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Modulating brain integrative
actions as a new perspective on
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A critical aspect of drug development in the therapy of neuropsychiatric

diseases is the “Target Problem”, that is, the selection of a proper target after

not simply the etiopathological classification but rather the detection of the

supposed structural and/or functional alterations in the brain networks. There

are novel ways of approaching the development of drugs capable of

overcoming or at least reducing the deficits without triggering deleterious

side effects. For this purpose, a model of brain network organization is needed,

and themain aspects of its integrative actionsmust also be established. Thus, to

this aim we here propose an updated model of the brain as a hyper-network in

which i) the penta-partite synapses are suggested as key nodes of the brain

hyper-network and ii) interacting cell surface receptors appear as both

decoders of signals arriving to the network and targets of central nervous

system diseases. The integrative actions of the brain networks follow the

“Russian Doll organization” including the micro (i.e., synaptic) and nano (i.e.,

molecular) levels. In this scenario, integrative actions result primarily from

protein-protein interactions. Importantly, the macromolecular complexes

arising from these interactions often have novel structural binding sites of

allosteric nature. Taking G protein-coupled receptors (GPCRs) as potential
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targets, GPCRs heteromers offer a way to increase the selectivity of

pharmacological treatments if proper allosteric drugs are designed. This

assumption is founded on the possible selectivity of allosteric interventions

on G protein-coupled receptors especially when organized as “Receptor

Mosaics” at penta-partite synapse level.
KEYWORDS

allosteric modulators, brain connectomics, drug targets, G-protein coupled
receptors (GPCRs), neuropsychiatric disorders, penta-partite synapse, receptor
heteromerization, receptor mosaics
1 From neuropsychiatric symptoms
to the “Target Problem” or how to
select a suitable target for designing
an efficacious drug treatment

Let us open the article with a quote from Sir James Black

(Nobel Laureate 1988):
… the benefits that molecular biology will bring to

pharmacology are likely, I believe, to be circumscribed by

the state of physiological knowledge, models, and concepts (1).
Based on the brain hyper-network (BHN), a model of brain

operation previously proposed by us (2), we here present a

rational approach to finding therapeutic targets by discussing

data obtained at molecular level in the concept of the “Target

Problem” (TP).

A crucial point is the assessment of the criteria to

characterize a neuropsychiatric disease and to develop the

scientific diagnostic approaches to detect the structural and/or

functional alterations in the brain areas that could be the cause of

the disease (3). From these preliminary steps, the TP would be

how to proceed to develop the proper drug-based therapy to

address symptoms and/or disease progression without triggering

deleterious side effects. Thus, the basic assumption is that one or

more brain structures and functions derail from the

physiological standard and such disarrangement should be

detected based on a model of brain operation.
yper-network, CNS.

D2R, Dopamine D2

mocysteine, HMNs,

pse, RRIs, Receptor-

arget Problem, VT,

02
As the schematic view in Figure 1 illustrates the BHN model

for the morpho-functional organization of the central nervous

system (CNS) considers the brain as made up by functional

modules within plastic boundaries; these modules interact with

each other by means of multiple Wiring Transmission (WT) and

Volume Transmission (VT) signals (2).

According to the BHNmodel, several structural components

at different miniaturization levels should be considered in the

investigations of brain complex integrative actions. Indeed, in

addition to neural networks other networks such as glial,

microglial, extracellular molecular, and brain interstitial fluid

(BIF) channel networks must be considered. All these networks

are assembled into the BHN viamultiple communication modes

(5). In addition to the multifaceted aspects of communication

modes operating at macro-scale network level, drug

development has to explore the location and biochemical

features at the meso-scale (cell circuit), micro-scale (cell) and

nano-scale (molecular interactions) levels (6). Actually, synaptic

contacts play a relevant role at the mesoscale and microscale

levels, where neurotransmitter release and decoding processes

take place. These highly plastic processes involve the microscale

and nanoscale level, that is, cellular and molecular mechanisms

occurring at the chemical synapse. Therefore, a detailed analysis

of the morpho-functional organization of the CNS especially at

the micro-scale and nano-scale level is of relevance to address

the topic of drug development in the frame of the TP

concept (7).

