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Appendix A, Estimation strategy: technical details

In the appendices, we present the technical details of the estimation procedure for

a dynamic factor model with an imposed block structure and missing data. For the

technical analysis we rewrite the model adopting the vectorized notation:

yt = ΛGFG
t +

D∑
d=1

Λd Fd
t + ξt

FG
t = AG(L) FG

t + uG
t

Fd
t = Ad(L) Fd

t + ud
t d = 1, . . . , D

(1)

The model is analyzed allowing for an arbitrary number of common factors (K) and

an arbitrary number of factors per block (Kd with d = 1, . . . , D)1. We drop here the

multi-index notation used in the paper and rely on two indices only, running over the

number of firm-destination pairs, i = 1, . . . , N and over the time steps t = 1, . . . , T .

Each block includes nd flows and N =
∑D

d=1 nd. Defining the (rG × 1) global factors

vector FG
t and the D destination specific (rd × 1) factor vectors Fd. ΛG and Λd are

loading matrices of size (N × rG) and (N × rd). The dynamics of the factor is encoded

in the matrix polynomials AG(L) and Ad(L) of order pG and pd respectively. For the

sake of the synthesis, throughout we limit the exposition to the case pG = pd = 1 and

no serial correlation of the idiosyncratic component.

Estimation algorithm

Given the formulation (1) and assuming gaussianity of the idiosyncratic components

and the innovations ξt ∼ N (0,Σξ), uc
t ∼ N (0,ΣuG

), ud
t ∼ N (0,Σud

), together with

their mutual independence, the log-likelihood given the observed series and the latent

1 The estimation of the model (1) is obtained taking K = Kd = 1 ∀d, thus restricting the analysis

to one global factor and D destination-specific factors, one per each destination. Notice that while

preserving the notation of the main text the index d can generally run over any partition of the

cross-section into blocks. Thus in the following we will more generally refer to blocks.
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factors is:

l(Y, F ; θ) ≃ −T − 1

2
log |ΣuG | − 1

2
tr

[
(ΣuG

)
−1

T∑
t=2

(
FG

t −AGFG
t−1

) (
FG

t −AGFG
t−1

)′]

−
D∑

d=1

[
T − 1

2
log |Σud|+ 1

2
tr

[
(Σud

)
−1

T∑
t=2

(
Fd

t −AdFd
t−1

) (
Fd

t −AdFd
t−1

)′]]

− T − 1

2
log |Σξ| − 1

2
tr

[
(Σξ)

−1
T∑
t=1

(yt −ΛFt) (yt −ΛFt)
′

]
(2)

Where Λ is the (N × (rG +
∑

d r
d)) composed loading matrix: Λ =

(
ΛG Λ1 · · · ΛD

)
related to the composed factor vector Ft = (FG

t F1
t · · · FD

t ). We recall that [Λd]is = 0

if the index i do not belong to the block of series relative to destination d. Then,

the two steps procedure is started updating sequentially i) the factors’ estimates given

the model’s parameters (E-step), ii) the parameters estimates given the estimates of

factors (M-step). This defines a sequence of increasing log-likelihood values

l
(
Y, F (0), θ(0)

)
→ l

(
Y, F (0), θ(1)

)
→ l

(
Y, F (1), θ(1)

)
that needs a proper initialization and stops when an appropriate convergence condition

(we adopt a standard in the literature see Bańbura and Modugno, 2014; Barigozzi and

Luciani, 2019). We define the k-th increment as:

∆lk =
|l
(
Y, F (k+1), θ(k+1)

)
− l
(
Y, F (k), θ(k)

)
|

(|l (Y, F (k+1), θ(k+1))|+ |l (Y, F (k), θ(k))|) /2
(3)

and stop the algorithm at k = k such that ∆lk ≤ ε, where ε is a predefined tolerance

threshold. Throughout this paper, for all the estimation runs we settle ε = 10−4.

This is sufficient to get an estimation before the maximum iterations limit is reached

kmax = 100.
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Initialization algorithm.

The procedure is initialized computing the sequential least square estimator proposed

by Breitung and Eickmeier (2014) on a ‘complete’ matrix of data and is composed of

the following steps:

1. We fill the missing values of the original dataset with series medians, then we

smooth the outcome taking the moving averages of the series so that we can

work with the filled matrix Y .

2. As proposed by, we apply the CCA estimator to initialize the global factors.

Within a block d, this consists in estimating by PC rd∗ = rG + rd yielding

the rd∗-vectors of factors F∗
d,t. Then we search the global components among

the rG maximally correlated common components between the blocks: cycling

all the couples of blocks v, w, we apply a Canonical Correlation Analysis to

determine the linear combinations that maximizes the correlation between the

quantities2: τ ′vF
∗
v,t, τ

′
wF

∗
w,t. Thus, we have a first estimator of the global factors

F̂G
t = (τ 1,

′
v F∗

v,t, . . . , τ
rG,′
v F∗

v,t)
′

.

3. We solve a least square problem to compute the block specific factors by means

of principal components. In other words, principal components is applied to the

residuals of the regression yt ∼ ΛGF̂G
t .

4. A sequential least square estimator is applied starting from the estimates of the

global and local factors of the previous step. Also in this case we rely on a

sequential procedure iterating over two main steps. At step k, given the factor

2 The number of possible pairs for the CCA is D2(D− 1)/2. The problem is solved for each pairs of

blocks and then the pair that maximises the CCA is chosen.
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estimates FG(k−1)
t ,Fd(k−1)

t , via the block-level regressions3:

ιd(yt) = ιd(Λ
G) F̂

G,(k−1)
t + ιd(Λ

d) F̂
d,(k−1)
t + ϵdt . (4)

one obtains the estimates of the relative factor loadings so that the estimated

block-matrix can be composed Λ̂(k). Then the (k+1)-th update of the estimators

of the factors are obtained from the twin least square regression of yt on Λ(k).

The iteration procedure stops when a convergence condition analogous to (3) is verified.

The last estimates of factors and parameters are used to start the EM algorithm.

E-step. From model parameters to factors: Kalman Filter and Smoother

algorithms

Throughout, we work with the quantities Ft = (FG
t F1

t · · · FD
t ) and A =

blkdiag(AGA1 · · · AD). At iteration k, KF and KS are two sequential procedures

on the time dimension t = 1, . . . , T . These are used to compute the KF esti-

mator, Ft|t = Projθ[Ft|yt] and the associated mean squared error (MSE), Pt|s =

Eθ[(Ft − Ft|s)(Ft − Ft|s)
′|ys]. When s = t and s = T we obtain respectively the KF

MSE and KS MSE. First we have to state the initial conditions F0|0 and P0|0. At

the very first step we set the same conditions as Barigozzi and Luciani (2019), for the

following EM iterations one can settle P(k)
0|0 = P

(k−1)
1|T ) (see Durbin and Koopman, 2012,

for details). From now on, to deal with missing values, parameters are restricted in

each time step to the portion with available information. Hence, the “NA” index or

suffix denotes the matrix/vector cleaned of rows, columns or elements corresponding

to NA entries at time t. Moreover to keep the notation as clean as possible we omit

the step-index for the quantities associated with the factor.

3 Here the operator ιd(·) is applied to an object with N rows to restricting to the nd rows relative

to block d.
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We have the filtering sequential equations:

Ft|t−1 = A(k)Ft−1|t−1 ; Pt|t−1 = A(k)Pt−1|t−1A
(k)′ +Σu(k)

Ft|t = Ft|t−1 +Pt|t−1Λ
(k)
NA,t

′
G−1

t

(
yNA
t −Λ

(k)
NA,tFt|t−1

)
Pt|t = Pt|t−1 +Pt|t−1 Λ

(k)
NA,t

′
Q−1

t Λ
(k)
NA,tP

′
t|t−1

(5)

where Q
(k)
t = Λ

(k)
NA,tPt|t−1Λ

(k)
NA,t

′
+ Σ

ξ(k)
NA,t. With the estimates of Ft|t and Pt|t we can

initialize the KS to obtain the smoothed estimates Ft|T and (Pt|T for t = T, . . . , 1 via

the inverse recursion, starting from FT |T and PT |T :

Ft|T = Ft|t +Pt|tA
(k)

′

P−1
t+1|t

(
Ft+1|T − Ft+1|t

)
Pt|T = Pt|t +Pt|t A

′
P−1

t+1|t
(
Pt+1|T −Pt+1|t

) (
Pt+1|t A

(k)
′

P−1
t|t

)′ (6)

To set up the M-step we will use the KS estimates only, in order to keep the

notation as concise as possible we will denote F̃t = Ft|T , P̃t = Pt|T and

P̃−1,t = Pt|t (Pt|tA
(k)

′

P−1
t|t )

′

+ (Pt|tA
(k)

′

P−1
t+1|t) (Pt|T −A(k)Pt|t) (Pt|tA

(k)
′

P−1
t|t ) (7)

The latter three quantities are then used to compute4:

Eθ(k)

