

s = 13 TeV

5.4.1 Charm-hadron pT-integrated cross sections and extrapolation down to
pT = 0

For the measurement of the charm-quark fragmentation fractions and the cc production
cross section per unit of rapidity at midrapidity in pp collisions at

√
s = 13 TeV (sec-

tions 5.4.3 and 5.4.4), the total production cross section of each hadron species must be
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considered. In the case of D0 and D+ mesons and Λ+
c baryons, for which the pT-differential

cross sections were measured down to pT = 0, the total cross section was calculated by
integrating the pT-differential results over the pT interval of the measurement, considering
that the contribution to the cross section in the unmeasured interval (pT > 24 GeV/c for
the Λ+

c baryon, pT > 36 GeV/c for the D+
s meson, and pT > 50 GeV/c for the D0 meson)

is negligible. All the systematic uncertainties were propagated assuming them as corre-
lated among the pT intervals, with the exception of those related to the signal extraction,
which were assumed to be uncorrelated. For the other charm-hadron species, for which the
analysis down to pT = 0 was not possible, the measured pT-differential cross sections were
extrapolated as described below.

The measurement of the D∗+-meson cross section at midrapidity (|y| < 0.5) was in-
tegrated over the measured momentum interval (pT > 1 GeV/c) to obtain σvisible and was
then extrapolated down to pT = 0 GeV/c with the strategy described in ref. [19]. The pT-
integrated cross section in the full pT range, σfull, was measured by scaling σvisible by the
extrapolation factor CFONLL ≡ σFONLL

full
/
σFONLL

visible calculated from the FONLL predictions
for the D∗+ meson at midrapidity. The systematic uncertainties of the extrapolation factor
accounted for the uncertainties of the PDF, the variation of the charm-quark mass, and
the values of the renormalisation and factorisation scales for the FONLL calculations.

The extrapolation of the D+
s -meson cross section was performed as described in refs. [19,

23]. Due to the lack of FONLL predictions for the D+
s -meson production, the extrapolation

factor was calculated using the pT-differential cross section of charm quarks provided by
FONLL calculations, the fragmentation fractions f(c → D+

s ) and f(c → D∗+
s ) from ALEPH

measurements [85], and the charm-quark fragmentation functions from ref. [86].
The extrapolation of the Σ0,+,++

c -baryon cross section was performed by computing a
scaling factor based on the prediction from PYTHIA CR-BLC Mode 0, which among the
CR-BLC modes was observed to better describe both the magnitude and the pT dependence
of the measured cross section. The other modes were used to estimate the extrapolation
systematic uncertainty, together with the SHM-RQM, QCM, and the Catania models,
which provided predictions only for the Σ0,+,++

c /D0 ratio. In this case, the model predic-
tions were used to fit the measured ratio from ref. [49], leaving only the normalisation as
a free parameter. The fit function was scaled by the measured D0-meson cross section in
the range 0 < pT < 2 GeV/c, where no Σ0,+,++

c measurement is currently available. The
extrapolation systematic uncertainty was calculated as the envelope of the values of the
pT-integrated cross sections obtained with all the considered variations. To a minimum
and maximum Σ0,+,++

c -baryon cross section extrapolated from these ratios, the measured
D0-meson cross section in 0 < pT < 2 GeV/c was shifted up and down by one standard
deviation, defined by the quadrature sum of the statistical and systematic uncertainties.