To clarify the main topic of the present minireview a brief

historical summary of the approach that has been followed for

decades for drug development focused on the micro-scale and

nano-scale levels will be given. In other words, in the context of

the TP some main characteristics of the drugs acting as agonists

or antagonists on cell surface neuronal receptors will be

summarized, with particular reference to G protein-coupled

receptors (GPCRs). Subsequently, an expanded view of

synaptic contacts will be presented from the perspective of

microscale and nanoscale mechanisms at the penta-partite

synapse (PPS).
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2 The “Target Problem” in the
context of the chemical synapse

In neuropsychopharmacology the classical view of synapse

(see Figure 2, left panel)1 is still the most followed reference

framework on which drug discovery and development are based.

Indeed, early findings suggested that by acting at the synaptic

receptor level, marked changes in integrative brain functions

could be achieved ( (17); see (18) for a review on pioneering

works discovering dopamine and neurotransmitter effects in

brain; see also (19) for a discussion on effects of targeting specific

receptors on brain integrative functions). However, frequent

failure of drugs in drug development and/or drug side effects,

especially during chronic treatments, indicated that the TP was

not well resolved by this direct approach (e.g., see (20) for N-

methyl-D-aspartate (NMDA) receptor as drug target). A first

step forward was the characterization of iso-receptors (i.e.

receptor subtypes) at synaptic level, hence the possibility of

acting on a more selective target, that is, on a recognition/

decoding component of synaptic transmission capable of

triggering some peculiar responses at synaptic level (e.g (21).

for discovery of dopamine receptor subtypes; see (22) for

receptor subtypes as neurotransmitter subtle ways to modulate

neuron function; see (23) for dopaminergic transmission and

discussion on dopamine receptor subtypes as targets in

neuropsychopharmacology; see (24) for serotonergic

transmission and discussion on serotonergic receptor subtypes
1 It should be underlined that on this simple scheme of synaptic

transmission resulting in a “firing/no-firing” of the postsynaptic neuron

McCulloch and Pitts proposed a theoretical model based on Boolean

logic of the CNS (15) that has been source of inspiration for decades of

theoretical models of CNS integrative functions (16).
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as targets in neuropsychopharmacology). Again, TP was not

fully solved with those more selective drugs targeting iso-

receptors due to treatment failure and/or side effects, which

were less severe than previously (23–25).

A further important progress was the discovery by

Burnstock (26, 27) and by Hokfelt (28–30) of the co-existence

and co-release of different neurotransmitters from the same

presynaptic terminal (Figure 2 right panel). These

breakthrough findings prompted our group to propose

that at synaptic level, the co-existence and co-release of

neurotransmitters should be accompanied by co-decoding

of the released neurotransmitters thanks to i) the assembly of

different cell surface receptors complexes (31, 32) and ii) the

allosteric interactions derived from receptor-receptor

interactions (RRI) (33, 34). RRIs leads to the formation of

receptor dimers and multimers, also known as Receptor

Mosaics (RMs) (35), the assembly of which into the native

conformation may be regulated by other proteins and

membrane lipids ( (36) and references therein). As pointed out

in several papers, RRIs were found to occur at presynaptic,

postsynaptic level and also in glial cells (for reviews see (37–41);

see also (42, 43)). The available biochemical evidence on GPCR

complexes and on the modulation of their structure and function

by cell membrane proteins and lipids could open up new

scenarios in the context of the BHN integrative actions and,

accordingly, in the pharmacological approaches to

neuropsychiatric diseases.

