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Abstract
Understanding the shopping motivations behind market
baskets has significant commercial value for the gro-
cery retail industry. The analysis of shopping transactions
demands techniques that can cope with the volume and
dimensionality of grocery transactional data while deliv-
ering interpretable outcomes. Latent Dirichlet allocation
(LDA) allows processing grocery transactions and the dis-
covering of customer behaviours. Interpretations of topic
models typically exploit individual samples overlooking
the uncertainty of single topics. Moreover, training LDA
multiple times show topics with large uncertainty, that is,
topics (dis)appear in some but not all posterior samples,
concurring with various authors in the field. In response,
we introduce a clustering methodology that post-processes
posterior LDA draws to summarise topic distributions
represented as recurrent topics. Our approach identifies
clusters of topics that belong to different samples and pro-
vides associated measures of uncertainty for each group.
Our proposed methodology allows the identification of an
unconstrained number of customer behaviours presented
as recurrent topics. We also establish a more holistic frame-
work for model evaluation, which assesses topic mod-
els based not only on their predictive likelihood but also

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and repro-
duction in any medium, provided the original work is properly cited.
© 2022 The Authors. Journal of the Royal Statistical Society: Series C (Applied Statistics) published by John Wiley & Sons Ltd on behalf of
Royal Statistical Society.

562 wileyonlinelibrary.com/journal/rssc J R Stat Soc Series C. 2022;71:562–588.

D
ow

nloaded from
 https://academ

ic.oup.com
/jrsssc/article/71/3/562/7067601 by U

niversità degli Studi di Bologna user on 20 M
arch 2024

https://orcid.org/0000-0003-1839-2287
https://orcid.org/0000-0002-5379-2916
http://creativecommons.org/licenses/by/4.0/


VEGA CARRASCO et al. 563

on quality aspects such as coherence and distinctiveness
of single topics and credibility of a set of topics. Using
the outcomes of a tailored survey, we set thresholds that
aid in interpreting quality aspects in grocery retail data.
We demonstrate that selecting recurrent topics not only
improves predictive likelihood but also outperforms inter-
pretability and credibility. We illustrate our methods with
an example from a large British supermarket chain.

K E Y W O R D S

customer behaviours, grocery shopping motivations, latent Dirichlet
allocation, topic credibility, topic distinctiveness, topic model
evaluation

1 INTRODUCTION

In the grocery retail industry, millions of transactions are generated every day by customers that
choose and buy products to fulfil one or more needs. Transactions contain few products out of
thousands of available items, reflecting the unseen customer behaviours. For instance, customers
go to the grocery retailers to buy foods for breakfast, ingredients to cook a roast dinner or pop-
ular products for a barbecue. Understanding the motivations and dynamics behind customer
behaviours can unlock business opportunities for retailers that aim to keep competitive while
delivering improved customer experience and increasing efficiency across business operations.

The analysis of transactional data involves high-dimensional sparse vectors over thousands
of products. For instance, a customer who goes to the supermarket to buy ingredients to make
a cake has to choose a few products out of hundreds if not thousands. Say that this customer
only buys eggs, flour and butter; this transaction can be represented by a binary vector where the
purchased products are represented by ones while the remaining thousands of products in the
product assortment are represented by zeros. Considering millions of transactions, retail trans-
actional data represent an extremely sparse and vast data matrix where almost all elements are
zero. Because of sparsity and high dimensionality, linear models are difficult to interpret since fea-
tures are different for every customer while non-linear models, in general, are difficult to interpret
(Ramon et al., 2020).

Topic modelling (TM) offers a new scalable statistical framework that can process large
volumes of transactions while maintaining the explanatory power to discover, analyse and under-
stand customer behaviours. Latent Dirichlet allocation (LDA) (Blei et al., 2003), the vanilla topic
model, was originally introduced to uncover topics that summarise the semantic structure in
a large collection of text data. In the retail context, LDA facilitates interpretations of customer
behaviours and provides a simple model to summarise a sheer volume of transactions. Topics,
which are distributions over a product assortment, reveal products that are frequently bought
together to fulfil a specific need. Transactions are then no longer summarised by individual items
but as mixtures of customer behaviours.

LDA provides a simple and interpretable model; however, the inference is computation-
ally intractable. There are various approaches for estimating LDA’s posterior distribution, such
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as gradient descent (Hoffman et al., 2010), Gibbs sampling (Griffiths & Steyvers, 2004), varia-
tional inference (Blei et al., 2003), and expectation propagation (Minka & Lafferty, 2002). In this
paper, we use the collapsed Gibbs sampling (Griffiths & Steyvers, 2004), a Markov chain Monte
Carlo algorithm, to sample from the posterior distribution and learn topic distributions since this
method has shown coherent and useful topics with potential commercial value in the field of our
application.

Applications of LDA for exploratory purposes usually relies on one posterior sample, ignor-
ing variability within topic distributions. Since the likelihood of a topic model is, in essence, a
mixture model, there is no guaranteed correspondence between individual topics across samples
(Griffiths & Steyvers, 2004), akin to the label-switching problem. Thus, a posterior summary that
exploits multiple posterior samples to characterise the posterior distribution requires a relabelling
algorithm to ensure identifiability between topics. Various relabelling methodologies assume
one-to-one matches, that is, algorithms that minimise an overall loss function (Celeux, 1998;
Stephens, 2000; Stephens & Phil, 1997), with identifiability constraints (McLachlan et al., 2019),
with probabilistic approach (Jasra et al., 2005; Sperrin et al., 2010). However, one-to-one matches
across samples may merge topics with a large distributional dissimilarity. This compromises the
meaning behind topic distributions disrupting the interpretations of customer behaviours.

In addition, applications of LDA may exhibit significant variations across iterations of the
same model as observed in (Chuang et al., 2015; Rosen-Zvi et al., 2010; Steyvers & Griffiths, 2007).
For instance, a topic associated with a customer behaviour may appear in 8 of 10 model iterations
showing some uncertainty. Note that we call a model iteration to an MCMC chain, while posterior
samples are taken from one MCMC chain. Empirically, we have found that topics show useful
customers behaviours with various levels of uncertainty. Thus, applications of LDA require the
analysis over multiple model iterations otherwise insightful topics may be overlooked.

In response, we propose a post-processing methodology that aggregates topic distributions
obtained from multiple samples, which are obtained from running the topic model several times
(model iterations). This methodology groups topic distributions into an unconstrained number of
clusters using a dissimilarity measure. Through hierarchical clustering, topics are grouped using
the average link and cosine distance, which among other distributional measures correlates with
human judgement on topic similarity (Aletras & Stevenson, 2014). A clustered topic is defined as
the average topic distribution that exhibits the same theme, and its posterior uncertainty is given
by its topic recurrence, that is, the number of topics within the same cluster (the number of pos-
terior samples exhibiting the same topic). Depending on the domain of interest, users can set
thresholds of minimum recurrence to select clustered topics of low uncertainty. Hierarchical clus-
tering has been used previously to interactively align topics (Chuang et al., 2015) and to aggregate
topic models with small and large numbers of topics (Blair et al., 2016). In comparison to these
works, we aim to identify topics that illustrate different customer behaviours while measuring
their uncertainty.