The extrapolation of the Ξ+
c -baryon cross section was performed following the same

strategy as for the Σ0,+,++
c baryon. The Catania model was used as the central value

prediction as it was observed to best describe the pT-dependence and magnitude of the
measured cross section. A Tsallis fit to the measurement and predictions from the PYTHIA
CR-BLC Modes 0, 2 and 3, the SHM+RQM model, and the QCM model were used for the
estimation of the systematic uncertainty.
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dσ/dy||y|<0.5 (µb), pT > 0

D0 749 ± 27 (stat.) +48
−50 (syst.) ± 12 (lumi.) ± 6 (BR)

D+ 375 ± 32 (stat.) +35
−35 (syst.) ± 6 (lumi.) ± 6 (BR)

D+
s 120 ± 11 (stat.) +12

−13 (syst.) +25
−10 (extrap.) ± 2 (lumi.) ± 3 (BR)

Λ+
c 329 ± 15 (stat.) +28

−29 (syst.) ±5 (lumi.) ±15 (BR)

Ξ0
c [52] 194 ± 27 (stat.) +46

−46 (syst.) +18
−12 (extrap.) ± 3 (lumi.)

Ξ+
c 187 ± 25 (stat.) +19

−19 (syst.) +13
−59 (extrap.) ± 3 (lumi.) ± 82 (BR)

J/ψ [87] 7.29 ± 0.27 (stat.) +0.52
−0.52 (syst.) +0.04

−0.01 (extrap.)

D∗+ 306 ± 26 (stat.) +33
−34 (syst.) +48

−17 (extrap.) ± 5 (lumi.) ± 3 (BR)

Σ0,+,++
c 142 ± 22 (stat.) +24

−24 (syst.) +24
−32 (extrap.) ± 2 (lumi.) ± 6 (BR)

Table 4. dσ/dy||y|<0.5 of all measured charm-hadron species in pp collisions at
√
s = 13 TeV. These

results are obtained by integrating the measured pT-differential cross section at midrapidity and
extrapolating down to pT = 0 if necessary.

The pT-integrated cross sections of all the charm hadrons at midrapidity (|y| < 0.5) in
pp collisions at

√
s = 13 TeV are listed in table 4.

5.4.2 Strange to-non strange charm-meson production ratio fs/(fu + fd)

The relative production of strange to non-strange D-meson production can be studied using
the ratio of fragmentation fractions fs/(fu + fd), where fx represents the probability for a
charm quark to hadronise with another quark of flavour x. In the charm-meson sector, this
ratio corresponds experimentally to the prompt cross section ratio D+

s /(D0 + D+), as all
D∗+ and D∗0 mesons decay to D0 and D+ mesons, and all D∗+

s mesons decay to D+
s mesons.

The contribution of the decays of excited states that change the strange/non-strange D-
meson content (e.g. D+

s1 → D∗+K0
S or D∗+

s2 → D+K0
S) was neglected in the computation of

the ratio fs/(fu + fd).
The pT-integrated cross sections reported in table 4 were used to compute the ratios

of production yields among the different D-meson species in pp collisions at
√
s = 13 TeV.

The ratios of prompt D mesons D+/D0, D+
s /D0, D+

s /D+, and D+
s /(D0 + D+) for pT > 0

are reported in table 5. The systematic uncertainties related to the tracking efficiency,
luminosity, extrapolation, and to the subtraction of the component from beauty-hadron
decays were propagated as correlated among the D-meson species. All the other sources
of systematic uncertainties were propagated as uncorrelated. The same ratios measured in
pp collisions at

√
s = 5.02 TeV [23] are also reported in table 5. The results do not show

any significant dependence on the collision energy.
The uncertainty on the D+

s /(D0 + D+) ratios reported in table 5 are dominated by
the limited precision of the measurements in the low-pT intervals, and by the uncertainty
related to the extrapolation of the cross section of prompt D+

s mesons down to pT = 0. For
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pp,
√
s = 5.02 TeV [23]

D+/D0 0.442 ± 0.055 (stat.) ± 0.033 (syst.) ± 0.008 (BR)

D+
s /D0 0.186 ± 0.028 (stat.) ± 0.015 (syst.)+0.051

−0.018 (extrap.) ± 0.007 (BR)

D+
s /D+ 0.419 ± 0.078 (stat.) ± 0.041 (syst.)+0.116

−0.040 (extrap.) ± 0.017 (BR)