BHN has as crucial nodes the PPS, which acts as complex

computational structures formed by neural (pre- and post-

synaptic), astrocytic, microglial and extracellular matrix

molecular networks; in coordinated fashion they compute by

signals spreading via the BIF channels (Figures 3, 4). It was

originally proposed the concept of tripartite synapse (45, 46),

where pre- and post-synaptic structures, and the perisynaptic
FIGURE 1

Representation of the brain as a “Brain Hyper-Network” (see the original article (2). The brain as an ″hyper-network″ formed by the integrated
assemblage of neural, glia and extracellular molecular networks often organised in compartments of a different size and delimited by plastic
boundaries (2). The extracellular molecular network is produced and dynamically modulated by both neurons and glial cells. In turn, the
extracellular molecular network plays a role in the formation and dynamic modulation of neuro-glial, intra-neural and intra-glial arches
assemblages of components of the three networks form compartments (e.g., functional modules) delimited by plastic boundaries;
compartments contain circuits organised according to a ″Russian Doll pattern″ (4). This means that macro-scale, mesoscale, micro-scale, and
nano-scale circuits can be described within each Functional. Module. Modified from (2). Abbreviations: EMF electromagnetic fields. For further
details, see (2).
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astrocyte processes (PAPs) ensheathing the synapse, integrate

their functions. It became then apparent that a comprehensive

view of the synapse includes the extracellular matrix playing not

only plastic but also signal-modifying roles at the tetra-partite

synapse (44, 47–50). Furthermore, the involvement of microglial

cells that can transiently contact the synapse and extracellular

matrix and send signals to be integrated in PPS was recognized;

in particular, microglia appear to be involved in fine tuning of

neural circuits in pathological conditions (51–56). Therefore,

it is proposed that PPSs are likely basic computational

modules playing crucial integrative tasks in healthy and in

diseased conditions.
Frontiers in Endocrinology 04
By affecting the perviousness of BIF channels controlling the

signals impinging on the synapses, perisynaptic astrocytic

processes regulate the multiplicity of events at the PPS. In

addition, other highly pervasive signals can reach the PPSs. In

this context some cues should be mentioned, namely

electromagnetic fields , biophotons, oxygen and carbon

dioxide, and the gaseous transmitter nitric oxide, since they

can modulate morpho-functional aspects of the various

networks mentioned above, deeply affecting penta-partite

synapses (57–60). In particular, as far as electromagnetic fields

are concerned, they are generated by neural activity and exert a

direct action on the voltage sensor of the voltage-gated calcium
FIGURE 3

Glial cells, extracellular matrix and neurons build up penta-partite synapses (PPSs): penta-partite synapses are crucial components of the Brain
Hyper-Network (BHN) nodes and are surrounded by Brain Interstitial Fluid (BIF) channels that allow a control of signals exchange between the
synapse and the extra-cellular fluid. It should be noted that some highly pervasive signals as the electromagnetic field do not need the BIF
channels to reach the PPS components. While neurons, astrocytes and extracellular matrix are structural components of the synapse, microglia
can be mainly involved in transient functional regulating roles at the synapse in normal brain homeostasis and in disease. Modified from (2).
BHN, Brain Hyper-Network; BIF, Brain Interstitial; Fluid, GNs glial networks; NNs, neural networks.
FIGURE 2

Proposed models for the chemical synapse. (A) Several neurotransmitter (NT) inputs like the one indicated in the scheme could impinge on the
postsynaptic side. The integrated inputs result in the postsynaptic output: FIRE/NOT FIRE. In principle the pharmacological interventions could
be devised on any of these four steps of the chemical synapse. (B) Several NT inputs like the one indicated in the scheme could impinge on the
postsynaptic side. The integrated inputs result not only in the postsynaptic output: FIRE/NOT FIRE but also in complex biochemical adjustments.
In principle the pharmacological interventions should be devised in a much more complex context. For further details see (8) and the herewith
cited bibliography. See also (9–14). NT, neurotransmitter; REC, receptor.
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channels that are involved in the neurotransmitter release (61–

64). In this context the concept of broadcasted neuro-

connectomes has been proposed to describe how these highly

pervasive signals may affect information handling of brain

networks especially at high miniaturization levels (2).