[
FtFt−1

′ |ΩT

]
=

T∑
t=2

F̃tF̃
′
t−1 + P̃−1,t ; Eθ(k) [FtFt−1

′|ΩT ] =
T∑
t=1

F̃tF̃
′
t−1 + P̃−1,t

(8)

M-step. From latent factors to model parameters

Given the initial values, the EM algorithm is started. The proposed solution consist

in the maximixation of the expectation of the loglikelihood, given an ansatz of the

4 In the following we will equally refer to the quantities restricted to the space of global and local

factors: F̃G
t , F̃ d

t , P̃
G
t, P̃ d

t, P̃G−1,t, P̃ d−1,t
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parameters5. In practice, θ(k+1) are the solutions to the system of first order conditions

∂
∂θ
Eθ(k)

[
l(Y, F (k), θ)|ΩT

]
= 0 where ΩT denotes the available information that in our

application is constrained by the presence of missing values in the observed data. From

the explicit form of l we get6:

ÂG,(k+1) =

(
T∑
t=2

F̃G
t F̃G

′
t−1 + P̃G−1,t

)(
T∑
t=2

F̃G
t−1F̃G

′
t−1 + P̃G

t

)−1

(9)

Q̂G,(k+1) =
1

T

(
T∑
t=2

F̃G
tF̃G

′
t + P̃G

t

)
− ÂG,(k+1)

T

(
T∑
t=1

F̃G
t F̃G

′
t−1 + P̃G−1,t

)′

(10)

The derivation of the updated estimates for the loadings matrix is quite a complex

task, mainly because the matrix with the incomplete observations enters the solution

of the first-order condition. One way to see this step is to calculate Λ as the NA-

corrected OLS solutions of the block-by-block regressions (see Bańbura and Modugno,

2014, pag. 138, eq. (11))78

yb
t = ιb(yt) = ιb(Λ

G)F̃G
t + ι(Λd)F̃d

t + vt d = 1, . . . , D (11)

vec
(
ιd(Λ

G)|ιd(Λd))
)
=

(
T∑
t=1

F̃Gd
t F̃Gd

t
′ ⊗ IndNA

t

)−1

vec

(
T∑
t=1

yd,NA
t F̃

′

t

)
(12)

where the matrix F̃Gd
t = (F̃G

t F̃ d
t ). This step concludes with the covariance matrix of

idiosyncratic terms that is estimated only in its diagonal elements (in line with the

5 Throughout the section we give some fundamental formulas without deriving it. The explicit

derivation are generalization of Bańbura and Modugno (2014) and Barigozzi and Luciani (2019) to

the case of block-DFMs.

6 We give the formulas only for the common factors, yet those for the local factors are equivalent.

7 In line with the notation introduced above, IndNA
t denotes a diagonal matrix with ones when the

corresponding element is available in the cross section t and a zero when it is not.

8 Here again we denote ιd(Λ
d) as Λd
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eq.(12) at p. 138 of Bańbura and Modugno (2014)):

diagΣ̂ξ
(k+1)

=
1

T

T∑
t=1

(
yNA
t − IndNA

t Λ̂(k+1) F̃t

)(
yNA
t − IndNA

t Λ̂(k+1) F̃t

)′
+

IndNA
t Λ̂(k+1) P̃t Λ̂

(k+1)′ IndNA
t +

(
In − IndNA

t

)
diagΣ̂ξ

(k) (
In − IndNA

t

)
(13)

Appendix B, Estimation strategy: finite sample properties

from Monte Carlo simulations

The theoretical properties of the QML estimator for DFMs have been thoroughly

explored in the seminal work of Doz et al. (2012) and in more recent papers (see

Barigozzi and Luciani, 2019). Those studies openly state the possibility to model a

block structure for DFMs, but devote less attention to the implications of modelling

a block structure for datasets with arbitrary patterns of missing values, on the lines

Bańbura and Modugno (2014) for ordinary DFMs. In this appendix, we answer some

of the natural questions regarding the estimation methodology applied in this paper

and assess its performances varying the structural conditions of the data generating

process (also DGP in the following). Throughout, the data is simulated according to

(1) with a set of benchmark specifications, summarized in these few points:

• We limit the evolution of the rG global factors to a VAR process of order one

(pG = 1). The matrix ruling the process is generated as in Barigozzi and Luciani

(2019) according to the expression A = κÃ
(
||Ã||

)−1

, where [Ã]jj ∼ U [0.5, 0.8],

while [Ã]jk ∼ U [0, 0.3], and κ = 0.59. The dynamics of the rb local factors is

simulated with the same characteristics.

• We simulate the data taking either homogeneous or heterogeneous block dimen-

sions ({nd} for d = 1 . . . , D). With the former specification we intend that all

the nd are equal when possible, i.e. when n = 0 (mod nd), or differ of few units.

9 Here || · || denotes the Frobenius norm.
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Heterogeneous blocks are generated selecting a D-tuple at random among all the

(n1, . . . , nD) s.t.
∑

d n
d = n.

• Both factor loadings relative to the global and the local factors are simulated

from a normal distribution. This means that
[
ΛG
]
ij

iid∼ N (0, 1), while
[
Λd
]
ij

iid∼

N (0, 1) if i ∈ Id and
[
Λd
]
ij
= 0 if i /∈ Id.

• The innovations to global and block-specific factors are simulated with nor-

mal, Student-t, Laplace or Asymmetric Laplace distributions10. Namely,

uG
t

iid∼ N (0rG , IrG) and ud
t

iid∼ N (0rd , Ird) , ∀d, or uG
t

iid∼ t3 (0rG , IrG) and

ud
t

iid∼ t3 (0rd , Ird) ∀d, or uG
t

iid∼ L (0rG , IrG) and ud
t

iid∼ L (0rd , Ird) , ∀d, or

uG
t

iid∼ AL (0rG , IrG , κ) and ud
t

iid∼ AL (0rd , Ird , κ) , ∀d.

• The idiosyncratic components can be cross-correlated but the autocorrelation

is not modelled. To measure the cross correlation the idiosyncratic compo-

nents distributes as ξt
iid∼ N

(
0n,Σ

ξ
)

or iid∼ t3
(
0n,Σ

ξ
)

(or ξt
iid∼ L

(
0n,Σ

ξ
)
,

or ξt
iid∼ AL

(
0n,Σ

ξ, κ
)
), where the elements of the covariance matrix are such

that
[
Σξ
]
ii
∼ U [0.5, 1.5] and

[
Σξ
]
ii
∼ τ |i−j|, defining a Toeplitz matrix where

the magnitude of the paired correlations is ruled by τ .

• The noise-to-signal ratio is controlled by scaling the common component χ̃i,t =

1
ωi
χi,t

√
Var(ξi,t)
Var(χi,t)

where ωi is drawn from a uniform distribution centered around

the parameter ω (U([ω − 0.2, ω + 0.2])).

• After constructing the data matrix Y we remove at random a fraction δ (in [0, 1))

of elements.

For each experiment we consider a fixed number of replications simulating a fixed

number of data matrices and then run the estimation procedure. As already noticed

10 While the first distributions are common, it might be useful to explicitly define the Asymmetric

Laplace distribution AL(µ,Σ, κ) through its probability density function fµ,Σ,κ(x)(x1, . . . , xk) =

2ex
′Σ−1µ

(2π)κ/2|Σ|0.5

(
x′Σ−1x

2+µ′Σ−1µ

)(2−κ)/4

K 2−κ
2

(√
(2 + µ′Σ−1µ)(x′Σ−1x)

)
, with K 2−κ

2
is the modified Bessel

function of the second kind.
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even if the data are generated from a range of distributions and the covariance matrix

has the generic Toeplitz form defined above, we estimate the model under gaussianity

and independence of the idiosyncratic terms, which is a misspecified model. This will

also serve to test its robustness with respect to the misspecification.

In order to evaluate the performance of the estimator we analyze the estimated factors,

the estimated factor loadings or the estimated common components χ̂it =
[
Λ̂

′
F̂t

]
i

and compute the trace statistics against the true values and take the averages over the

replications. For the vectors of the common components we take into account the mean

standard error with respect to the true value: MSEχ = 1
nT

∑n
i=1

∑T
t=1 (χ̂it − χit)

2

Notice that the trace statistic takes values in [0, 1] and that the closer it is to one the

better is the approximation of the true value. Clearly, the interpretation of the MSE

goes in the opposite direction, as it indicates a better approximation when its value

is low in the domain of the positive reals.

In the context outlined, we first compare the estimated outputs with the true

values. Table 1 shows that it is possible to get satisfactory estimates of the factor

space even in extreme cases (high shares of missing values) for large cross-sections and

as the number series is high within each block. In a sense, the blessing of dimensionality

helps contain the negative effects of missing information. The presence of non-modelled

cross-correlation seems to have a mild impact on the estimations, even for high levels

of τ , biting more as the number of series in some of the blocks is limited.