D+
s /(D0 + D+) 0.128 ± 0.020 (stat.) ± 0.010 (syst.)+0.035

−0.012(extrap.) ± 0.005 (BR)

pp,
√
s = 13 TeV

D+/D0 0.500 ± 0.047 (stat.) ± 0.033 (syst.) ± 0.009 (BR)

D+
s /D0 0.160 ± 0.015 (stat.) ± 0.012 (syst.)+0.034

−0.013 (extrap.) ± 0.004 (BR)

D+
s /D+ 0.319 ± 0.039 (stat.) ± 0.030 (syst.)+0.068

−0.024 (extrap.) ± 0.010 (BR)

D+
s /(D0 + D+) 0.106 ± 0.010 (stat.) ± 0.008 (syst.)+0.023

−0.009 (extrap.) ± 0.003 (BR)

Table 5. Ratios of the measured production cross sections of prompt D mesons for pT > 0 at
midrapidity (|y| < 0.5) in pp collisions at

√
s = 5.02 TeV [23] and

√
s = 13 TeV.

the measurement in pp collisions at
√
s = 13 TeV, the total relative uncertainty amounts

to about 22%. As discussed in ref. [23], the measurement of the ratio fs/(fu + fd) in
pp collisions at

√
s = 5.02 TeV was performed with a fit of the pT-differential D+

s /(D0 +
D+) ratios using a constant function, since the ratio was found to be constant within
uncertainties. With this strategy, the total uncertainty of the measurement was reduced.
Given the better precision, the D+

s /(D0 +D+) ratio in pp at
√
s = 13 TeV suggests a hint of

increasing trend with pT in the interval pT < 8 GeV/c, as visible in figure 7. Therefore, the
approach based on a fit to a constant is no longer justified and the ratio fs/(fu + fd) in pp
collisions at

√
s = 13 TeV was measured considering the prompt D0-, D+-, and D+

s -meson
cross sections for pT > 1 GeV/c, corresponding to the interval of the D+

s measurement,
reported in table 6. This led to:

γs
2 ≡

(
fs

fu + fd

)
charm

= 0.116 ± 0.011 (stat.) ± 0.009 (syst.) ± 0.003 (BR) , (5.2)

where γs denotes the strangeness suppression factor, as defined in ref. [90]. The systematic
uncertainties were propagated as for the measurement for pT > 0. The result shown in
eq. (5.2) agrees with the D+

s /(D0 + D+) ratio reported in table 5, and it does not depend
on the extrapolation down to pT = 0 of the prompt D+

s mesons.
In figure 12, the ratio fs/(fu + fd) (red) is compared with previous measurements

of strangeness suppression factor γs or fs/(fu + fd) from the ALICE [21, 23], H1 [88],
ZEUS [89], and ATLAS [24] collaborations. In the cases where γs was used, the measure-
ments were scaled by a factor of 0.5, accounting for the different normalisation between the
two observables, as shown in eq. (5.2). The total experimental uncertainties are reported
as bars, and the theoretical ones as shaded boxes. The theoretical uncertainties in the H1
measurement denote the branching ratio uncertainty and the model dependencies of the
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dσ/dy||y|<0.5 (µb), pT > 1 GeV/c

D0 592 ± 19 (stat.)+40
−42 (syst.) ± 9 (lumi.) ± 4 (BR.)

D+ 264 ± 5 (stat.)+20
−20 (syst.) ± 4 (lumi.) ± 5 (BR.)

D+
s 99 ± 9 (stat.)+10

−11 (syst.) ± 2 (lumi.) ± 3 (BR.)