LDA is the topic model with the largest number of applications (Boyd-Graber et al., 2014; Jelo-
dar et al., 2019), however, various authors have pointed out some flaws on inferred topics. For
example, topics may not correspond to genuine and meaningful themes (AlSumait et al., 2009),
affecting the user’s confidence in the application of the topic model (Mimno et al., 2011). Topics
within one posterior sample may contain product combinations with so little variation that could
be associated with the same semantic concept leading to a suboptimal outcome (Boyd-Graber
et al., 2014). And as mentioned before, topics may also show significant variations across multi-
ple model iterations. Evaluation of topics models should account for quality aspects that favour
models with larger interpretability, distinctiveness and credibility.
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Evaluation of topic models is typically based on model fit metrics such as held-out-likelihood
or perplexity (Buntine, 2009; Wallach et al., 2009b) that measure the generalisation capability
by computing the model likelihood on unseen data. These held-out metrics may be suitable for
applications that ultimately aim to predict new topical mixtures, but they are not sufficient for
applications where the value lies on the topics themselves. As pointed by Chang et al. (2009),
held-out metrics may lead to topic models with less semantically meaningful topics; thereby, dis-
agreeing with human annotators that would prefer topic models with interpretable topics. Thus,
evaluation of topic models should be more holistic assessing model generalisation along with the
aforementioned quality aspects.

Topic coherence Newman et al. (2010) measures the interpretability of individual topics,
typically quantified by co-occurrence metrics such as pointwise mutual information (PMI) and
normalised pointwise mutual information (NPMI) (Bouma, 2009). NPMI and PMI have been
shown to correlate with human annotators in Newman et al. (2010) and Lau et al. (2014). Various
methods have been proposed to improve topic coherence. For example, Wallach et al. (2009a) used
asymmetric priors over document distributions to capture highly frequent terms in few topics;
Newman et al. (2011) proposed the applications of regularisation methods; Mimno et al. (2011)
applied the generalised the Pòlya urn model aiming to reduce the number of low-quality topics.
In our application to retail data, we will show that the average NPMI of selected clustered topics
(disregarding topics of high uncertainty) is larger than the average NPMI of single LDA posterior
samples.

Topic distinctiveness and topic credibility measure the semantic dissimilarity among topics of
the same posterior sample and the distributional similarity among posterior samples (from mul-
tiple MCMC chains) respectively. Within topics of a single posterior sample, topic distinctiveness
is defined as the minimum of the cosine distances between a topic and all the other topics. Across
posterior samples from MCMC chains, topic credibility is defined as the average maximum cosine
similarity; where the maximum cosine similarity is with respect to the topics of a different poste-
rior sample. These two measures are based on the cosine distance, since it correlates with human
judgement on topic similarity (Aletras & Stevenson, 2014). Thus, high-quality topics are not only
coherent but also distinctive among them and identifiable in other posterior samples.

In a nutshell, we propose a post-processing methodology to summarise topical posterior distri-
bution and a more holistic framework for evaluating topic models. We demonstrate our methods
using a large collection of transactions from a major retailer in the United Kingdom and identify
customer behaviours. To guide interpretations of the qualitative metrics, we carried out a user
study in which experts in grocery retail analytics assessed topics for their interpretability and sim-
ilarity. Moreover, we demonstrate that the selection of recurrent topics through the clustering
methodology provides subsets of clustered topics with better model likelihood, greater credibility
and improved interpretability.

This paper is organised as follows: we discuss related work in Section 2. LDA is described
in Section 3. Section 4 presents the definitions of model generalisation, topic coherence, topic
distinctiveness and topic credibility. Section 5 introduces our proposed methodology for clus-
tering and selecting recurrent topics. Sections 6–8 show the application of grocery retail data
from a major retailer in the United Kingdom. More specifically, Section 6 discusses thresholds
for interpretability and similarity obtained from a user study with experts in grocery retail ana-
lytics and exhibits the pitfalls of LDA topics. Section 7 demonstrates the advantages of selecting
clustered topics of high posterior recurrence. Section 8 displays identified grocery topics and indi-
cates commercial implications in the grocery retail sector. Finally, we summarise our findings in
Section 9.
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2 RELATED WORK

Topic modelling, in particular LDA, has already been used to identify latent shopping motivations
in retail data. For instance, Christidis et al. (2010) applied LDA to grocery transactions from a
major European supermarket to identify latent topics of product categories, intending to support
an item recommendation system. In this study, 102 thousand unique products were aggregated
into 473 synthetic categories with no distinction between brands or package sizes. Hruschka
(2014) sketched the core of a recommender system to illustrate the managerial relevance of esti-
mated topics, which were obtained from training LDA and the correlated topic model on market
baskets from a medium-sized German supermarket. The study only accounted for the 60 prod-
uct categories with the highest univariate purchase frequencies. Jacobs et al. (2016) applied topic
models to market baskets from a medium-sized online retailer in the Netherlands to identify latent
motivations and to predict product purchasing in large assortments. Again, the authors aggre-
gated products to a category-brand level, that is, different fragrances/flavours of the same product
and brand are aggregated into one category, reducing more than 3 thousand unique products
to 394 categories. Hruschka (2016, 2021) compared topic models and other unsupervised proba-
bilistic machine learning methods on point-of-sale transactions from a typical local grocery store
in Austria, analysing 169 product categories. The aforementioned works analysed collections of
product categories and not the full product resolution, thereby reducing the dimensionality of
the problem. Hornsby et al. (2020) provided a direct application of a 25-topic LDA model on
transactional data from a major British retailer to identify shopping goals.

Beyond LDA, other approaches have been applied to market baskets. For instance, Schröder
(2017) applied Multidimensional Item Response Theory (MIRT) models on a limited data set with
31 product categories collected by a house panel from a single supermarket in the United States,
and found that MIRT models outperformed LDA according to the Akaike information criterion
and its corrected form. MIRT may be an option to analyse small data sets of discrete grouped
data. Hruschka (2016, 2021) also compared topic models such as LDA and correlated topic model
(CTM) to alternative methods such as binary factor analysis, restricted Boltzmann machine (RBF)
and deep belief net (DBN). It was shown that the alternative methods outperform topic models in
model generalisation. However, the number of topics was restricted to a range from 2 to 6, while
networks of much larger architectures were explored. Moreover, the DBN and RBF outcomes
are far less interpretable than LDA topics. Ruiz et al. (2020) introduced ‘SHOPPER’, a sequential
probabilistic model, that captures interaction among items and answers counterfactual queries
about changes in prices. Chen et al. (2020) introduced ‘Product2Vec’, a method based on the rep-
resentation learning algorithm Word2Vec, to study product-level competition, when the number
of products is large and produce more accurate demand forecasts and price elasticities estima-
tions. Jacobs et al. (2020) combined the correlated topic model with the vector autoregression to
account for product, customer and time dimensions present in purchase history data.

Within LDA, various methods have been proposed to improve topic coherence. For example,
Wallach et al. (2009a) used asymmetric priors over document distributions to capture highly fre-
quent terms in few topics; Newman et al. (2011) introduced two regularisation methods, and
Mimno et al. (2011) generalised the Pòlya urn model aiming to reduce the number of low-quality
topics. In this paper, we do not try to improve LDA to render more coherent topics, but we will
show that our proposed methodology retrieves groups of clustered topics with higher coherence.