Block-estimators

Here we study our estimator, hereafter BQML estimator in short, in comparison with

the estimator proposed by Breitung and Eickmeier (2014) (EB estimator in the follow-

ing), looking at the performances of the two methods under different model’s design:

spanning from an excess of residual cross-correlation of the idiosyncratic component

to the characteristics of the block structure.

We furthermore show the benefits of the possibility to run the estimation procedure

11



TABLE 1
Simulation results - BQML estimates

δ = 0 τ = 0.1 δ = 0 τ = 0.4 δ = 0 τ = 0.8

T n D TSΛ TSF MSEχ TSΛ TSF MSEχ TSΛ TSF MSEχ

100 100 2 0.7152 0.9781 0.7899 0.7364 0.9813 0.7631 0.7441 0.9719 0.7403
100 1000 2 0.7142 0.9959 0.7614 0.7156 0.9962 0.7574 0.7220 0.9963 0.7338
100 1000 10 0.7402 0.9900 0.7171 0.7447 0.9896 0.6966 0.7528 0.9878 0.6761
100 1000 20 0.7435 0.9836 0.7232 0.7474 0.9831 0.7081 0.7547 0.9737 0.7019
100 2000 2 0.7213 0.9969 0.7469 0.7138 0.9971 0.7566 0.7281 0.9968 0.7250
100 2000 10 0.7384 0.9936 0.7069 0.7433 0.9935 0.6920 0.7509 0.9930 0.6807
100 2000 20 0.7404 0.9905 0.7109 0.7449 0.9905 0.6917 0.7516 0.9885 0.6775
150 100 2 0.7255 0.9787 0.7674 0.7295 0.9824 0.7722 0.7324 0.9687 0.7747
150 1000 2 0.7138 0.9972 0.7635 0.7196 0.9973 0.7476 0.7175 0.9969 0.7538
150 1000 10 0.7422 0.9910 0.7084 0.7495 0.9907 0.6898 0.7571 0.9887 0.6669
150 1000 20 0.7476 0.9838 0.7134 0.7508 0.9831 0.6961 0.7589 0.9730 0.6903
150 2000 2 0.7070 0.9980 0.7702 0.7134 0.9979 0.7637 0.7118 0.9981 0.7625
150 2000 10 0.7435 0.9949 0.6966 0.7478 0.9950 0.6828 0.7556 0.9945 0.6631
150 2000 20 0.7450 0.9912 0.6927 0.7486 0.9911 0.6805 0.7569 0.9890 0.6653
200 100 2 0.7268 0.9812 0.7792 0.7236 0.9812 0.7913 0.7470 0.9743 0.7298
200 1000 2 0.7131 0.9977 0.7669 0.7156 0.9978 0.7584 0.7151 0.9976 0.7522
200 1000 10 0.7458 0.9914 0.6971 0.7512 0.9911 0.6840 0.7600 0.9893 0.6583
200 1000 20 0.7476 0.9837 0.7061 0.7526 0.9829 0.6958 0.7595 0.9729 0.6893
200 2000 2 0.7083 0.9985 0.7744 0.7132 0.9986 0.7632 0.7144 0.9985 0.7560
200 2000 10 0.7445 0.9954 0.6906 0.7499 0.9953 0.6741 0.7583 0.9948 0.6566
200 2000 20 0.7472 0.9915 0.6898 0.7516 0.9913 0.6730 0.7603 0.9894 0.6567

δ = 0 τ = 0.1 δ = 0.75 τ = 0.1 δ = 0.9 τ = 0.1

T n D TSΛ TSF MSEχ TSΛ TSF MSEχ TSΛ TSF MSEχ

100 100 2 0.7407 0.9656 0.7781 0.7106 0.9235 0.9095 0.4151 0.5646 2.5081
100 1000 2 0.7336 0.9943 0.7165 0.7159 0.9875 0.8708 0.6057 0.9573 1.7641
100 1000 10 0.7349 0.9815 0.7400 0.7161 0.9608 0.8286 0.6018 0.8523 1.5459
100 1000 20 0.7358 0.9678 0.7616 0.7182 0.9314 0.8659 0.5740 0.7557 2.1724
100 2000 2 0.7296 0.9961 0.7277 0.7091 0.9889 1.1536 0.5851 0.9608 2.8379
100 2000 10 0.7321 0.9895 0.7357 0.7156 0.9793 0.7940 0.6151 0.9194 1.6059
100 2000 20 0.7329 0.9826 0.7404 0.7158 0.9639 0.8187 0.5892 0.8625 8.6763
150 100 2 0.7401 0.9672 0.7760 0.7333 0.9262 0.8673 0.6252 0.7331 32.3138
150 1000 2 0.7376 0.9957 0.7074 0.7270 0.9913 0.7422 0.6860 0.9765 0.9080
150 1000 10 0.7402 0.9827 0.7248 0.7275 0.9636 0.7891 0.6787 0.8836 1.0466
150 1000 20 0.7420 0.9675 0.7481 0.7310 0.9315 0.8259 0.6699 0.7930 1.3204
150 2000 2 0.7366 0.9972 0.7099 0.7278 0.9956 0.7416 0.6864 0.9803 0.9436
150 2000 10 0.7378 0.9908 0.7146 0.7280 0.9812 0.7582 0.6834 0.9403 0.9841
150 2000 20 0.7402 0.9832 0.7236 0.7279 0.9648 0.7859 0.6788 0.8895 1.0593
200 100 2 0.7475 0.9666 0.7440 0.7377 0.9289 0.8345 0.6899 0.7927 1.2493
200 1000 2 0.7402 0.9962 0.6998 0.7309 0.9900 0.7368 0.7004 0.9754 0.8543
200 1000 10 0.7442 0.9829 0.7063 0.7353 0.9644 0.7646 0.7023 0.8952 0.9493
200 1000 20 0.7457 0.9672 0.7371 0.7364 0.9315 0.8064 0.6976 0.8072 1.0764
200 2000 2 0.7346 0.9979 0.7131 0.7341 0.9961 0.7177 0.7040 0.9866 0.8241
200 2000 10 0.7417 0.9911 0.7055 0.7339 0.9820 0.7393 0.7046 0.9472 0.8724
200 2000 20 0.7433 0.9832 0.7110 0.7346 0.9650 0.7611 0.7012 0.8984 1.3568

Note: The estimation evaluated with respect to the true model’s parameters. The simulation
parameters not explicitly stated are: µ = 0.5, ξt ∼ N (0,Σξ), ω = 0.5, rG = 1, rd = 1∀d, η = 0.2.
Blocks are homogeneous.
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in the presence of missing values. We compare the BQML estimator with the EB

estimated on a dataset where the few missing observations are imputed or the series

deleted from the dataset. Notice that the EB estimator with imputed data is in fact

used to initialize the BQML algorithm (see Appendix A). When dealing with missing

values in the dataset, rather than a fair horse race between competing methodologies,

this test aims to measure the effective gains of applying the EM algorithm as a cor-

rection to the EB estimator on imputed datasets.

The following steps compose the simulation experiment: i) the data are simulated

from the benchmark model varying along a set of parameters: the number of series,

the number of observations, the number of blocks and their composition, the level of

cross-correlation, the number of factors and the share of missing values. ii) Then the

EB estimator and the BQML estimator are applied to the generated dataset and their

results are compared. Notice that we take the ratio between the trace statistics of the

BQML estimators (against the true model) with respect to the trace statistics (against

the true model) of the EB estimator. To ease readability the ratio for the MSE of the

common components is inverted so that the direction of the change has an analogous

interpretation for the three considered indicators.

Table 2 compares EB and BQML performances for different values of idiosyncratic

cross-correlation. Here the parameter τ models the correlation in excess to the one

generated by local factors. We see that the two models reconstruct the factors space

with the same level of accuracy for different time series and blocks dimensions. In a

sense, the gain we obtain running the EM algorithm on top of an initialization based

on the EB estimator is limited. However, the advantages become more evident when it

comes to the estimation of the factor loadings and the common component, improving

the estimates of 30% or more in most of the cases (reaching 60% at the highest points

obtained for very large cross-sections). These observations almost equally apply to a

context of homogeneous and heterogeneous, with BQML improving the results as the

cross-section increases and the structure of the blocks is heterogeneous. If we look at

table 3 having in mind the absolute efficiency measures of table 1, we infer that our
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methodology provides good approximations of the factors and the loadings even in the

most extreme cases, while any estimate based on data imputation or removal would

fail. A few exceptions are the outcomes at the bottom-right of table 3, signalling that

the 90% of missing values is the very limit of the methodology, at least for a setting

with a number of observations and variables analogous to that considered. This fact is

relevant for practical applications, for which time series frequency and numerosity are

not linearly linked to the missing values share: in that context, increasing the number

of variables or taking the maximal frequency might inflate the value of δ above the

critical threshold. These considerations explain the choices made while preparing the

dataset as presented in Section 3.

Fat-tailed symmetric and asymmetric distributions.