Broadcasted neuro-connectomes, indeed, could modulate

nanoscale “computational nodes” such as the RMs at the PPSs

(Figure 4) (2, 44, 58).2

Membrane receptor complexes were, therefore, proposed as

key integrators capable of converting multiple extracellular

signals into appropriate cellular biochemical responses (37, 41,

65). These aspects, opening new possibilities to addressing the

TP, will be to some extent detailed in the section that follows.3
2 An interesting review on the biochemistry of RRIs and also a very

valuable cultural discussion on this subject can be found in 40.

3 Knowledge of the regional distribution of a target and its presence on

different CNS cell types (and on different subcellular compartment) is of

pivotal importance to address the TP and to prospect a therapeutic

approach to a disease, a region of the brain, or a mechanism. On the

other hand, understanding the complexity of the relationships among

different cell types in nodes subserving the brain integrative functions is a

prerequisite to comprehend the mechanisms that can be targeted in

pathological conditions. PPS where different cell types converge and

signaling even from distant sources can integrate, represents the node

where signaling integration leads to the system functioning, or

dysfunctioning in disease. Focus on PPS may open a new mode to

address the TP, through a better understanding of pathological

conditions and therefore of the targetable mechanisms.

Frontiers in Endocrinology 05
3 Allosterism due to receptor-
receptor interactions: A new player
to address the “Target Problem”

Different postsynaptic decoding processes can result from

the corelease of different neurotransmitters (signals) from the

presynaptic terminals. Usually, chemically different transmitters

are packaged in separate populations of synaptic vesicles, hence

multiple signals can be released in response to a proper

stimulation. However, multiple signals can be also released in

the case in which two or more chemically different transmitters

are present in the same vesicle (66). The regulatory mechanisms

leading to co-transmitter packaging are still not completely

clarified (67–70). These transmitter signals can be recognized

by different decoding mechanisms both at pre- and post-

synaptic level (66, 71).

These mechanisms involve molecular networks (see (72) for

a review), also known as Horizontal Molecular Networks

(HMNs) (Figure 4); they are located in membrane

microdomains of presynaptic and postsynaptic elements, and

in the membrane of associated glial cells. HMNs can operate as

‘‘intelligent devices” since they can sense not only extra-cellular

and the intra-cellular environments but also the different

components of the multi-facet structure of the penta-partite

chemical synapse such as, e.g., components of the Extracellular

Molecular Network (Figures 1, 3).

A crucial role in HMNs may be played by GPCR complexes.

A given GPCR or different GPCRs can be present in the plasma

membrane as monomers, dimers or oligomers and these

different molecular arrangements have important functional

implications. In fact, in view of the allostery phenomenon,
FIGURE 4

Schematic representation of the main morpho-functional features of the penta-partite synapse (PPS). Astrocytes, extracellular matrix, and
neurons together with microglia build up PPS. VT signals can reach the PPSs via the Brain Interstitial Fluid channels (BIF channels) impinging on
them. Besides the classical pre- and post-synaptic sides, of basic importance for the integrative function of the PPSs are the several molecular
components indicated in the scheme, and microglial cytokines/chemokines involved in brain homeostasis and in homeostasis loss in disease.
Modified from (2, 44). CAM cell adhesion molecules, EMF, electromagnetic field; HMN, horizontal molecular network; NT, neurotransmitter;
VMN, vertical molecular network leading to signal transduction; VT, volume transmission; WT, wiring transmission.
frontiersin.org

https://doi.org/10.3389/fendo.2022.1038874
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Marcoli et al. 10.3389/fendo.2022.1038874
GPCRs at HMNs level operate as highly plastic integrative units

since allosterism resulting from RRIs can be differentially

modulated (2, 40, 72–75). As a matter of fact, “allostery” can

be described as the biochemical phenomenon that allows the

transmission, inside and between associated macromolecules, of

information from the site where the effector binds to a distant

functional site where the GPCR agonist binds (76). Thus, a

complex regulation of the activity of macromolecules allows the

appearance, via the macromolecular assembly, of novel

properties (see (34) and the bibliography herewith mentioned).