Hierarchical clustering has been used previously to interactively align topics (Chuang et al.,
2015) and to aggregate topic models (Blair et al., 2016). The former work assumes that topics
align with up to one topic from a different posterior sample. The latter work merges topics from
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posterior samples with small and large numbers of topics aiming to improve topic coherence.
However, these works do not assess other aspects of topic quality, such as topic distinctiveness
and topic credibility nor consider the likelihood of the resulting models.

With regards to the label-switching problem, which also affects LDA since it is inherently
a mixture model, Stephens (2000), Celeux (1998) and Stephens and Phil (1997) developed rela-
belling algorithms to perform a k-means type clustering of the MCMC samples. Hastie et al. (2015)
followed a k-medoid strategy to obtain an optimal partition that takes advantage of the whole
MCMC output rather than taking a maximum a posteriori partition. Other relabelling strategies
consider label invariant loss functions (Celeux et al., 2000; Hurn et al., 2003), identifiability con-
straints (McLachlan et al., 2019) and probabilistic relabelling (Jasra et al., 2005; Sperrin et al.,
2010). Note that these techniques assume that topics are present (but with switched labels) across
samples. Thus, we cannot use relabelling techniques to summarise topic models, since topics
may (dis)appear across a Markov chain. Instead, we propose a methodology to group topics using
similarity measures.

3 LATENT DIRICHLET ALLOCATION

Here, we interpret LDA (Blei et al., 2003) in terms of retail data, where transactions are interpreted
as bags of products. This is a natural assumption of in-store transactions where products are reg-
istered without an inherited order. In addition, transactions are assumed to be independent and
exchangeable, so metadata such as timestamps and coordinate location are disregarded.

Within the LDA framework, transactions are represented as mixtures over a finite number
of topics K and topics are distributions over products from a fixed product assortment of size V .
More formally, LDA is a generative process in which the topics Φ = [𝜙1, … , 𝜙K] are sampled
from a Dirichlet distribution governed by hyperparameters 𝜷 = [𝛽1, … , 𝛽V ] and the topical mix-
tures Θ = [𝜃1, … , 𝜃D] are sampled from a Dirichlet distribution governed by hyperparameters
𝜶 = [𝛼1, … , 𝛼K]. For each transaction (equivalent to a basket) d, product i is sampled through
a two-step process. First, a topic assignment zi,d is chosen from the transaction-specific topical
mixture 𝜃d. Second, a product is sampled from the assigned topic 𝜙zi,d. Mathematically,

𝜙k ∼ Dirichlet(𝜷)
𝜃d ∼ Dirichlet(𝜶)

zi,d|𝜃d ∼ Multinomial(𝜃d)
wi,d|𝜙zi,d ∼ Multinomial(𝜙zi,d). (1)

The data then correspond to the observed set of products wi,d within each transaction d. The
posterior distribution of the topic distributionsΦ and topical mixtures𝛩 are given by the posterior
conditional probability:

P(Φ,Θ, z|w,𝜶, 𝜷) =
P(Φ,Θ, z,w|𝜶, 𝜷)

P(w|𝜶, 𝜷)
, (2)

where z and w are vectors of topic assignments and observable products respectively.
There are various approaches for estimating LDA’s posterior distribution, such as gradient

descent (Hoffman et al., 2010), Gibbs sampling (Griffiths & Steyvers, 2004), variational inference
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(Blei et al., 2003) and expectation propagation (Minka & Lafferty, 2002). Empirically, we have
found that the variational Bayes (VB) algorithm of (Blei et al., 2003) leads to the lower inter-
pretability of learnt topics show, that is, showing products that do not convey a clear shopping
purpose. On the other hand, Gibbs sampler (GS) requires longer training times, but learns more
coherent and useful topics, that is, showing products that can be easily associated with a shop-
ping purpose. In this paper, we chose the Gibbs sampler. Although more recent VB developments
using amortised inference such as Srivastava and Sutton (2017) may be a promising alternative,
they are beyond the scope of this work.

In this paper, we used LDA with symmetric Dirichlet priors governed by a scalar concentra-
tion parameter and a uniform base measure, so that topics are equally likely a priori. Wallach
et al. (2009a) showed that an optimised asymmetric Dirichlet prior over topical mixtures improves
model generalisation and topic interpretability by capturing highly frequent terms in a few topics.
However, we empirically found that LDA with an asymmetric prior may lead to poor convergence
of the Gibbs sampler in the context of our application. On the other hand, a fixed symmetric prior
not only has shown satisfactory mixing of MCMC chains but also coherent topics that have been
acknowledged by experts in the field of our application.

3.1 Gibbs sampling

The Gibbs sampling algorithm starts with a random initialisation of topic assignments z to values
1, 2, … , K. In each iteration, topic assignments are sampled from the full conditional distribution,
defined as:

p(zi = k|z−i,w) ∝
N−i

k,v + 𝛽v

N−i
k + 𝛽

N−i
d,k + 𝛼k

N−i
d + 𝛼

, (3)

where the notation N−i is a count that does not include the current assignment of zi. Nk,v is
the number of assignments of product v to topic k. Nd,k is the number of assignments of topic
k in transaction d. Nk is the total number of assignments of topic k. Nd is the size of trans-
action d. 𝛼 =

∑K
k 𝛼k and 𝛽 =

∑V
v 𝛽v. This full conditional distribution can be interpreted as the

product of the probability of the product v under topic k and the probability of topic k under
the current topic distribution for transaction d. Consequently, the probability of assigning a
topic to any particular product in a transaction will be increased once many products of the
same type have been assigned to the topic and the topic has been assigned several times to the
transaction.

After a burn-in period, states of the Markov chain (topic assignments) are recorded with an
appropriate lag to ensure low autocorrelation between samples. For a single sample s, Φ and 𝛩

are estimated from the counts of topic assignments and Dirichlet parameters by their conditional
posterior means:

�̂�
s
k,v = E(𝜙s

k,v|z
s, 𝜷) =

Ns
k,v + 𝛽s

v

Ns
k + 𝛽s , k = 1 … K, v = 1 … V , (4)

�̂�
s
d,k = E(𝜃s

d,k|z
s,𝜶) =

Ns
d,k + 𝛼s

k

Ns
d + 𝛼s , d = 1 … D, k = 1 … K. (5)
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4 TOPIC MODEL EVALUATION

Topic model evaluation is typically based on model fit metrics such as held-out-likelihood or per-
plexity (Buntine, 2009; Wallach et al., 2009b), which assess the generalisation capability of the
model by computing the model likelihood on unseen data. However, the LDA likelihood may lead
to topic models with less semantically meaningful topics according to human annotators (Chang
et al., 2009). The evaluation of topic models should therefore not be exclusively based on likeli-
hood metrics, but also include topic quality metrics such as topic coherence, topic distinctiveness
and topic credibility.

In this section, we summarise metrics of model generalisation, topic coherence and introduce
metrics for topic distinctiveness and topic credibility. These four metrics will be used to evaluate
topic models throughout this paper.

4.1 Model generalisation

Model fit metrics such as perplexity or held-out-likelihood of unseen documents (transactions)
estimate the model’s capability for generalisation or predictive power. Perplexity is a measure-
ment of how well the probability model predicts a sample of unseen (or seen) data. A lower
perplexity indicates the topic model is better at predicting the sample. Mathematically,

Perplexity = −
log P(w′|Φ,𝜶)

N′ , (6)

where w′ is a set of unseen products in a document, N′ is the number of products in w′, Φ =
[𝜙1, 𝜙2, … , 𝜙K] is a posterior estimate or draw of topics and 𝜶 is the posterior estimate or draw
of the Dirichlet hyperparameters.