A major constraint to the theoretical derivation of the BQML estimator is that in

the maximization step, an explicit form of the maximum likelihood is derived under

gaussianity of the idiosyncratic component and of the innovations of the autoregressive

processes ruling the factors’ dynamics. This assumption, together with the misspeci-

fication of the covariance matrix of the idiosyncratic terms, is crucial in order to get a

closed-form solution for the estimators of the parameters, to avoid proliferation of the

parameters and to reduce consistently the computational complexity. On the latter,

however, in many cases of interest, the gaussianity of the idiosyncratic components and

the factors’ innovations is not granted. Therefore, we present two simulation exercises

using the benchmark model: the first one imposing the distribution of the idiosyncratic

components to be normal, Student-t or Laplace distributed; the second one, drawing

the idiosyncratic components from an Asymmetric Laplace distribution with varying

skewness (κ = 1.5,2,3). The efficiency of the estimator in this context is analyzed both

in absolute terms and relative to the EB estimator (see table 4 and 5).

As for the first, the estimate of the factors’ space seems not to be affected by the excess

of mass in the tails of the generating distributions, since the trace statistics outcomes

are comparable to those obtained under gaussianity (as in table 1), and the gains with

14



TABLE 2
Simulation results - BQML vs EB estimates with no missing values

One global factor (rG = 1)

Homogeneous blocks Heterogeneous blocks

T n D TSRΛ TSRF MSERχ TSRΛ TSRF MSERχ

100 1000 5 1.3579 1.0005 1.7358 1.3276 0.9999 1.6897
100 1000 10 1.4548 1.0006 1.8851 1.3953 0.9987 1.7800
100 1000 20 1.4334 1.0002 1.8648 1.4593 0.9978 1.8840
100 5000 5 1.4354 1.0001 1.8506 1.3322 1.0001 1.6900
100 5000 10 1.4488 1.0001 1.8578 1.4447 1.0001 1.8556
100 5000 20 1.5202 1.0002 1.9382 1.5208 1.0001 1.9490
100 5000 50 1.5211 1.0002 1.9658 1.4997 1.0002 1.9399
150 1000 5 1.4188 1.0006 1.8455 1.3356 1.0000 1.7318
150 1000 10 1.3850 1.0005 1.8064 1.3791 0.9990 1.7816
150 1000 20 1.3919 1.0002 1.8052 1.4009 0.9978 1.8259
150 5000 5 1.4469 1.0001 1.8980 1.3046 1.0001 1.6697
150 5000 10 1.5096 1.0002 1.9828 1.3831 1.0001 1.8151
150 5000 20 1.4772 1.0002 1.9409 1.5116 1.0001 1.9794
150 5000 50 1.4479 1.0002 1.8909 1.4958 1.0002 1.9440

Two global factors (rG = 2)

Homogeneous blocks Heterogeneous blocks

T n D TSRΛ TSRF MSERχ TSRΛ TSRF MSERχ

100 1000 5 1.3571 1.0008 1.5358 1.2694 0.9997 1.4142
100 1000 10 1.4117 1.0012 1.5561 1.3488 0.9988 1.5166
100 1000 20 1.3885 1.0008 1.5511 1.3973 0.9978 1.5653
100 5000 5 1.3668 1.0002 1.5312 1.2583 1.0001 1.3900
100 5000 10 1.4226 1.0003 1.5981 1.3512 1.0001 1.5003
100 5000 20 1.4619 1.0004 1.6295 1.4085 1.0002 1.5314
100 5000 50 1.4475 1.0005 1.6460 1.4708 1.0004 1.6508
150 1000 5 1.3537 1.0008 1.5042 1.2751 1.0000 1.4216
150 1000 10 1.4131 1.0012 1.6059 1.3373 0.9989 1.4987
150 1000 20 1.3826 1.0008 1.5647 1.3917 0.9976 1.5354
150 5000 5 1.3648 1.0002 1.5542 1.2837 1.0001 1.4570
150 5000 10 1.4264 1.0003 1.5925 1.3379 1.0001 1.4951
150 5000 20 1.4595 1.0004 1.6194 1.4104 1.0002 1.5679
150 5000 50 1.4476 1.0004 1.6527 1.4573 1.0004 1.6387

Note: Results from Monte Carlo simulations comparing the BQML estimator with the EB estimator.
No missing values. The ratio of the BQML over the EB indicators: trace statistics for the factor
and factor loadings, MSE for the common component. For example: TSRΛ = TSBQML

Λ /TSEB
Λ and

MSERχ = MSEEB
χ /MSEBQML

χ . The other parameters are fixed to µ = 0.5, ξt ∼ N (0,Σξ), τ = 0.1,
δ = 0, ω = 0.5, rG = 1 and rd = 1∀d.
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TABLE 3
Simulation results - BQML vs EB estimates in the presence of missing values

τ = 0.3 δ = 0 τ = 0.3 δ = 0.4 τ = 0 δ = 0.6

T n TSRΛ TSRF MSERχ TSRΛ TSRF MSERχ TSRΛ TSRF MSERχ

100 100 1.2237 0.9978 1.4729 1.2290 1.0480 1.9618 1.3438 1.1282 1.9618
100 500 1.2604 1.0009 1.5247 1.2397 1.0308 2.0388 1.3112 1.0767 2.0388
100 500 1.3240 1.0008 1.6668 1.2683 1.0431 2.0952 1.3918 1.1014 2.0952
100 500 1.4017 1.0008 1.7920 1.5295 1.0521 2.1467 1.5236 1.1308 2.1467
100 1000 1.1805 1.0003 1.3684 1.2652 1.0285 2.0123 1.3077 1.0693 2.0123
100 1000 1.3142 1.0006 1.6423 1.3811 1.0348 2.1176 1.4061 1.0857 2.1176
100 1000 1.4323 1.0008 1.8266 1.4039 1.0386 2.1482 1.4712 1.0978 2.1482
150 100 1.2318 1.0030 1.4899 1.2172 1.0494 1.8864 1.2340 1.1022 1.8864
150 500 1.2157 1.0007 1.4368 1.2300 1.0284 2.0466 1.2676 1.0697 2.0466
150 500 1.3677 1.0005 1.7538 1.3134 1.0420 2.2103 1.4200 1.0974 2.2103
150 500 1.4368 1.0011 1.8464 1.4318 1.0531 2.1417 1.4226 1.1193 2.1417
150 1000 1.1577 1.0003 1.3241 1.2444 1.0288 2.0978 1.2787 1.0646 2.0978
150 1000 1.3473 1.0008 1.7405 1.3203 1.0337 2.1493 1.3477 1.0799 2.1493
150 1000 1.4244 1.0009 1.8410 1.4725 1.0404 2.2453 1.4614 1.0930 2.2453

τ = 0.6 δ = 0 τ = 0.6 δ = 0.4 τ = 0.6 δ = 0.6

T n TSRΛ TSRF MSERχ TSRΛ TSRF MSERχ TSRΛ TSRF MSERχ

100 100 1.1929 0.9972 1.4305 1.2397 1.0420 1.6502 1.2901 1.1215 1.9083
100 500 1.2069 0.9998 1.4396 1.2333 1.0311 1.6848 1.2971 1.0781 2.0672
100 500 1.2769 0.9954 1.5939 1.3518 1.0361 1.8373 1.4727 1.0989 2.1972
100 500 1.3818 0.9905 1.7483 1.4149 1.0412 1.9117 1.4436 1.1113 2.1231
100 1000 1.2082 1.0002 1.4365 1.2853 1.0286 1.7733 1.2788 1.0676 2.0592
100 1000 1.3243 0.9981 1.6885 1.3303 1.0320 1.8611 1.3779 1.0814 2.1592
100 1000 1.4354 0.9973 1.8451 1.3723 1.0351 1.8752 1.4945 1.0931 2.2238
150 100 1.2184 0.9992 1.4694 1.2153 1.0456 1.6521 1.2516 1.1060 1.9080
150 500 1.2125 0.9984 1.4486 1.2315 1.0293 1.6932 1.2718 1.0690 2.0797
150 500 1.3094 0.9971 1.6684 1.3398 1.0388 1.8943 1.3965 1.0886 2.2488
150 500 1.3857 0.9888 1.7839 1.4462 1.0435 2.0126 1.4160 1.1047 2.1749
150 1000 1.2366 1.0003 1.4993 1.2349 1.0283 1.7111 1.2649 1.0637 2.1154
150 1000 1.3130 0.9992 1.6967 1.3726 1.0328 1.9508 1.4062 1.0770 2.2765
150 1000 1.4359 0.9971 1.8765 1.4245 1.0353 2.0250 1.5187 1.0872 2.3329

Note: Results from Monte Carlo simulations comparing the BQML estimator with the EB estimator.
The ratios of the BQML over the EB indicators are defined as for Table 2. The other parameters are
fixed to be µ = 0.5, ξt ∼ N (0,Σξ), B = 5, ω = 0.5, rG = 1 and rd = 1∀d.

16



respect to the EB estimator are not significant. The major difference is observed for

the factor loadings that are anyway estimated efficiently while being between 4 and 8

percentage points below the reference values of table 1.