Table 6. Production cross sections of prompt D mesons for pT > 1 GeV/c at midrapidity (|y| < 0.5)
in pp collisions at

√
s = 13 TeV.
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Figure 12. Charm-quark fragmentation-fraction ratio fs/(fu + fd) (red) compared with previous
measurements performed by the ALICE [21, 23], H1 [88], ZEUS [89], and ATLAS [24] collaborations,
and to the average of LEP measurements [76]. The total experimental uncertainties (bars) and the
theoretical uncertainties (shaded boxes) are shown.

acceptance determination. In the case of the ATLAS measurement, they correspond to the
extrapolation uncertainties to the full phase space. The values are compatible within un-
certainties, and they are in agreement with the average of measurements at LEP [76]. This
indicates that the production of prompt strange D mesons relative to that of prompt non-
strange D mesons (fs/(fu +fd)) in e+e−, ep and pp collisions does not show any significant
dependence on the collision system and energy. Furthermore, the fs/(fu + fd) is compati-
ble with the ratio of the pT-integrated cross sections at forward rapidity (2 < y < 4.5) of
prompt D+

s , D+ and D0-meson in the interval 1 < pT < 8 GeV/c measured by the LHCb
collaboration [27], suggesting that the relative production of strange and non-strange D
mesons does not depend on the meson rapidity.
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Figure 13. Left: charm-quark fragmentation fractions at midrapidity (|y| < 0.5) in pp collisions
at

√
s = 5.02 TeV and

√
s = 13 TeV compared with results in e+e− and ep collisions [55]. The

fragmentation fractions f(c → hc) of J/ψ mesons are multiplied by a factor 20 for better visibility.
Right: cc production cross section per unit of rapidity at midrapidity (|y| < 0.5) in pp collisions
as a function of

√
s. The measurements are compared with predictions from FONLL [13, 14] and

NNLO [91–93] calculations. The statistical and systematic uncertainties are reported as vertical
bars and boxes, respectively.

5.4.3 Charm-quark fragmentation fractions in pp collisions

The charm-quark fragmentation fractions f(c → hc) at midrapidity in pp collisions at√
s = 13 TeV are shown in the left panel of figure 13. For each hadron species, the pro-

duction cross section was normalised by the sum of the pT-integrated production cross
sections of the measured production cross sections of D0, D+, D+

s , J/ψ, Λ+
c , Ξ0

c , and Ξ+
c .

The dashed vertical line separates the fragmentation fractions of the D∗+ mesons and the
Σ0,+,++

c baryons from those of the other charm-hadron species. These two hadrons were
not considered in the denominator because they strongly decay into D0 and D+ mesons
and to Λ+

c baryons, respectively, which are already included in the sum.
In this measurement, the systematic uncertainties related to the tracking efficiency and

the prompt fraction correction were assumed to be fully correlated among all the particle
species, while the uncertainties of the signal extraction and the statistical uncertainty were
treated as fully uncorrelated. The extrapolation uncertainty was propagated as partially
correlated depending on the adopted techniques for each species. In addition, the possible
contribution from Ω0

c-baryon production at midrapidity in pp collisions at
√
s = 13 TeV

was taken into account in the systematic uncertainties. According to ref. [53], the σ(Ω0
c)×

BR(Ω0
c → Ω−π+)/σ(Ξ0

c) ratio is around 0.005 in the interval 2 < pT < 12 GeV/c. Scaling
the ratio by the theoretical value of the branching ratio BR(Ω0

c → Ω−π+) = 0.51%+2.19%
−0.31%

would imply that the Ω0
c baryons are produced as abundantly as the Ξ0

c baryon in this
pT range. However, the branching ratio BR(Ω0

c → Ω−π+) has never been experimentally
measured and the one quoted above corresponds to the envelope (uncertainties included) of
the values calculated in refs. [94–98]. Given the large uncertainty of the branching ratio, the
Ω0

c-baryon measurement was used only to define an asymmetric systematic uncertainty for
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f(c → hc) pp,
√
s = 5.02 TeV (%) pp,

√
s = 13 TeV (%)

D0 39.6 ± 1.7 (stat.) +2.6
−3.8 (syst.) 38.2 ± 1.3 (stat.) +2.3

−4.3 (syst.)

D+ 17.5 ± 1.8 (stat.) +1.7
−2.1 (syst.) 19.1 ± 1.4 (stat.) +1.5

−2.3 (syst.)