Computing the log-likelihood of a topic model on unseen data is an intractable task. Several
estimation methods are described in (Buntine, 2009; Wallach et al., 2009b). In this paper, we use
the left-to-right algorithm with 30 particles to approximate the log-likelihood on held-out doc-
uments (Wallach, 2008; Wallach et al., 2009b). The left-to-right algorithm breaks the problem
of approximating the log-likelihood of one document (transaction) in a series of parts, where
each part is associated with the probability of observing one term (product) given the previ-
ously observed terms. The likelihood of each term is approximated using an approach inspired
by sequential Monte Carlo methods, where topic assignments are resampled for the previously
observed terms to simulate topical mixtures over observed terms. The likelihood is given by the
summation over topics of the product between the probability of the topic in the document and
the probability of the term under the topic distribution. This procedure is repeated for a num-
ber of iterations (particles) and the likelihood of the term is given by averaging the per-particle
likelihood.

4.2 Topic coherence

A topic is said to be coherent when its most likely terms can be interpreted and associated with
a single semantic concept (Newman et al., 2010). For instance, ‘a bag of egg noodles’, ‘a package
of prepared stir fry’ and ‘a sachet of Chinese stir fry’ sauce are items that can be easily associated
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with the topic of ‘Asian stir fry’. On the other hand, a non-coherent topic highlights products that
do not seem to fulfil a particular customer need. For example, ‘a bag of egg noodles’, ‘a bunch of
bananas’ and ‘a lemon cake’ are items that together do not convey a clear purpose.

Human judgement on topic coherence tends to correlate with metrics of product
co-occurrence such as the pointwise mutual information (PMI) and normalised pointwise mutual
information (NPMI) (Bouma, 2009) shown in Newman et al. (2010) and Lau et al. (2014). PMI
measures the probability of seeing two products within the same topic in comparison to the prob-
ability of seeing them individually. NPMI standardises PMI, providing a score in the range of
[−1, 1]. NPMI towards 1 corresponds to high co-occurrence.

PMI(wi,wj) = log
( P(wi,wj)

P(wi)P(wj)

)

; i ≠ j, 1 ≤ i, j ≤ 15. (7)

NPMI(wi,wj) =
PMI(wi,wj)
− log P(wi,wj)

; i ≠ j, 1 ≤ i, j ≤ 15. (8)

In the literature, average NPMI and PMI are usually measured using the top 10 terms Lau et al.
(2014), Aletras and Stevenson (2013), Chaney and Blei (2012) and Newman et al. (2010). How-
ever, we choose to use 15 most probable products given that human annotators are comfortable
assessing 10 or more items but less than 20 items per topic. Thus, we will interpret and compute
NPMI using the top 15 products.

Instead of selecting terms by their probability, they can be selected through distributional
transformations Taddy (2012), Chuang et al. (2012) and Sievert and Shirley (2014), which high-
light less frequent but topic-wise unique products. However, transformations may select terms
with low probabilities under the topic distribution.

The coherence measure of a single topic is given by the average of the NPMI scores. For sim-
plicity, we will refer to this measure as NPMI. Here, we focus on NPMI since it has been shown
to have a higher correlation with the human evaluation of topic coherence than PMI (Lau et al.,
2014).

4.3 Topic distinctiveness

Topic distinctiveness refers to the semantic dissimilarity of one topic in comparison to the topics
of the same sample. For instance, ‘a bottle of sparkling water hint apple’, ‘a bottle of sparkling
water hint grape’ and ‘a bottle of sparkling water hint orange’ are items that are interpreted as the
topic of ‘flavoured sparkling water’. This topic and the ‘Asian stir fry’ topic are distinctive from
each other. If a topic in the posterior sample is characterised by ‘a bottle of sparkling water hint
lemon’, ‘a bottle of sparkling water hint mango’ and ‘a bottle of sparkling water hint lime’, it is
interpreted as non-distinctive from the ‘flavoured sparkling water’ since both topics exhibit the
same theme.

Several measures have been used to identify similar topics: KL-divergence (Li & McCallum,
2006; Newman et al., 2009; Wang et al., 2009), the average log odds ratio (Chaney & Blei, 2012),
the cosine distance (Chuang et al., 2015; He et al., 2009; Ramage et al., 2009; Xing & Paul, 2018).
Aletras and Stevenson (2014) and Xing and Paul (2018) showed that cosine distance outperforms
other distributional similarity measures, such as KL-divergence, Jensen Shannon Divergence,
Euclidean distance, Jaccard similarity, according to human judgment on topic similarity. Thus, we
define the distinctiveness of a topic 𝜙t

i of posterior draw t as the minimum of the cosine distances
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between the topic and the other topics Φt⧵𝜙t
i within the same posterior sample, denoted by :

CDmin
(
𝜙t

i ,Φ
t⧵𝜙t

i
)
= min[CD(𝜙t

i , 𝜙
t
1), … ,CD(𝜙t

i , 𝜙
t
i−1),CD(𝜙t

i , 𝜙
t
i+1), … ,CD(𝜙t

i , 𝜙
t
K)], (9)

where

CD
(
𝜙i, 𝜙j

)
= 1 −

𝜙i ⋅ 𝜙j

||𝜙i||||𝜙j||
. (10)

Cosine distance between topics measures a slightly different aspect of a topic compared to the
model likelihood, and thus the model may warrant the existence of two similar topics in terms
of cosine distance, showing a low minimum distance. The distinctiveness of a set of topics in a
posterior sample is given by the average per-topic distinctiveness.

4.4 Topic credibility

When comparing different LDA posterior draws, topics may appear and disappear as a result of
posterior uncertainty, which negatively affects practitioners’ confidence in the method. While
topic distinctiveness within the same posterior sample is good, the high cosine distance of topic
𝜙t

i with all topics Φs in posterior draw s ≠ t indicates uncertainty about 𝜙t
i . To measure topic

credibility of topic 𝜙t
i in posterior draw t, we compute the maximum cosine similarity between 𝜙t

i
and all topics within posterior draw Φs, for s ≠ t, and average across all posterior draws s ≠ t. If a
topic is highly credible, then we expect a very similar topic to appear in every single posterior draw,
hence the average cosine similarity will be high. Note here that we are using cosine similarity,
rather than cosine distance, to capture topic credibility.

In other words,

CSmax
(
𝜙t

i ,Φ
s) = max[CS(𝜙t

i , 𝜙
s
1), … ,CS(𝜙t

i , 𝜙
s
K)], (11)

where

CS
(
𝜙i, 𝜙j

)
=

𝜙i ⋅ 𝜙j

||𝜙i||||𝜙j||
. (12)

Averaging across all other posterior draws,

CSmax(𝜙t
i ,Φ

1∶S) =
∑

s≠t CSmax
(
𝜙t

i ,Φ
s
⋅
)

S − 1
. (13)

A large average of the maximum similarities (i.e. minimum distances) across samples indicates
that the topic appears with high similarity across posterior samples. The credibility of a set of
topics is given by the average per-topic credibility.