Regarding the simulations with the asymmetric tails, the estimates seem not to be af-

fected by the degree of skewness of the distribution: i) the trace statistics outcomes are

comparable to those obtained under symmetric distributions with a minimal reduction

around 0.01 for the estimates (as in table 4); ii) there is no observable pattern of de-

pendence on the skewness level parametrized by κ, namely that results are comparable

if we take κ = 2 or κ = 3. The gains with respect to the EB estimator are analogous

to those observed for symmetric fat tails, setting above the 30% for the loadings and

the 5% for factor estimates in the presence of missing values.

In summary, for application to the dataset with Laplace distributed observations,

symmetric of equivalently asymmetric, the estimator of factor models via BQML seems

not to be problematic if the limiting conditions for the estimator hold true both con-

sidering the whole cross-section (n → ∞) and only the series relative to each block

(nd → ∞).
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TABLE 4
Simulation results - BQML estimates under fat-tailed distributions

Cross-correlations and missing values: τ = 0.1 δ = 0

Laplace Student-t (3) Laplace Student-t (3)

T n TSΛ TSF TSΛ TSF TSRΛ TSRF TSRΛ TSRF

100 100 0.7560 0.9237 0.7145 0.9240 1.2841 1.0093 1.3000 1.0258
100 1000 0.7426 0.9889 0.6932 0.9877 1.3248 1.0008 1.3382 1.0089
100 2000 0.7415 0.9934 0.6877 0.9932 1.3288 1.0003 1.3625 1.0056
150 100 0.7589 0.9281 0.7253 0.9255 1.3345 1.0104 1.3010 1.0234
150 1000 0.7470 0.9905 0.7022 0.9884 1.3017 1.0009 1.3449 1.0080
150 2000 0.7453 0.9945 0.6985 0.9930 1.3530 1.0004 1.3732 1.0050

Cross-correlations and missing values: τ = 0.1 δ = 0.5

Laplace Student-t (3) Laplace Student-t (3)

T n TSΛ TSF TSΛ TSF TSRΛ TSRF TSRΛ TSRF

100 100 0.7456 0.8635 0.7150 0.8526 1.3642 1.1451 1.3960 1.2143
100 1000 0.7328 0.9782 0.6847 0.9785 1.3991 1.0540 1.4048 1.0924
100 2000 0.7352 0.9884 0.6836 0.9890 1.3649 1.0452 1.4193 1.0651
150 100 0.7552 0.8608 0.7164 0.8546 1.3301 1.1412 1.3677 1.2045
150 1000 0.7419 0.9816 0.6948 0.9811 1.4028 1.0525 1.4091 1.0784
150 2000 0.7406 0.9897 0.6995 0.9894 1.3682 1.0443 1.3962 1.0629

Cross-correlations and missing values: τ = 0.5 δ = 0

Laplace Student-t (3) Laplace Student-t (3)

T n TSΛ TSF TSΛ TSF TSRΛ TSRF TSRΛ TSRF

100 100 0.7611 0.9114 0.7323 0.9012 1.3176 0.9886 1.3460 0.9975
100 1000 0.7487 0.9871 0.7126 0.9865 1.3264 0.9997 1.3468 1.0030
100 2000 0.7464 0.9924 0.7053 0.9931 1.3415 1.0000 1.3392 1.0040
150 100 0.7648 0.9009 0.7357 0.9006 1.3302 0.9901 1.2801 0.9936
150 1000 0.7516 0.9893 0.7182 0.9887 1.3143 0.9999 1.3579 1.0041
150 2000 0.7501 0.9940 0.7151 0.9940 1.3690 1.0000 1.3074 1.0032

Cross-correlations and missing values: τ = 0.5 δ = 0.5

Laplace Student-t (3) Laplace Student-t (3)

T n TSΛ TSF TSΛ TSF TSRΛ TSRF TSRΛ TSRF

100 100 0.7528 0.8466 0.7234 0.8477 1.4040 1.1300 1.3672 1.1743
100 1000 0.7385 0.9789 0.7040 0.9778 1.3408 1.0525 1.4390 1.0735
100 2000 0.7393 0.9877 0.7021 0.9875 1.3599 1.0443 1.4216 1.0571
150 100 0.7591 0.8501 0.7332 0.8480 1.4125 1.1236 1.3575 1.1742
150 1000 0.7465 0.9803 0.7157 0.9811 1.3349 1.0510 1.3569 1.0726
150 2000 0.7462 0.9891 0.7116 0.9894 1.4181 1.0439 1.3635 1.0564

Note: Monte Carlo simulations with data generated under fat-tailed distributions. TS denotes the
trace statistics of the BQML estimates against the true model. TSR is the ratio of the BQML
indicators over the EB indicators as for Table 2. Under Laplace: ξt ∼ L(0,Σξ) and ut ∼ L(0,Σu)

(both for global and local factors). Under Student-t (3): ξt ∼ t3
(
0n,Σ

ξ
)

and ut ∼ t3(0,Σ
u) (both

for global and local factors). The other parameters are fixed to be µ = 0.5, B = 5, ω = 0.5, rG = 1

and rd = 1∀d.
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TABLE 5
Simulation results - BQML estimates under skewed distributions

Cross-correlations and missing values: τ = 0.1 δ = 0
Asym.Lapl. (k=1.5) Asym.Lapl. (k=2) Asym.Lapl. (k=3) Asym.Lapl. (k=1.5) Asym.Lapl. (k=2) Asym.Lapl. (k=3)

T n TSΛ TSF TSΛ TSF TSΛ TSF TSRΛ TSRF TSRΛ TSRF TSRΛ TSRF

100 500 0.7316 0.9802 0.7327 0.9810 0.7290 0.9795 1.2886 1.0025 1.3632 1.0030 1.3331 1.0024
100 1000 0.7327 0.9892 0.7274 0.9874 0.7288 0.9877 1.3613 1.0013 1.3314 0.9999 1.3291 1.0016
100 2000 0.7306 0.9927 0.7267 0.9936 0.7277 0.9932 1.3145 1.0003 1.3395 1.0006 1.2943 1.0007
150 500 0.7399 0.9805 0.7399 0.9818 0.7355 0.9796 1.3106 1.0025 1.3268 1.0027 1.3073 1.0020
150 1000 0.7390 0.9906 0.7392 0.9903 0.7355 0.9892 1.2912 1.0012 1.3577 1.0013 1.3252 1.0014
150 2000 0.7347 0.9941 0.7363 0.9941 0.7320 0.9938 1.2766 1.0006 1.3088 1.0006 1.3244 1.0006

Cross-correlations and missing values: τ = 0.1 δ = 0.5
Asym.Lapl. (k=1.5) Asym.Lapl. (k=2) Asym.Lapl. (k=3) Asym.Lapl. (k=1.5) Asym.Lapl. (k=2) Asym.Lapl. (k=3)

T n TSΛ TSF TSΛ TSF TSΛ TSF TSRΛ TSRF TSRΛ TSRF TSRΛ TSRF

100 500 0.7268 0.9628 0.7248 0.9643 0.7220 0.9612 1.4216 1.0759 1.4170 1.0729 1.4144 1.0789
100 1000 0.7224 0.9788 0.7228 0.9784 0.7217 0.9783 1.3957 1.0567 1.3874 1.0581 1.4136 1.0586
100 2000 0.7231 0.9876 0.7211 0.9885 0.7206 0.9888 1.3872 1.0471 1.3879 1.0466 1.3489 1.0461
150 500 0.7356 0.9638 0.7317 0.9603 0.7351 0.9626 1.3654 1.0711 1.3795 1.0749 1.3328 1.0734
150 1000 0.7335 0.9815 0.7316 0.9814 0.7320 0.9772 1.3655 1.0527 1.3131 1.0547 1.3350 1.0541
150 2000 0.7336 0.9895 0.7323 0.9898 0.7297 0.9899 1.3591 1.0455 1.2722 1.0448 1.3881 1.0447

Cross-correlations and missing values: τ = 0.5 δ = 0
Asym.Lapl. (k=1.5) Asym.Lapl. (k=2) Asym.Lapl. (k=3) Asym.Lapl. (k=1.5) Asym.Lapl. (k=2) Asym.Lapl. (k=3)

T n TSΛ TSF TSΛ TSF TSΛ TSF TSRΛ TSRF TSRΛ TSRF TSRΛ TSRF

100 500 0.7444 0.9759 0.7389 0.9732 0.7438 0.9733 1.3552 0.9985 1.3249 0.9973 1.3385 0.9983
100 1000 0.7415 0.9868 0.7366 0.9871 0.7396 0.9865 1.3170 0.9999 1.3228 0.9997 1.2840 0.9998
100 2000 0.7379 0.9930 0.7400 0.9930 0.7370 0.9929 1.3035 1.0001 1.3520 1.0002 1.3187 1.0003
150 500 0.7466 0.9735 0.7476 0.9762 0.7481 0.9755 1.3327 0.9970 1.3594 0.9984 1.3600 0.9987
150 1000 0.7477 0.9887 0.7462 0.9889 0.7425 0.9892 1.3061 0.9999 1.3765 0.9999 1.3382 0.9999
150 2000 0.7464 0.9942 0.7417 0.9947 0.7434 0.9938 1.3331 1.0002 1.3391 1.0002 1.3141 1.0000