D+
s 7.4 ± 1.0 (stat.) +1.9

−1.1 (syst.) 6.1 ± 0.5 (stat.) +1.2
−0.9 (syst.)

Λ+
c 18.9 ± 1.3 (stat.) +1.5

−2.0 (syst.) 16.8 ± 0.8 (stat.) +1.5
−2.1 (syst.)

Ξ0
c 8.1 ± 1.2 (stat.) +2.5

−2.5 (syst.) 9.9 ± 1.3 (stat.) +2.3
−2.4 (syst.)

Ξ+
c Assumed to be the same as Ξ0

c 9.6 ± 1.2 (stat.) +3.9
−4.8 (syst.)

J/ψ 0.44 ± 0.03 (stat.) +0.04
−0.06 (syst.) 0.37 ± 0.02 (stat.) +0.04

−0.05 (syst.)

D∗+ 15.7 ± 1.2 (stat.) +4.1
−1.9 (syst.) 15.6 ± 0.7 (stat.) +2.5

−2.2 (syst.)

Σ0,+,++
c — 7.2 ± 1.2 (stat.) +1.6

−1.9 (syst.)

Table 7. Charm-quark fragmentation fractions in pp collisions at
√
s = 5.02 TeV and 13 TeV. The

values for the Ξ+
c baryon at

√
s = 5.02 TeV are assumed to be the same as the ones of the Ξ0

c baryon
at the same centre-of-mass energy. The values published in ref. [54] were updated considering recent
measurements of prompt Λ+

c baryon down to pT = 0 and of prompt J/ψ mesons, as mentioned in
the text. The “syst.” uncertainty also includes the contribution of the extrapolation uncertainty.

the sum of the charm-hadron cross sections used to normalise the fragmentation fraction,
which accounts for σ(Ω0

c) = σ(Ξ0
c).

The results in pp collisions at
√
s = 13 TeV are compared in the left panel of figure 13

and in table 7 with those in pp collisions at
√
s = 5.02 TeV. The previous measured values

published in ref. [54] were updated for this paper considering more recent cross section
measurements of prompt Λ+

c baryon down to pT = 0 [35] and of prompt J/ψ mesons [87].
As reported in ref. [35], the pT-integrated Λ+

c -baryon cross section in |y| < 0.5 decreases
by about 10% compared to the previously published results [32, 33], where the measure-
ment did not extend down to pT = 0 GeV/c and instead relied on an extrapolation. This
reduction of the Λ+

c production cross section leads to a reduction of the f(c → Λ+
c ) by

about 7%.
To compute the Ξ0,+

c fragmentation fractions in pp collisions at
√
s = 5.02 TeV, the

Ξ0
c-baryon cross section was considered twice, as done in ref. [54]. This was due to the

lack of Ξ+
c -baryon measurements at this collision energy. The Ξ+

c -baryon fragmentation
fraction at midrapidity (|y| < 0.5) in pp collisions at

√
s = 13 TeV is compatible with the

Ξ0
c-baryon fragmentation fractions in pp collisions at

√
s = 5.02 TeV and

√
s = 13 TeV

within uncertainties. The uncertainties are dominated by the ∼ 44% uncertainty of the
branching ratio BR(Ξ+

c → Ξ−π+π+). The measurements of the J/ψ fragmentation fraction
at the two different centre-of-mass energies are also shown in the left panel of figure 13,
where they are scaled by a factor 20 for visibility.

The measurements in pp collisions at the LHC are compared with those in e+e− col-
lisions at LEP and at B factories, as well as those in ep collisions at HERA [55]. The
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prompt Λ+
c -baryon fragmentation fraction in pp collisions at

√
s = 13 TeV is about three

times larger than in e+e− and ep collisions. Each of the Ξ0,+
c baryons accounts for about

10% of the total charm hadron production at midrapidity, while their production was con-
sidered to be negligible in e+e− and ep collisions. Since the fragmentation fractions sum to
unity, this enhancement of baryon production implies an overall reduction of the relative
D-meson abundance by about a factor 1.5 relative to e+e− and ep collisions.