Therefore, in this context is often cited the famous Monod’s

sentence stating that “allostery” for protein functions should be

considered as “the second secret of life,” since it is only second as

importance to the genetic code (77–79). As our group has

discussed in previous papers, the actions of the orthosteric and

allosteric ligands of the GPCRs that form an assembly provide

the cellular decoding apparatus with sophisticated dynamics

(80) in terms of binding modulation, G-protein-mediated

signaling and selectivity, receptor desensitization, and

switching to b-arrestin-dependent signaling (see (81) for a

recent review).

In this context, the consequences of receptor complex

formation deserve consideration in GPCR-based drug

discovery; there are several allosteric modulators in clinical

trials (82) thus showing the potential of allosteric modulators

of GPCRs in multiple CNS disorders (83). Apart from decreased

adverse side effects (83), allosteric ligands can provide greater

receptor subtype selectivity as well as temporal selectivity (82).

In this respect, novel specific allosteric sites susceptible of being

allosterically targeted may appear in the quaternary structure

resulting from the assembly of the receptor protomers. Selective

ligands may exist for a specific receptor structure, which is only

found in a heteromeric context; this possibility further expands

the possibilities of modulating the decoding processes (see (84)

for a review). Indeed, those allosteric binding sites are attractive

targets for drug development (40, 72, 74, 85). In the absence of

crystal structures of GPCR heteromers except for the

extracellular domains in the heteromers of class C GPCRs

(86–89) there are reliable tetrameric models reported for class

A GPCR heteromers (90–95).

It is clear that to surmise protein-protein interactions ,

evidence of their co-localization (i.e., close proximity (<10 nm))

at cell membrane level has to be demonstrated. Hence, co-

localization of two GPCRs and the interplay of their decoding

processes are preliminary experimental evidence needed to assess

RRI (31, 73, 96). Thus, early evidence on RRIs was indirect

evidence based on a coarse co-localization of two receptors

obtained by computer-assisted immunocytochemical image

analyses. Biochemical approaches led to results that showed

that, in membrane preparations from discrete brain regions, the

ligand binding to one of the two receptors in a heteromer
Frontiers in Endocrinology 06
modulated the binding to the other receptor ( (96, 97); see (81)

for a review). Such evidence was further supported by functional

studies carried out in vivo assessing the functional relevance of the

in vitro findings in both physiological conditions and in animal

models of CNS disease (31, 98–101). In the last few decades,

several biophysical techniques have been developed that allow a

direct demonstration not only of the close (<10 nm) spatial

proximity but also of direct interactions between receptors in

neuronal and glial cell membranes. In this context experimental

approaches of particular relevance are: energy transfer-based

methods, bimolecular luminescence or fluorescence

complementation, total internal reflection fluorescence

microscopy, fluorescence corre lat ion spectroscopy,

coimmunoprecipitation, assays based on bivalent ligands and in

situ proximity ligation assays ( (41, 102) and herewith included

bibliography). We are aware that some associations of receptors as

heterodimers found in heterologous systems of expression might

not exist in vivo, and that the addressing of receptors in specific

locations of the cells allows for avoiding some heteromers.

Therefore, it seems of crucial importance to obtain evidence for

RRIs of native GPCRs in heteromers through both

physicochemical and functional approaches.

Let us briefly examine some peculiar aspects of the RRIs due

to GPCRs oligomerization centered in the RMs concept in cells

forming the PPS.