Cross-correlations and missing values: τ = 0.5 δ = 0.5
Asym.Lapl. (k=1.5) Asym.Lapl. (k=2) Asym.Lapl. (k=3) Asym.Lapl. (k=1.5) Asym.Lapl. (k=2) Asym.Lapl. (k=3)

T n TSΛ TSF TSΛ TSF TSΛ TSF TSRΛ TSRF TSRΛ TSRF TSRΛ TSRF

100 500 0.7300 0.9573 0.7336 0.9597 0.7331 0.9629 1.3051 1.0697 1.3463 1.0661 1.4236 1.0667
100 1000 0.7333 0.9784 0.7335 0.9788 0.7318 0.9773 1.4062 1.0521 1.3629 1.0541 1.3530 1.0529
100 2000 0.7341 0.9884 0.7318 0.9882 0.7306 0.9871 1.3899 1.0444 1.4060 1.0454 1.3692 1.0450
150 500 0.7420 0.9600 0.7444 0.9631 0.7382 0.9609 1.3766 1.0668 1.3386 1.0645 1.3773 1.0640
150 1000 0.7410 0.9792 0.7421 0.9795 0.7383 0.9793 1.3090 1.0518 1.3361 1.0520 1.3965 1.0527
150 2000 0.7411 0.9904 0.7400 0.9896 0.7403 0.9896 1.3314 1.0437 1.3719 1.0438 1.3641 1.0446

Note: Monte Carlo simulations with data generated under left skewed fat-tailed asymmetric dis-
tributions. TS denotes the trace statistics of the BQML estimates against the true model. TSR is
the ratio of the BQML indicators over the EB indicators as for Table 2. The parameters have the
following characteristics (with AL for the Asymmetric Laplace distribution): ξt ∼ AL(0,Σξ, κ) and
ut ∼ AL(0,Σu, κ) (both for global and local factors). The other parameters are fixed to be µ = 0.5,
B = 5, ω = 0.5, rG = 1 and rd = 1∀d.
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Appendix C, Autocorrelation analysis

This section is devoted to assessment the impact of the autocorrelation in the export

growth rate time series. Before entering the analysis and its motivations, we should

mention that in the context of our paper, where the share of missing values approaches

the 70% of the dataset, series autocorrelation might be ill-defined from a theoretical

point of view and even more challenging to assess empirically through the estimation

of the autocorrelation functions or through standard autocorrelation tests. We thus

restrict the empirical exercises to those series having at least the 50% of available

observations (50SDT in the following) and offer a focus on the small sample of complete

time series (CSDT in the following) 11.

As the frequency of time series increases, the increasing available information facil-

itates the identification of dynamic factors and helps to correct potential biases that

may arise from yearly analysis alone (e.g. the partial-year effect). However, while

working with quarterly data enhances our ability to track fluctuations in the business

cycle, it brings the issue of intra-year seasonality to the forefront.

To mitigate the impact of seasonality on the data, we have chosen to calculate

quarter-to-quarter yearly growth rates, which compare the growth of a given quarter to

the same quarter of the previous year. This approach aligns with the strategy employed

by Bricongne et al. (2022), who recently applied a static orthogonal decomposition

model as those of Gabaix (2011) and di Giovanni et al. (2014) to monthly export

data, aiming to investigate the effects of macrofluctuations at a finer frequency. The

advantage of this transformation lies in the possibility to capture the primary source

of autocorrelation, without introducing unnecessary complexity to the model. Indeed,

while other sources of autocorrelation exist, such as those specific to sectors or firms,

they require individual series analysis and specialized filtering, which would extend

11 Notice that, in this respect, the selection of the series is performed on the year-to-year quarterly

dataset. Then the other two datasets are restricted to the series selected at that stage so that the

comparison includes the same time-series.
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beyond the current paper’s scope and not necessarily clarify our understanding of

volatility.

The analysis includes the following steps:

Assessment of the autocorrelations. Using the 50SDT, we analyse the distribu-

tions of the estimated autocorrelation functions for time series of the growth rate

calculated at different frequencies and using different transformations (yearly,

quarterly, quarter-to-quarter yearly, see Figure1). We look also at the residual

serial correlation in the idiosyncratic components to see whether the autocor-

relation in the data is absorbed by the common components in the estimation

models (2).

DFM with different dynamic specifications. With the aim to check whether

part of the autocorrelation in the data can be absorbed in the common com-

ponent as we change the way the common movements are modelled, in addition

to the model defined in the main text and the benchmark by di Giovanni et al.

(2014), we test different specification of our DFM including more lags in the fac-

tor autoregressive process: the first specification allows the global factor to follow

an AR of order four and the local factors an AR of order one(GAR(4)-LAR(1)),

while the second specification allows AR processes of order four for both global

and local factors (GAR(4)-LAR(4)).

Volatility analysis with non-autocorrelated vs autocorrelated samples. We

show the robustness of our methodology to the presence of autocorrelation with

a simple split sample exercise: we compare the aggregate volatility estimates

resulting from a dataset composed by highly autocorrelated series and another

one coming from non-autocorrelated series. Leveraging the empirical analysis of

the first two points we split the CSDT in two subsamples, the first one composed

by the series for which one would not reject the hypothesis of autocorrelation

up to order four at a 95% significance level in for the Breusch–Godfrey test, the

second using the remainder. Then we take 20 random subsamples of 14k firms
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in both samples (resulting in approximately 80k firm-destination pairs in each

sample) and compare the volatility analsysis for the common component and

the idiosyncratic component using bootstrapped standard errors. Notice, that

this exercise is optimal to test the effect of the presence of autocorrelation on

the aggregate volatility estimates, yet should not be compared with the main

results of the paper, since with that subsample size we incur in a significant

change of the components estimates at the firm-destination level and also of the

weights used for the aggregation.

Looking at the results of the three analyses described above, we summarize the

findings in the following points:

• Quarter-to-quarter yearly growth rates are effective in reducing the seasonality

without inducing autocorrelation in excess in the data and offer a clear and in-

tuitive interpretation that might not be as straightforward when applying series-

specific or other frequency-specific filters.

• The remaining autocorrelation is not captured by the factor structure, even when

extended to higher autoregressive orders, and by static fixed effects as those of the

SODMs. All the autocorrelation in the data is then absorbed by the idiosyncratic

term of the decomposition.

• As for the paper’s primary findings on the aggregate volatility components, any

residual autocorrelation does not pose a serious issue for the estimates of the

volatility, which are proven not to depend on the share ofautocorrelated series

in the sample (see Figure 5).

• As a side result, we test the robustness of our findings using different dynamic

specifications of the dynamic factor models. From Figures 3 and 4 we see that

the results are consitent with the main exercise, with the richer structure in

the factor leading to more pronounced differences with respect to SODM in the

synchronization with the international trade cycle.
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Figure 1. The autocorrelation of the growth rates
Note: The distributions of the autocorrelation functions (up to order 5) for the time series of the
growth rates. Different histogram plots refer to growth rates computed from yearly and quarterly
data in levels. Quarterly data are transformed into quarterly growth rates (i.e. the growth rates in
a given quarter with respect to the previous quarter) or into yearly quarter-to-quarter growth rates
(i.e. the growth rates in a given quarter with respect to the same quarter of the previous year). The
distributions are computed restricting the dataset to the series with at least the 50% of non-missing
points..
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Figure 2. The autocorrelation of the idiosyncratic component
Note: The distributions of the partial autocorrelations (up to order 5) for the time series of the
idiosyncratic. The histogram plots refer to the idiosyncratic components estimated on yearly quarter-
to-quarter growth rates from four different models and grouped into the DFMs and SODM families:
the decomposition proposed in di Giovanni et al. (2014) with destination and sector effects for the
SODM vis-a-vis DFMs with global and local factors alternatively represented as AR processes of
order one or four (respectively GAR(k) and LAR(k).
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Figure 3. The volatility decomposition under growth rates autocorrelation
Note: Volatility decomposition for a split sample of the dataset of complete time series.
Analyzed subsamples include only autocorrelated series and non-autocorrelated series.
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Figure 4. Volatility components under global AR(4) and local AR(1)
Note: The decomposition obtained estimating a Dynamic Factor Model with the global factor
modelled as an AR(4) process and the local factors modelled as AR(1) processes.
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Figure 5. Volatility components under global AR(4) and local AR(4)
Note: The aggregate volatility decomposition with a Dynamic Factor Model with the global and
local factors modelled as AR(4) process.

Appendix D, Destination factors analysis

This appendix complements the findings from Section 4 by diving deeper into local

factors and their interpretation. While the global factor could be easily interpreted

by visual inspection, the interpretation of the 67 time series representing local factors

necessitates a more systematic approach. To do this, we examined the correlations

of the factors extracted with the BQML estimator against a suite of economic and

financial indicators.