In table 7 the first measurement of the Σ0,+,++
c -baryon fragmentation fraction in pp col-

lisions at the LHC is also provided. The charm-quark fragmentation fraction into Σ0,+,++
c

baryons in e+e− collisions can be estimated to be about 1%, taking into account that
Σ0,+,++

c /D0 ≈ 0.02, as reported in ref. [49], calculated with the charm-hadron cross sec-
tions reported in ref. [50], and the fragmentation fraction f(c → D0) ≈ 0.59 from ref. [55].
An enhancement of f(c → Σ0,+,++

c ) of about a factor seven is observed at the LHC com-
pared to e+e− collisions. The Σ0,+,++

c production accounts for about 40% of the prompt
Λ+

c -baryon production at midrapidity in pp collisions at
√
s = 13 TeV [49]. This is sig-

nificantly larger than the Σ0,+,++
c /Λ+

c ≈ 0.17 measured in e+e− collisions by the Belle
collaboration (table IV in ref. [50]) and the ≈ 0.13 from PYTHIA 8 Monash tune simu-
lations. Therefore, a larger Λ+

c feed-down from Σ0,+,++
c -baryon decays is observed in pp

collisions at the LHC.
Within the current precision, the measured fragmentation fractions (left panel of fig-

ure 13) do not show any significant energy dependence of the relative charm-hadron pro-
duction at midrapidity in pp collisions at the LHC. Therefore, these results confirm that
the baryon enhancement at the LHC with respect to e+e− collisions is caused by different
hadronisation mechanisms at play in the parton-rich environment produced in pp collisions,
regardless of the centre-of-mass energy.

5.4.4 Production cross section of cc at midrapidity in pp collisions

The cc production cross section at midrapidity (dσcc/dy||y|<0.5) in pp collisions at
√
s =

13 TeV is shown in the right panel of figure 13. As for the measurement of the fragmentation
fractions, the cc production cross section is calculated from the sum of the production
cross sections at midrapidity (dσH/dy||y|<0.5) of the D0, D+, D+

s , J/ψ, Λ+
c , Ξ0

c , and Ξ+
c

hadrons. The possible contribution of Ω0
c baryons to the total cross section was taken

into account as an asymmetric systematic uncertainty, as discussed in section 5.4.3 for the
fragmentation fractions.

As done for the measurement in pp collisions at
√
s = 5.02 TeV [54] and at

√
s =

7 TeV [22], two correction factors were applied to account for the different shape of the
rapidity distributions of charm hadrons, single charm quarks, and cc pairs. The first factor
was evaluated with FONLL calculations in the relevant rapidity range and it accounted for
the possible differences in the rapidity distributions of hadrons and single charm quarks.
This factor was found to be at unity, excluding any relevant difference in the two rapid-
ity distributions. A 2% uncertainty for this factor was estimated from the difference to
PYTHIA 8 simulations. The second correction factor accounted for the possible differences
between the rapidity distributions of single charm quarks and cc pairs. This was evaluated
to be 1.036 according to NLO pQCD calculations using POWHEG [37]. An additional un-
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certainty of 3% was estimated by varying independently by a factor of two the factorisation
and normalisation scales in the calculations, and using different sets of PDFs [99–103].

The cc production cross section in pp collisions at
√
s = 13 TeV is

dσ
dy

∣∣∣∣pp,
√

s=13 TeV

|y|<0.5
= 2031± 61 (stat.)+135

−141 (syst.)+196
−63 (extrap.)± 97 (BR)± 33 (lumi.)± 73 (y)µb .