5 POSTERIOR SUMMARY OF TOPIC DISTRIBUTIONS

Here we introduce a methodology that aims to summarise the posterior distribution of a topic
model by quantifying the recurrence of topic modes across posterior samples. Recurrent topics
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tend to appear several times across LDA posterior draws, showing higher credibility. To group
topics across samples that represent the same theme, we use a hierarchical clustering approach
that retrieves clusters of topical similarity. The resulting clusters are used to quantify topic pos-
terior recurrence of a clustered topic, which is ultimately used to identify and filter out topics of
high uncertainty.

We choose the hierarchical clustering method over other clustering techniques for three rea-
sons: (a) hierarchical clustering automatically provides a solution for any desired number of
clusters, allowing the user to interact with the clustering, (b) it is more flexible at allowing the
user to set different distance thresholds, (c) it gave consistently sensible and transparent results
in our experiments. In addition, clustering algorithms that require specifying a number of clus-
ters a priori showed lower coherence, since topics are forced to be merged even when they do not
share a similar theme.

5.1 Hierarchical clustering

Agglomerative hierarchical clustering (AHC) is a widely used statistical method that groups units
according to their similarity, following a bottom-up merging strategy. The algorithm starts with
as many clusters as input topics, and at each step, the AHC merges the pair of clusters with the
smallest distance. AHC finishes when all the units are aggregated in a single cluster or when
the distance among clusters is larger than a fixed threshold. AHC does not require the user to fix
the number of clusters a priori; instead, the clustering dendrogram can be ‘cut’ at a user’s desired
level, potentially informed by domain knowledge.

We use the AHC algorithm to aggregate and fuse topics from multiple posterior samples. To
quantify cluster similarity, we use CD and the average linkage method. We opt for CD since it has
outperformed correlation on human evaluation of topic similarity (Aletras & Stevenson, 2014)
and human rating of posterior variability (Xing & Paul, 2018). We opt for the average linkage
method since, empirically, it has worked better than single and complete linkage methods, that is,
single linkage tended to create an extremely large cluster of low coherence, and complete linkage
tended to create clusters of low distinctiveness. However, we slightly modify the algorithm to
merge only topics that come from different posterior samples and whose cosine distance is lower
than a user-specified threshold. In this manner, we avoid merging topics that belong to the same
posterior sample or that differ to such a large extent that merging them is meaningless.

5.2 Recurrent topics

The AHC retrieves a collection of clusters C1, … ,CN , which are represented by a clustered topic
𝜙k with a cluster size |Ck|, where k = 1, … N. The clustered topic is the average distribution of the
topics that share the same membership. The cluster size is the number of members, for example,
clustering 100 identical posterior samples of 50 topics would retrieve 50 clusters of 100 members
each. The cluster size also represents the uncertainty related to the clustered topic. For instance, a
cluster of size one indicates that its associated topic does not reappear in other posterior samples.
On the other hand, a recurrent topic would be associated with a cluster with large cluster size,
indicating that the topic consistently reappears across multiple samples. Thus, we measure the
recurrence of a topic by its cluster size:

recurrence(𝜙i) = |Ci|. (14)
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Then, subsets of clustered topics filtered by their recurrence are evaluated to identify a subset
of clustered topics with high credibility. As we will show in the next section, cluster size as a
measure of topic recurrence leads to subsets of better topic quality.

6 APPLICATION TO GROCERY RETAIL DATA

We apply topic models in the domain of the grocery retail industry, where topics are distributions
over a fixed assortment of products and transactions are described as mixtures of topics. We anal-
yse grocery transactions from a major retailer in the United Kingdom. Transactions are sampled
randomly, covering 100 nationwide superstores between September 2017 and August 2018. The
training data set contains 36 thousand transactions and a total of 392,840 products and the test
data set contains 36 hundred transactions and a total of 38,621 products. Transactions contain at
least three products and 10 products on average. The product assortment contains 10,000 products
which are the most monthly frequent, ensuring the selection of seasonal and non-seasonal prod-
ucts. We count unique products in transactions, disregarding the quantities of repetitive products.
For instance, five loose bananas count as one product (loose banana). We do not use an equiva-
lent of stop words list (highly frequent terms), as we consider that every product or combination
of them tell different customer needs. We disregard transactions with fewer than three products
assuming that smaller transactions do not have enough products to exhibit a customer need. No
personal customer data were used for this research.

6.1 Human judgement on interpretability and similarity of topics

To aid interpretation of topics within the context of the application, meaningful NPMI and cosine
similarity thresholds need to be set. To this end, we carried out a user study to collect human
judgement on the interpretability of individual topics and the similarity between pairs of topics
and, ultimately, set empirical thresholds driven by users’ interpretations. Experts from a leading
data science company specialising in retail analytics participated in the user study.

Users were asked to evaluate topics using a discrete scale from 1 to 5. For similarity between
a pair of topics, a score of 1 refers to highly different topics, and a score of 5 refers to highly
similar topics. For interpretability, a score of 1 refers to highly incoherent topics, and a score
of 5 refers to highly coherent topics. Topics were obtained from 25,50,75,100,125,150-topic LDA
with hyper-parameters 𝛼 = [0.1, 0.01] and 𝛽 = [0.01, 0.001]. The range in the number of topics
corresponds to an initial belief of having no less than 25 topics and no more than 150 topics. Topics
were represented by the top 10 most probable products. One hundred and eighty-nine and 935
evaluations for topic distinctiveness and topic coherence were collected respectively.

Figure 1a compares human judgment on topic coherence against NPMI. Despite the subtle
positive correlation, there is no clear boundary of NPMI that can precisely identify coherent top-
ics. However, we observe that 100% of topics with NPMI≤ 0 were interpreted as highly incoherent,
65% of topics with NPMI ≥ 0.3 were interpreted as coherent, and 96% of topics with NPMI ≥ 0.5
were interpreted as highly coherent. We use these interpretations to guide the interpretation of
topic coherence in the next sections.

Figure 1b compares human judgment on topic similarity against cosine distance. Unsurpris-
ingly, the lower the cosine distance, the more similar the topic distributions are. We observe
that 70% of the pairs with CD ≤ 0.1 were interpreted as ‘Similar’ or ‘Highly similar’, and 95%
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(a) (b)

F I G U R E 1 Human evaluation on interpretability of individual topics and similarity between pairs of
topics. Figure 1a shows coherence scores against topic normalised pointwise mutual information (NPMI). Figure
1b shows similarity scores against the cosine distance between compared topic distributions. Blue error bars
show means and confidence intervals for the means. Interpreting results, a CD ≤ 0.1 indicates high similarity
while CD ≥ 0.5 indicates high dissimilarity. It is also observed NPMI ≤ 0 responds to incoherent topics and
NPMI ≥ 0.5 responds to highly coherent topics [Colour figure can be viewed at wileyonlinelibrary.com]

of pairs with CD ≥ 0.5 were interpreted as ‘Different’ or ‘Highly different. While 38% of pairs
were interpreted as ‘Similar’ or ‘Highly similar’ when 0.1 ≥ CD ≤ 0.3, indicating some degree
of topic similarity. Based on these results, we interpret topics with CD ≤ 0.1 as highly similar
and with CD ≥ 0.5 as highly dissimilar. We use these thresholds to guide interpretations of topic
distinctiveness and topic credibility.