Initial findings are presented in Table 1, where we have compared all the

destination-specific factors to economic indicators. The sources of these indicators,

their meanings, and any transformation to the original data we made are detailed in

Table 6.

Our work suggests that our approach is effective in grasping broader economic

trends by enconding destination-specific fluctuations in local factors. Empirically the

12 For a proper comparison, the transformation imposed on the bilateral flows aims at isolating com-

mon movements on the series to mimic the correlation structure of the BDFM estimated in the

main exercise.
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TABLE 6
Country-specific variables sources and transformations

Variable Source Data Transformation

Bilateral Export Flows
Direction of Trade
Statistics (DOTS)
of the IMF

Total export value
Free on Board (FOB)
by areas and countries
of export

The values of this variable are
the idiosyncratic components
of a single factor DFM estimated
on the quarter-to-quarter
yearly growth rates series12

Nominal Exchange Rates

International Financial
Statistics (IFS) by IMF,
“Data by indicator” tab,
Exchange rates
selected indicators

National currency
per US Dollar,
period average

Ratio with France’s values

Real Exchange Rates

International Financial
Statistics (IFS) by IMF,
“Data by indicator” tab,
Exchange rates
selected indicators

Real effective exchange rate,
Consumer Price Index Ratio with France’s values

Interest Rates

International Financial
Statistics (IFS) by IMF,
“Data by indicator” tab,
Interest rates
selected indicators

Interest rates of
Government bonds

Used as differentials w.r.t.
France’s values

Output Growth Rates Quarterly National
Accounts of the OECD

B1_GE: Gross domestic
product expenditure
approach.
GYSA: Growth rate
based on seasonally
adjusted volume data,
percentage change
on the same quarter of
the previous year

Used as differentials w.r.t.
France’s values

Note: A summary of the macroeconomic variables used in the correlation analysis for local factors.
All variables are available at a quarterly frequency. When the original variable is provided in level, if
growth rates are used, they are computed as the log quarter-to-quarter yearly growth rates.

correlation with bilateral export flows from independent source is strong for all the

considered destinations. Building on this, we can extend the pooled linear model with

a series of destination-specific regressions. In light of the insights gained from the

primary analysis, we opted to exclude bilateral flow from the set of regressors and

instead present the coefficients of the linear models where the dependent variables are

the destination-specific residuals from a regression between the factors and the growth

rates of the OECD’s bilateral flows.

The results of this refined analysis are collected in Table 7 and plotted per each

variable in Figures 6-9. This approach offers two main advantages. First, it maximizes
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the utilization of the available data to examine macroeconomic variable correlations,

even for countries with incomplete datasets due to data scarcity13. Second, the correla-

tion coefficients, although estimated from a limited dataset of 96 observations, provide

insights into the variable-specific effects on the factors. While a comprehensive dis-

cussion of these effects is not within the scope of this paper, the identified correlation

patterns highlight the economic significance of the estimated factors derived from mi-

croeconomic export flow data.

13 Countries lacking bilateral flows data or those with insufficient data points were excluded from the

analysis.
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TABLE 7
Results for the destination-specific regressions

Dest. Intercept Int. Rate Diff. Nom. Ex. Rate Real Ex. Rate Out. Gr. Diff.
Estimate 0.0016 - -0.0066 - -AE Pr(>|t|) 0.9809 - 0.529 - -
Estimate 0.0312 - 0.0164 - -0.0154AR Pr(>|t|) 0.3048 - 0.1145 - 0.0282
Estimate 0.0119 -0.7908 0.0024 0.0014 0.009AT Pr(>|t|) 0.8975 0.1117 0.4673 0.0723 0.9316
Estimate 0.126 -0.0151 0.0018 0.0023 -0.0676AU Pr(>|t|) 0.3961 0.8788 0.2499 0.1559 0.0181
Estimate 4.8524 -0.1806 2.9055 -0.0035 -0.0174BG Pr(>|t|) 0.247 0.234 0.2741 0.764 0.6512
Estimate -0.0036 - 0.0264 0.0125 -0.0149BR Pr(>|t|) 0.9537 - 0.2159 0.1434 0.537
Estimate -0.0894 -0.0019 -0.0237 0.0038 0.1139CA Pr(>|t|) 0.3614 0.9852 0.0001 0.0121 0.0644
Estimate -0.027 - 0.1603 - -CG Pr(>|t|) 0.8433 - 0.0031 - -
Estimate -0.0605 -0.0794 -0.0255 0.0018 0.0059CH Pr(>|t|) 0.7406 0.529 0.0022 0.2766 0.9141
Estimate -0.003 - 4e-04 -0.002 -CM Pr(>|t|) 0.9219 - 0.9647 0.4096 -
Estimate 0.5593 - -0.0549 -0.0022 -0.0705CN Pr(>|t|) 0.057 - 4e-04 0.4545 0.0741
Estimate -0.0091 -0.0015 0.0028 -3e-04 -CY Pr(>|t|) 0.9689 0.986 0.7242 0.7733 -
Estimate -0.1328 -0.2112 0.0174 0.0064 0.1025CZ Pr(>|t|) 0.286 0.3225 0.4171 0.0345 0.0422
Estimate 0.0049 0.0593 0.0035 -0.0012 0.1005DE Pr(>|t|) 0.8998 0.5649 0.099 0.0000 0.0001
Estimate -0.001 -0.0491 0.009 -6e-04 0.0743DK Pr(>|t|) 0.9845 0.6122 0.5918 0.178 0.0191
Estimate 0.0066 - 0.0098 0.0088 -DZ Pr(>|t|) 0.9439 - 0.6126 0.2262 -
Estimate -0.3699 0.0319 -0.0498 - 0.0843EE Pr(>|t|) 0.0354 0.318 0.1189 - 0.0001
Estimate 9e-04 - -0.0106 - -EG Pr(>|t|) 0.9905 - 0.3916 - -
Estimate -0.2462 0.1889 0.0334 0.0038 0.1038ES Pr(>|t|) 0.1645 0.1259 0.0001 0.0000 0.1743
Estimate -0.0135 0.0145 0.0013 -0.0011 0.0156FI Pr(>|t|) 0.842 0.8989 0.1458 0.1645 0.7093
Estimate -0.0115 - -0.0095 -0.0088 -GA Pr(>|t|) 0.824 - 0.3168 0.0000 -
Estimate 0.0433 -0.1077 -0.0096 0.0018 0.0421GB Pr(>|t|) 0.5389 0.1783 0.0000 0.208 0.4095
Estimate -0.0584 0.0036 0.0123 4e-04 -0.0474GR Pr(>|t|) 0.7448 0.8822 0.8582 0.5549 0.6043
Estimate -0.0019 - 0.0101 - -HK Pr(>|t|) 0.9757 - 0.5197 - -
Estimate -0.0164 - -0.0076 0.0000 0.0067HR Pr(>|t|) 0.7499 - 0.5714 0.9423 0.6945
Estimate 0.0739 -0.0722 -0.2424 0.0024 -0.0039HU Pr(>|t|) 0.9189 0.5483 0.6504 0.6243 0.9486
Estimate -0.2512 0.0425 0.0169 0.0031 0.0501IE Pr(>|t|) 0.1249 0.3563 0.0000 0.0564 0.0128
Estimate 0.194 - -0.0065 0.001 -0.0717IL Pr(>|t|) 0.3008 - 0.7654 0.7816 0.2261
Estimate -1.0149 0.0981 -0.0325 - 0.0759IN Pr(>|t|) 0.0693 0.1085 0.8045 - 0.2862

Note: Regressors may vary depending on data availability and country with no available data have
been excluded. Shadowed cells legend: p < 0.01 - Dark Grey; 0.01 ≤ p < 0.05 - Grey; 0.05 ≤ p < 0.1