(5.3)
In the computation of the systematic uncertainties, those related to the tracking effi-

ciency and the prompt fraction correction were propagated as fully correlated among the
different hadron species. The systematic uncertainties related to the branching ratios of
the channels chosen for the reconstruction (BR), the collected luminosity (lumi.), the ra-
pidity correction factors (y), and the extrapolation factors (extrap.), which also includes
the possible Ω0

c-baryon contribution, are quoted separately.
As for the fragmentation fractions, the cc production cross section at midrapidity

dσ/dy||y|<0.5 at
√
s = 5.02 TeV was updated taking into account the more recent cross

section measurements of prompt Λ+
c baryon down to pT = 0 [35] and of prompt J/ψ

mesons [87]. The updated cc production cross section in pp collisions at
√
s = 5.02 TeV is

dσ
dy

∣∣∣∣pp,
√

s=5.02 TeV

|y|<0.5
= 1148± 43 (stat.)+62

−65 (syst.)+98
−36 (extrap.)± 43 (BR)± 24 (lumi.)± 41 (y)µb .

(5.4)
The extrapolated fraction of the cc cross section is around 11% for both the measure-

ments at
√
s = 5.02 TeV and

√
s = 13 TeV. This is significantly reduced with respect to the

previous measurement in pp collisions at
√
s = 5.02 TeV [54], where it reached about 20%

of the cc cross section due to the smaller pT reach of baryon measurements at low pT. The
right panel of figure 13 shows the cc production cross section at midrapidity (|y| < 0.5)
in pp collisions as a function of centre-of-mass energy

√
s. The blue points represent the

measurements from the ALICE collaboration. The result from this work corresponds to
the first measurement of the cc production cross section at midrapidity in pp collisions
at

√
s = 13 TeV based on the measured cross sections of several charm-hadron species,

while previously only estimates based on dilepton measurements were available [104]. In
figure 13 the results in pp collisions at

√
s = 200 GeV by the STAR [105] and PHENIX [106]

collaborations are also shown. The cc cross section was obtained from the measurement of
D0- and D∗+-meson abundances and from the production cross section of electrons from
heavy-flavour hadron decays, as discussed in ref. [54]. In these cases, the production cross
sections were scaled by fragmentation fractions obtained from e+e− collisions.

The measured cc production cross sections at midrapidity in pp collisions at different
centre-of-mass energies are compared with the FONLL and NNLO predictions. The NNLO
values were obtained by the authors of [91, 92] by applying a K scaling factor (NNLO/NLO)
to the central value of dσcc/dy from FONLL, calculated as discussed in ref. [54]. The re-
sults from RHIC are compatible with the upper edge of the theoretical calculations. The
results at the LHC are systematically higher as an effect of the measured baryon enhance-
ment at midrapidity. However, within the current experimental precision the measured
dσcc/dy||y|<0.5 at the LHC are compatible with the FONLL predictions within about 1σ in
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pp collisions at
√
s = 5.02 TeV and about 1.4σ in pp collisions at

√
s = 13 TeV. In the end,

calculations based on a factorisation approach describe quantitatively the evolution of the
cc cross section at midrapidity in pp collisions as a function of the centre-of-mass energy.
The precise measurements from LHC data shown in figure 13 can provide useful constraints
to reduce the uncertainties related either to the factorisation and renormalisation scales in
pQCD calculations of the hard-scattering cross section, or to the PDFs.

6 Summary

In this article, the measurements of the production cross sections of prompt D0, D+, D+
s ,

and D∗+ mesons at midrapidity (|y| < 0.5) in pp collisions at
√
s = 13 TeV with the ALICE

detector are reported. The D-meson production cross sections are described within uncer-
tainties by perturbative QCD calculations based on a factorisation approach over the full pT
ranges of the measurements. The pT-differential ratios of the measured charm-hadron cross
sections are compared with the same quantities measured in pp collisions at

√
s = 5.02 TeV

and 7 TeV. Within the experimental uncertainties, no significant energy dependence of the
D-meson ratios in pp collisions at the LHC is observed. These results suggest common
fragmentation functions of charm quarks to pseudoscalar and vector mesons and to mesons
with and without strange quark content in pp collisions at different LHC energies.