6.2 LDA performance

We trained five LDA models with K = 25, 50, 100, 200, 400 topics, with a symmetric Dirichlet
hyperparameters 𝛼k = 3∕K and 𝛽v = 0.01. Note that

∑
k alphak = 3, which reflects the minimum

transaction size. 𝛽v = 0.01 is commonly used in the literature (Mimno et al., 2011; Newman et al.,
2011). For each model, four Markov chains are run for 50,000 iterations with a burn-in of 30,000
iterations; samples were recorded every 10 000 iterations obtaining 20 samples in total. As shown
in Appendix A, convergence of the Markov chains is satisfactory.

LDA models are assessed on the four aforementioned quality aspects. Perplexity measures the
generalisation of a group of topics, thus it is calculated for an entire collected sample. The other
evaluation metrics are calculated at the topic level (rather than at the sample level) to illustrate
individual topic performance.

Figure 2 shows the perplexity performance of LDA models. LDA samples of 50 and 100 top-
ics tend to have the best generalisation capability. As observed in Figure 3a posterior draws
with 25 and 50 topics show larger average NPMI, however, there are no highly coherent topics
(NMPI > 0.5). The posterior draws with 100 to 400 topics show some highly coherent topics, but
also show many less coherent topics with low NPMI values. In agreement with Chang et al. (2009),
posterior samples with higher coherence do not necessarily have the best likelihood, which is
the case of 25-topic LDA samples. Figure 3b illustrates two topics with low/high coherence. The
top topic displays product descriptions that do not show a specific meaning, purpose or customer
need. On the other hand, the bottom topic shows the soup topic, composed of branded soup items
that are frequently bought together due to promotional discounts.
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F I G U R E 2 The perplexity of latent Dirichlet allocation models with 25/50/100/200/400 topics. Each
boxplot represents the perplexity distribution over the 20 samples. Blue circles indicate the average perplexity;
standard errors are smaller than the marker size [Colour figure can be viewed at wileyonlinelibrary.com]

(a)

(b)

F I G U R E 3 (3a) Topic-specific normalised pointwise mutual information (NPMI) of
25/50/100/200/400-topic latent Dirichlet allocation model. Blue circles indicate the average NPMI; standard
errors are smaller than the marker size. (3b) shows (top) a topic with low coherence, (bottom) a topic with high
coherence. Topics are illustrated with the probability and description of the top 15 products. Brands have been
replaced by XXX [Colour figure can be viewed at wileyonlinelibrary.com]

In Figure 4a, we measure topic distinctiveness by computing the minimum cosine distance
among topics of the same posterior draw. If two topics exhibit the same theme, and thereby similar
distributions, then the cosine distance is close to 0. We observe that the majority of topics are
highly distinct (CD≥ 0.5) within their posterior draw. However, as expected, the larger the model,
the more topics with some degree of similarity (CD ≤ 0.3) as seen in LDA models with 100 to
400 topics. Figure 4b shows an example of two topics with some degree of similarity, both show
collections of produce and red meat.
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(a)

(b)

F I G U R E 4 (4a) Topic-specific minimum cosine distance (among topics of the same posterior draw). Blue
circles indicate the average minimum cosine distance; standard errors are smaller than the marker size. (4b)
shows two topics from a single Gibbs sample that show some similarity. Topics are illustrated with the probability
and description of the top 15 products. Brands have been replaced by XXX [Colour figure can be viewed at
wileyonlinelibrary.com]

In Figure 5a, we measure topic credibility by averaging the maximum cosine similarity
between a topic and the topics from the remaining posterior samples, so for each topic and each
sample, there is one maximum cosine similarity from each remaining posterior sample. If one
topic constantly appears across samples, then the average maximum cosine similarity tends to 1.
Vice-versa, if the topic is not part of other samples, then the maximum cosine similarity of each
sample tends to 0, so does its average maximum cosine similarity. We observe up to 36% of topics
with CSmax ≤ 0.5, indicating that they did not reappear in other posterior samples with high sim-
ilarity. Figure 5b shows the cosine similarity matrix between two posterior LDA samples of 100
topics. Topics have been ordered using a greedy alignment algorithm that tries to find the best
one-to-one topic correspondences as in (Rosen-Zvi et al., 2010). This plot indicates that around
one-fifth of the topics do not appear with some similarity CS ≥ 0.5 in the other posterior draw.
This implies that applying label-switching algorithms to resolve labelling for each posterior draw
would inevitably ‘match-up’ topics which are semantically dissimilar. Instead of averaging over
distinct modes, our methodology (described in the next section) would report separate clusters,
each with its own credibility, reflecting the frequency with which each mode appears.

7 CLUSTERING AND SELECTION OF RECURRENT TOPICS

In this section, we apply our methodology to summarise LDA posterior distributions and to quan-
tify topic recurrence. We will show that topic recurrence can aid the selection of topics with better
coherence, credibility and model generalisation. Since our goal is not to predict new baskets, but
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(a)
(b)

F I G U R E 5 (5a) Topic-specific average maximum cosine similarity. For each topic, the maximum cosine
similarity is calculated over the topics of a different posterior draw from two MCMC chains. Then, the average is
taken over all maximum values. When a topic is highly credible, it will frequently appear across posterior samples,
thus the average maximum cosine similarity tends to 1. Conversely, if a topic is highly uncertain and it does not
appear in other posterior samples, then the maximum cosine similarity for each sample would tend to zero. Blue
circles indicate the mean; standard errors are smaller than the marker size. (5b) shows the cosine distance
between topics of two posterior samples. Topics have been ordered using a greedy alignment algorithm that tries
to find the best one-to-one topic correspondences [Colour figure can be viewed at wileyonlinelibrary.com]

to understand the customer motivations; we do not aim to maximise perplexity, but to identify
recurrent and coherent topics while preserving reasonable perplexity.

We conduct three experiments with LDA samples with 50, 100 and 200 topics. In each exper-
iment, a bag of topics is formed from 20 samples that come from four separate Gibbs samplers.
From each chain, samples are obtained after a burn-in period (30,000 iterations) and recorded
every 5000 iterations to reduce autocorrelation. Computing perplexity is a computationally expen-
sive. Thus, we do not record the evaluation metrics at each clustering step. Instead, we evaluate
subsets of clustered topics obtained at different distance thresholds (cosine distance from 0 to
0.55 and every 0.05). We assume that topics with cosine distance ≥0.55 are too different, which
would render cluster merging meaningless. Credibility is measured by comparing one clustering
experiment against a second clustering experiment whose samples are recorded from four differ-
ent Gibbs samplers. We do not further explore LDA samples with 25 and 400 topics, the former
does not show a better variety of topic and the latter show worse perplexities.