- Light Grey. The table cotinues to next page.
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Dest. Intercept Int. Rate Diff. Nom. Ex. Rate Real Ex. Rate Out. Gr. Diff.
Estimate 0.0429 -1e-04 0.0184 -0.0012 0.0448IT Pr(>|t|) 0.3871 0.9989 0.4768 0.3416 0.4439
Estimate 0.3413 0.099 0.1364 0.002 0.123JP Pr(>|t|) 0.0033 0.1139 0.001 0.5624 0.0517
Estimate 0.0085 0.0533 -0.0291 - -0.0407KR Pr(>|t|) 0.8931 0.0013 0.0015 - 0.0000
Estimate -0.0042 - 0.0038 - -KW Pr(>|t|) 0.9294 - 0.0675 - -
Estimate 0.0079 - 0.0373 - -LB Pr(>|t|) 0.9275 - 0.5033 - -
Estimate 0.3556 -0.2004 -0.0126 - -0.0026LT Pr(>|t|) 0.203 0.0091 0.627 - 0.9429
Estimate -0.0386 0.0169 -0.0412 1e-04 -MA Pr(>|t|) 0.8027 0.7481 0.0000 0.9481 -
Estimate 8e-04 - -0.0049 - -MG Pr(>|t|) 0.9956 - 0.8679 - -
Estimate -0.2081 0.0308 -0.0977 - -MU Pr(>|t|) 0.6145 0.6659 0.612 - -
Estimate -0.5625 0.1292 0.1549 0.0428 0.2004MX Pr(>|t|) 0.1261 0.0701 0.1625 0.0001 0.0000
Estimate 0.0134 -0.0374 0.0197 0.0073 -MY Pr(>|t|) 0.7978 0.3529 0.2434 0.0015 -
Estimate 2e-04 - -0.0018 - -NC Pr(>|t|) 0.9939 - 0.8052 - -
Estimate 0.0033 0.0753 0.0029 3e-04 0.0236NL Pr(>|t|) 0.9606 0.7037 0.0964 0.5894 0.5821
Estimate 0.021 -0.0489 0.0174 -3e-04 -0.027NO Pr(>|t|) 0.6987 0.7025 0.0473 0.8235 0.3956
Estimate -0.0012 - 0.0086 - -PF Pr(>|t|) 0.9786 - 0.1249 - -
Estimate 0.0551 -0.011 0.0118 0.0016 -PH Pr(>|t|) 0.5967 0.4631 0.157 0.3003 -
Estimate 0.158 -0.1198 -0.1251 0.0043 0.0092PL Pr(>|t|) 0.8449 0.308 0.7836 0.8158 0.9101
Estimate -0.0611 0.0348 -0.0638 2e-04 0.0404PT Pr(>|t|) 0.5281 0.2838 0.0000 0.6865 0.3177
Estimate -0.3145 -0.149 -0.3387 -0.0099 -RO Pr(>|t|) 0.7336 0.372 0.2372 0.7668 -
Estimate -0.7817 -0.1802 -3.1608 -0.1961 -RU Pr(>|t|) 0.0808 1e-04 0.0017 0.0079 -
Estimate 0.0047 - -0.022 -0.0011 -SA Pr(>|t|) 0.9305 - 0.0563 0.631 -
Estimate -0.1403 -0.042 0.0227 0.0027 0.1484SE Pr(>|t|) 0.0154 0.2243 2e-04 0.0349 0.0000
Estimate -0.0749 -0.089 0.076 0.0103 -SG Pr(>|t|) 0.5762 0.369 0.0001 0.0097 -
Estimate -0.1013 0.0188 0.0521 - 0.0896SI Pr(>|t|) 0.38 0.6 0.154 - 9e-04
Estimate 0.127 -0.0643 0.1532 -6e-04 -0.001SK Pr(>|t|) 0.1092 0.1148 0.0000 0.5472 0.9596
Estimate -0.0498 0.1392 0.0749 - -TH Pr(>|t|) 0.6529 0.0972 0.0013 - -
Estimate 0.0013 - -0.008 -4e-04 -TN Pr(>|t|) 0.983 - 0.0211 0.7743 -
Estimate 0.0289 - -0.0073 - -0.0111TR Pr(>|t|) 0.7422 - 0.5303 - 0.4297
Estimate 0.0055 - -0.0332 - -TW Pr(>|t|) 0.9014 - 0.0141 - -
Estimate -0.1207 0.1402 0.0072 -0.0097 0.0748US Pr(>|t|) 0.1497 0.1184 0.0479 0.0046 0.1414
Estimate 0.0019 -0.2353 -0.0193 -2e-04 -0.014XU Pr(>|t|) 0.9729 0.1257 0.0000 0.5155 0.6148
Estimate -0.128 0.0191 -0.0063 -0.0025 -ZA Pr(>|t|) 0.4806 0.4367 0.4807 0.3086 -
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Figure 6. Output growth differentials vs destination factors
Note: Output growth differentials estimated correlations with the relative error band at the 95% confidence level for the destination-specific regressions. The
dependent variable is the residual of the regression of the destination factor against growth rates of the relative bilateral flows. Darker bands denote significant
values at 95%. Regressors vary depending on data availability.
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Figure 7. Interest rates differentials vs destination factors
Note: Interest rates differentials estimated correlations with the relative error band at the 95% confidence level for the destination-specific regressions. The
dependent variable is the residual of the regression of the destination factor against growth rates of the relative bilateral flows. Darker bands denote significant
values at 95%. Regressors vary depending on data availability.
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Figure 8. Nominal exchange rates vs destination factors
Note: Nominal exchange rates variations estimated correlations with the relative error band at the 95% confidence level for the destination-specific regressions.
The dependent variable is the residual of the regression of the destination factor against growth rates of the relative bilateral flows. Darker bands denote
significant values at 95%. Regressors vary depending on data availability.
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Figure 9. Real exchange rates vs destination factors
Note: Real exchange rates variations estimated correlations with the relative error band at the 95% confidence level for the destination-specific regressions.
The dependent variable is the residual of the regression of the destination factor against growth rates of the relative bilateral flows. Darker bands denote
significant values at 95%. Regressors vary depending on data availability.

34



Appendix E, Volatility with mid-point growth rates

In this Appendix we discuss the main results on the volatility estimates focusing on

the interaction between the estimation strategy and the aggregation method. The aim

of the paper is to choose the weights and the estimator for the main equation as to

reconstruct consistently the aggregate growth rate (or a valid proxy).

Using equation 6, we exploit the estimated factors and loadings to assess the impact on

the volatility of aggregate export sales of the three sources of shocks: i.e. the global, the

destination-specific and the idiosyncratic part. This baseline decomposition equation

is coupled with standard size-based aggregation weights to get the estimates of the

volatility components. However, that aggregation strategy, defined by the equation 6,

might not be optimal given the distributional properties of the growth rates and their

components.

In the following, we propose a simple robustness check for our analysis, with the aim

of checking whether the insights from the volatility decomposition presented in Section

4 hold when we use different growth rate calculations and the related aggregation

strategy. To this end, we repeat the analysis using a standard in the trade literauture

along the lines af the recent paper by (Bricongne et al., 2022): we decompose the

mid-point growth rates between quarters t and t− 4 defined by

yMP
de,t =

xde,t − xde,t−4

1
2
(xde,t + xde,t−4)

(14)

where xde,t is the level of sales of export e to destintation d at time t,and the resulting

growth rate yMP
de,t is constrained within the range of -2 to +2. It assumes a value of -2

when there is an exit (xde,t = 0 and xde,t−4 > 0), and a value of +2 when there is an

entry (xde,t > 0 and xde,t−4 = 0).

Mid-point growth rates offer a significant advantage when analyzing detailed trade

data, particularly in scenarios of high turnover in the dataset. Such turnover is preva-
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lent in highly disaggregated trade data, occurring not only during large crisis Bernard

et al. (2009). In such context, this approach offers a convenient way of capturing both

intensive and extensive margin changes in a single measure. This property makes them

particularly useful for analyzing small changes, as they provide a reliable approxima-

tion without the extremes often associated with year-on-year variations in exports.

Another advantageous characteristic of mid-point growth rates is their exact ag-

gregation property. Unlike logarithmic changes, which may require approximations,

aggregate growth rates can be expressed as a weighted average of transaction-level

growth rates without any approximation:

Yt =
Xt −Xt−4

1
2
(Xt +Xt−4)

=
∑
de

ωMP
de,t y

MP
de,t (15)

where capital letters denote aggregate quantities and the weights ωMP
de,t are determined

by the relative magnitudes of xde,t and xde,t−4 compared to the total exports at time t

and t− 4, namely ωMP
de,t =

xde,t+xde,t−4

Xt+Xt−4

This exact aggregation property is particularly valuable in settings characterized

by high fluctuations in year-on-year firm-level quarterly exports. Given the substantial

volatility in exports within firms over time, convering the cases when the weighted

average of firm-level logarithmic changes provides a weak approximation for aggregate

changes.

Once defined the dataset of the midpoint growth rates, we run two decompositions —

using the DFM in (1) and the SODM of di Giovanni et al. (2014). — on the complete

dataset and on a subsample capturing the intensive margin of trade only. Figure 10

presents the results of the exercise. There is no major difference in the SODM when

applied to logarithmic or midpoint growth rates. Some differences emerge for the

DFM decomposition14, yet the main insight from Figure 8 is confirmed: the common

component estimated through the DFM captures the considerable increase in volatility

14 In this respect, notice that the volatility over the phases of the cycle are less pronounced, especially

when the extensive margin is included.
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Figure 10. Volatility decomposition for the mid-point growth rates
Note: A comparison of the common and idiosyncratic component of the aggregate volatility derived
from a decomposition through the DFM of (1) and the SODM of di Giovanni et al. (2014), on the
dataset of the midpoint growth rates and a subsample including the intensive margin only. Error
bands are constructed using bootstrapped standard errors at the 95% confidence level.

of the trade collapse. At that point in time, as in the standard decomposition, the

idiosyncratic and the common components almost match. This is true both if we

include the extensive and the intensive margin.
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