The production cross sections of prompt Λ+
c and Ξ+

c baryons in pp collisions at√
s = 13 TeV are measured down to pT = 0 and pT = 3 GeV/c, respectively. Similarly

to the meson-to-meson ratios at the LHC, the measured Λ+
c /D0 ratio in pp collisions at√

s = 5.02 TeV, 7 TeV, and 13 TeV, and the Ξ0,+
c /D0 ratios in pp collisions at

√
s = 5.02 TeV

and 13 TeV do not show a significant energy dependence. Within the current uncertainties,
the measurements do not discriminate among the model calculations that describe charm
hadronisation at the LHC employing new mechanisms. However, the extended measure-
ments of the Λ+

c and Ξ+
c production confirm the baryon-to-meson enhancement at the

LHC compared to e+e− results down to lower pT. These results support the scenario of
charm-quark hadronisation in pp collisions at the LHC via mechanisms other than those
in e+e− collisions.

The pT-differential cross sections of prompt D mesons measured at midrapidity (|y| <
0.5) are compared with those measured at forward rapidity by the LHCb collaboration
in three intervals 2 < y < 2.5, 3 < y < 3.5, and 4 < y < 4.5 at the same collision
energy. The mid-over-forward rapidity ratios show an increasing trend with pT when going
to more forward rapidities and a common trend is shared by all the D-meson species.
This behaviour can be explained as a softening of the pT spectra at forward rapidity,
which is described by pQCD-based calculations (FONLL). The measurement of the D0-
meson mid-to-forward rapidity ratios between pp collisions at

√
s = 5.02 TeV and 13 TeV is

provided and compared with FONLL predictions employing the CTEQ6.6 and NNPDF30
sets of PDFs. The perturbative QCD calculations reproduce the magnitude and the pT
dependence of the ratios. The measurements are precise enough to constrain the gluon
PDFs employed in the NNPDF30 set at low pT, given that the uncertainties related to
the scale variations in the pQCD calculations are found to be subdominant. A similar
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comparison would be interesting considering predictions from pQCD-based calculations
employing more recent PDF sets.

The D-meson strangeness suppression factor γs in pp collisions at
√
s = 13 TeV is

compared with previous measurements from the ALICE, ATLAS, H1, and ZEUS collabo-
rations. The results are compatible within uncertainties and they agree with the average
of LEP measurements. These results indicate that the production of prompt strange D
mesons relative to that of prompt non-strange D mesons in e+e−, ep and pp collisions does
not show any significant dependence on the collision system and energy.

The measurement of charm-quark fragmentation fractions in pp collisions at
√
s =

13 TeV is provided. In addition to the charm-quark fragmentation fractions into D0, D+,
D+

s , D∗+, Λ+
c , and Ξ0

c hadrons, also the results for the fragmentation into J/ψ mesons and
Ξ+

c and Σ0,+,++
c baryons are reported. The results are compared with those in pp collisions

at
√
s = 5.02 TeV and no significant energy dependence is observed according to the current

uncertainties. These results confirm that the baryon enhancement at the LHC with respect
to e+e− collisions is caused by different hadronisation mechanisms at play in the parton-
rich environment produced in pp collisions. Finally, the first measurement in pp collisions
at

√
s = 13 TeV of the cc production cross section at midrapidity (|y| < 0.5) based on

the sum of the production cross sections at midrapidity of D0, D+, D+
s , J/ψ, Λ+

c , Ξ0
c , and

Ξ+
c hadrons is reported. This measurement, whose maximum relative uncertainty is about

13%, is found to be compatible with the upper edge of the FONLL and NNLO predictions
within uncertainties. Thanks to their better precision, the measurements at the LHC can
provide useful constraints to reduce the theoretical uncertainties on the calculations of cc
production at midrapidity in pp collisions.
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