Figure 6 shows the evaluation of subsets of clustered topics obtained from clustering 50-topic
LDA samples at different levels of topic recurrence, when the minimum cluster size is 1, 5, 10 and
20, representing the 5%, 25%, 50% and 100% of the samples. As observed in the perplexity plot (top
left), the subset with the lowest perplexity is the one at minimum cluster size 1 and cosine distance
0, this is the original bag of 1000 topics before merging. This subset has the lowest performance
in distinctiveness; thereby, using this subset is inefficient as it contains too many repetitive topics.
Subsets with minimum cluster size 1 and cosine distance 0.05−0.1 show increased perplexity
because the most credible topics are reduced to a small number of clusters in comparison to the
topics that have not been clustered. Since a symmetric prior is used to compute perplexity, the
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(a) (b)

(c) (d)

F I G U R E 6 Subset evaluation using cosine distance (varying from 0 to 1 with increments of 0.05) and
minimum cluster size (20, 10, 5 and 1). Clustered topics were obtained from clustering 20 samples of latent
Dirichlet allocation (LDA) with 50 topics. Vertical lines represent one standard error. Magenta lines show the
average measures (± one standard error) of the LDA samples [Colour figure can be viewed at
wileyonlinelibrary.com]

uncertain topics outweigh the credible topics. More interestingly, subsets of minimum clusters
size 5, 10 or 20 show significantly better perplexity, depending on the cosine distance threshold,
for instance, the subset of cluster topics with a minimum cluster size of 5 and at cosine distance
larger than 0.15. The coherence plot (top right) and distinctiveness plot (bottom left) show that
highly recurrent topics (with minimum cluster size 10) tend to be more coherent and distinctive.
We also observe that measures of coherence and distinctiveness decrease when including topics
of lower recurrence or when increasing the cosine distance (letting more clusters be merged, so
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F I G U R E 7 The number of clusters obtained at cosine distance (varying from 0 to 1 with increments of
0.05) and minimum cluster size (20, 10, 5 and 1). The magenta line shows the number of topics in the latent
Dirichlet allocation samples. For visualisation purposes, subsets larger than 100 clusters are not shown (subsets
with minimum size 1 and CD < 0.25) [Colour figure can be viewed at wileyonlinelibrary.com]

the new cluster grows in size). Interestingly, the credibility plot (bottom right) shows that the
most credible subsets are formed with clusters of size 10 or more. Subsets of a minimum cluster
size of 20 or cosine distance ≤0.1 are formed by a reduced number of clustered topics as shown
in Figure 7. These topics may not repeat with the same certainty in other samples, and therefore,
subsets with a small number of clusters tend to show high variability. Similar patterns are found
when clustering LDA samples with 100 and 200 topics as shown in Appendix B.

Figure 7 shows the number of clustered topics obtained by varying cosine distance thresholds
and minimum cluster size. Subsets with a minimum cluster size of 1 report a large number of
clusters (more than 100), which for visualisation purposes are not shown. Topics that reappear
in 20 samples are always fewer than 100 (number of topics of the LDA samples), confirming the
uncertainty and low credibility of some topics. Note that the number of clusters does not get
reduced up to 1 because the hierarchical clustering only merge clusters if their topics come from
different samples.

Based on this analysis, we select a subset generated by minimum cluster size 10 and 0.35
CD threshold. Minimum cluster size 20 may lead to greater coherence but lower perplexity and
vice-versa minimum cluster size 1 or 5 leads to better perplexity but worse coherence. After the
0.35 CD threshold, perplexity is no longer improved. Both thresholds are also used to select a
subset of clustered topics obtained from 100-topic LDA samples, and 0.45 CD for clustered topics
obtained from 200-topic LDA samples.

We repeat the three experiments with LDA samples with 50, 100 and 200 topics, but this time,
we allow merging of topics within the same posterior sample. This implies that the clustering
is no longer just a summary of the posterior distribution, but it is also, in effect, informing the
number of topics within LDA. This allows us to compare and interpret some of the behaviour of
the clustered topics from models with a large number of topics, as gathering similar topics from
the same and different samples will form more distinctive subsets of clustered topics.
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T A B L E 1 Generalisation, coherence, distinctiveness and stability metrics of latent Dirichlet allocation
(LDA) samples and subsets of clustered topics (HC-LDA and HC-LDA-WS) obtained from clustering LDA
samples with 50, 100 and 200 topics

Generalisation Coherence Distinctiveness Credibility

Perplexity NPMI CDmin CS𝐦𝐚𝐱

Model Topics Mean ± SE Mean ± SE Meanmin ± SE Mean ± SE

LDA-50 50 8.130 ± 0.003 0.325 ± 0.006 0.672 ± 0.020 0.769 ± 0.011

HC-LDA-50 52 8.079 ± 0.006 0.333 ± 0.006 0.580 ± 0.023 0.916 ± 0.014

HC-LDA-WS-50 50 8.083 ± 0.005 0.333 ± 0.006 0.601 ± 0.021 0.907 ± 0.014

LDA-100 100 8.131 ± 0.003 0.319 ± 0.006 0.674 ± 0.016 0.716 ± 0.009

HC-LDA-100 96 8.076 ± 0.006 0.333 ± 0.005 0.565 ± 0.021 0.890 ± 0.010

HC-LDA-WS-100 86 8.086 ± 0.005 0.331 ± 0.005 0.621 ± 0.018 0.882 ± 0.012

LDA-200 200 8.145 ± 0.003 0.302 ± 0.004 0.688 ± 0.011 0.644 ± 0.008

HC-LDA-200 198 8.078 ± 0.005 0.32 ± 0.004 0.555 ± 0.014 0.864 ± 0.007

HC-LDA-WS-200 145 8.132 ± 0.003 0.335 ± 0.005 0.664 ± 0.011 0.848 ± 0.011

In Table 1, we compare the performance of the selected subsets when topics from different
samples form a cluster (HC-LDA), and when topics from the same and different samples form a
cluster (HC-LDA-WS), against the average performance of the LDA models. As observed, subsets
of clustered topics show significantly lower measures of generalisation, larger topic coherence and
larger topic credibility than LDA inferred topics. Note that topic distinctiveness is not improved,
which might result from excluding highly distinctive non-recurrent topics. Allowing the merging
of topics from the same samples retrieves fewer topics, does not significantly improve perplexity
but increases the subset distinctiveness.

Different numbers of topics may retrieve similar performance. For example, Table 1 shows
that the subsets of clustered topics achieve similar average measures of perplexity, coherence
and credibility; LDA models with 50 and 100 topics show the same levels of perplexity, coher-
ence and distinctiveness. However, LDA samples with a large number of topics (and thereby
their derived clustered topics) cover a wider variety of topics, highlighting important customer
behaviours. For example, the Scottish topic illustrated in Figure 9h is only found in LDA samples
with 200 topics. Besides, clustered topics may be included in a subset derived from larger LDA
samples. For instance, Figure 8 shows that the clustered topics in HC-LDA-50 (obtained from
clustering 50-topic LDA samples) are also identified among the clustered topics in HC-LDA-100
(derived from 100-topic LDA samples). The latter is also identified among the clustered topics
in HC-LDA-200 (derived from 200-topic LDA samples). Thus, the analysis of clustered topics
obtained from LDA topics with a large number of topics may be warranted if the results reveal top-
ics of interest, and the application of our clustering methodology can alleviate poor generalisation
for the over-parameterised model.

8 TOPICS IN BRITISH GROCERY RETAIL

The analysis of topics and the products that together fulfil customers’ motivations convey cus-
tomer insights, that is, diet orientations, cooking from scratch, preference for specific drinks or
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(a) (b)

F I G U R E 8 Clustered topics correspondence between clustering of latent Dirichlet allocation samples with
50, 100 and 200 topics [Colour figure can be viewed at wileyonlinelibrary.com]

dishes, etc. For instance, Figure 9a presents the topic of ‘Organic Food’, Figure 9b shows ingre-
dients to cook an ‘Italian dish’ and Figure 9c highlights ingredients to prepare ‘Gin and Tonic’.
Along with these topics, other identified topics show vegetarian-friendly foods, free-from lac-
tose/gluten foods, ingredients for cooking Asian, Mexican or Indian recipes. In these examples,
topics gather products from different categories, that is, ice and tonic water are two categories
while tonic water and soda water are in the same category. Identifying combinations of products
from different categories may have useful and commercial implications in improving product rec-
ommendations, developing promotional campaigns, optimising assortments and planning shelf
space, etc.

In contrast to cooking from scratch, customers may prefer convenience foods such as
ready-to-eat meal promotions. For example, Figure 9d represents a ‘meal promotion’ composed
of a sandwich, a bottle of soda or water and a package of prepared fruit or crisps. Topics also
show that customers tend to choose products within the supermarket’s budget line or premium
line, for example, Figure 9e gathers products from a ‘budget line’ which offers products of a
lower price than branded substitutes. Pet-ownership or household composition can be illus-
trated by topics, for instance, Figure 9f lists ‘dog goods’, including food, meat and cleaning items.
Other topics illustrate baby-related foods and large size items indicating household composition.
Topics reveal customer’s decision drivers, which can aid further customer analysis such as cus-
tomer segmentation and customer profiling, to improve customer experience and to build brand
loyalty.

Topics reveal customer motivations that are driven by specific events, geography or season-
ality. For instance, Figure 9g depicts the ‘roast dinner’ which is a traditional British main meal
that is typically served on Sunday. Other event-specific topics manifest customers’ motivations
such, as having a picnic, buying a gift (flowers and chocolates), or barbecue. Topics also exhibit
specific shopping themes that are driven by products that are available or highly preferred in cer-
tain locations or at specific periods. For example, Figure 9h reveals Scottish-branded products in
the ‘Scottish topic’. Similarly, a Northern Irish topic includes packed and locally supplied foods.
Figure 9i shows the ‘Christmas essentials’ topic which is characterised by mince pies, sparkling
grape juice, produce and snacks. Easter and Halloween are also depicted by topics that contain the
icons: chocolate egg and pumpkin respectively. Commercially speaking, identifying events and
geographical/seasonal patterns may inform marketing campaigns and support the optimisation
of product assortment.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

F I G U R E 9 Topics in the UK grocery retail market baskets. Each topic is characterised by the 15 products
with the largest probabilities. Probabilities and products are sorted in descending order. Brand names have been
replaced by XXX for anonymity purposes. NPMI > 0 is associated with coherent topics. Size is the number of
posterior samples the topic has been found in. Topics reflect a variety of shopping motivations, that is, diet
orientations, cooking from scratch, ready-to-eat meals, preference for budget/premium product lines, pet
ownership/household composition, specific events, geography and seasonality. Topics may also be associated
with consumption of alcohol/fat/salt/sugar

Our approach allows us to provide measures of uncertainty for each inferred topic. For
example, the topics ‘Organic food’, ‘Italian dish’ appeared in every single posterior draw.
Therefore, corresponding commercial decisions can be made with relative confidence in these
shopping themes. On the other hand, less frequent topics can be identified. For instance, the top-
ics ‘Scottish’ and ‘Christmas essentials’ appeared 19 of 20 and 15 of 20 times, respectively, within
the 20 LDA posterior draws. The lower frequency of these topics might be explained by the small
representation of them in our data due to their regional/seasonal nature. More importantly, naive
averaging of posterior draws would have damaged these topics by merging them with an irrelevant
topic.

Understanding grocery consumption not only assists marketing practices but also
opens up new avenues for social research. Uncovering consumption patterns related to
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alcohol (Figure 9c)/fat/sugar/salt through topic modelling is scalable, low-cost and allows the
identification of specific products and their characteristics. Thus, topic modelling may help the
conduction of dietary studies that are typically limited to survey data such as food frequency
questionnaires and open-ended dietary assessment (Aiello et al., 2019; Einsele et al., 2015; Wang
et al., 2014; Wardle, 2007).

9 CONCLUSION

In this paper, we expand the evaluation process of LDA to include qualitative aspects such as
topic coherence, topic distinctiveness and topic credibility along with model generalisation. In
addition, we propose a methodology that post-processes LDA models, to summarise the entire
posterior distribution of an LDA model into a single set of topical modes. Our approach identifies
recurrent topics using meaningful distance criteria and allows the user to assess topic credibil-
ity. The distance criteria were developed through a customised survey which we carried out with
experts in the field of grocery retailing; these helped us evaluate and set thresholds that assist the
evaluation of interpretability and similarity of grocery retail topics. Empirically, we showed the
advantages of the proposed methodology in terms of capturing topic uncertainty and enhancing
coherence and credibility. We identified credible and coherent topics that exhibit a variety of shop-
ping motivations, that is, diet orientations, cooking from scratch, specific events, pet ownership,
geography, seasonality, etc. Topics can be associated with alcohol/fat/salt/sugar consumption,
which may provide new venues for sociological research. Finally, our methods focused on the con-
text of LDA models. Summarising multiple posterior draws from a mixture model, however, is a
challenge that extends beyond LDA. Our methods can be implemented beyond LDA by replacing
the cosine distance with other measures relevant to each context.
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APPENDIX A. MCMC CONVERGENCE

For each LDA model, four Markov chains are run for 50,000 iterations with a burn-in period of
30,000 iterations. We evaluate convergence using the potential scale reduction factor R̂ (Gelman
et al., 2013). When R̂ is near 1, we can assume that samples approximate the posterior distribu-
tion. Values of R̂ below 1.1 are acceptable. Figure A1 shows the trace plot for the log-likelihood
(measured at every 10 iterations) of LDA with 50, 100, 200 and 400 topics. We calculate the poten-
tial scale reduction factor using four chains and 8000 samples. Chains for LDA with 50, 100, 200
topics seem to be converged. The chains for LDA with 400 topics need to be further trained, how-
ever, preliminary evaluation of the topics from these chains already show lower performance than
topics from chains with fewer topics.

APPENDIX B. CLUSTERING OF TOPICS

Figures A2 and A3 show the evaluation of subsets of clustered topics obtained from 20 LDA
posterior samples with 100 and 200 topics.

(a) (b)

(c) (d)

F I G U R E A1 Markov Chains of latent Dirichlet allocation with 50, 100, 200 and 400 topics. R̂ is the
potential scale reduction factor [Colour figure can be viewed at wileyonlinelibrary.com]
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(a)

(a) (b)

(c) (d)

(a) (b)

(c) (d)

(b)

F I G U R E A2 Subset evaluation using cosine distance (varying from 0 to 1 with increments of 0.05) and
minimum cluster size (20, 10, 5 and 1). Clustered topics were obtained from clustering 20 samples of latent
Dirichlet allocation with 100/200 topics. Vertical lines represent one standard error. Magenta lines show the
average measures (± one standard error) of the LDA samples [Colour figure can be viewed at
wileyonlinelibrary.com]
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(a)

(b)

F I G U R E A3 The number of clusters obtained at cosine distance (varying from 0 to 1 with increments of
0.05) and minimum cluster size (20, 10, 5 and 1). The magenta line shows the number of topics in the latent
Dirichlet allocation samples. For visualisation purposes, subsets larger than 200/400 clusters are not shown
[Colour figure can be viewed at wileyonlinelibrary.com]
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