It is certainly possible to have receptor colocalization

without receptor heteromerization and it is also possible to

have heteromerization without allosteric RRIs, when subunit

interaction does not cause conformational changes in other

subunits of the complex (103). However, RMs especially at the

PPS are likely crucial nodes for the BHN, since these plastic

mosaics can also undergo a reshuffling, including addition of

new proteins (“tesserae” of the mosaic via, e.g., the Roamer-Type

of VT (5, 74, 104)) or alteration in their topology and order of

diffusion of the allosteric signaling in the mosaic (for a

discussion of the topic and the possible role of “Hub

Receptors” in the RMs see below) (40, 74, 75, 105).

RRIs not only cause marked effects on the recognition/

decoding processes of dimers with respect to the monomers

but also it has been demonstrated that iso-receptor dimers can

have a clear-cut shift in recognition/decoding characteristics

with respect to the iso-receptor monomers. For example, k-d
and d-m opioid receptor heterodimers show a shift (with respect

to the k, d or m monomers) in receptor affinity and in the cell

response to opioid molecules (106, 107). Another remarkable

finding has been the switch detected for the D1R-D2R heteromer

with a change from Gs (dopamine D1R) and Gi/o (dopamine

D2R) to a Gq/11 coupling (108). Thus, also simple RMs, such the

dimers, display previously unsuspected properties with respect

to the component monomers; this capability underlines the

likely crucial role of RRIs, especially at the PPS where they are
frontiersin.org
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components of a “intelligent interface” communicating the

extra- and intra-cellular environments. As a matter of fact,

several mechanisms allow different integrative processes in

RMs formed by three or more GPCRs and this fact has led us

to propose the existence of an “Hub Receptor” that in some way

coordinates the activation of the various components adding a

new plastic capability to the mosaic (105, 109). Thus, it has been

proposed to define a GPCR in a RM as a “Hub Receptor” if it has

the following characteristics:
Fron
1. it interacts with multiple partners either receptors of the

RM or proteins associated with the plasma membrane;

2. it can control, at least to some extent, the sequential

order according to which the individual components of

the mosaic are involved in the integrative action of the

mosaic.
This scenario adds a new layer to brain connectivity since

brain-wide connectivity can now be described at macro-scale,

meso-scale, micro-scale and nano-scale levels (for the

connectome concept see (110, 111)). We have been specially

interested and involved in the investigations of the integrative

mechanisms for reciprocal releasing and decoding processes of

multiple signals at meso-scale, micro-scale and nano-scale level

in particular considering the PPSs and the RMs (2, 6, 112, 113).

In this context, our aim has been to correlate the morpho-

structural characteristics of the BHN computational nodes with

the manner WT and VT multi-faceted communication modes

allow integrative actions. As pointed out above, it is suggested

that further research should be carried out to investigate the

possible crucial role that allosteric interactions play in RMs

located in neuronal and glial cells, especially in the PPS.

Crosstalk between neurons and glial cells occurs thanks to

both WT and VT, as evidenced by, for instance, adenosine

receptors-mediated signaling. As a matter of fact, adenosine is

released by neurons and astrocytes allowing complex

interactions among RMs containing the four adenosine

receptors that may be present in both cell types (114, 115).

Adenosine receptors are considered targets for several peripheral

diseases, mainly cardiovascular (116, 117), but also for various

neuropsychiatric diseases (118, 119). It should be underlined

that although adenosine storage in synaptic vesicles and modes

for release are not fully clarified (120–123), the compound can

modu la t e neu ro t ransmi t t e r r e l e a s e / r eup take and

neurotransmission itself by, among other, actions involving

neuronal excitability and synaptic plasticity (124–129). In

agreement with multi-faceted adenosine actions, it has been

demonstrated that adenosine receptors , especially via RRIs, can

modula te g l i a–neuron and gl i a–g l i a in te rce l lu la r

communication, with significant consequences not only on

synaptic activity but also on brain network integrative

functions. Thus, it is obvious the potential relevance of

investigations on the allosteric modulators of RMs containing
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adenosine receptors localized both in neuronal and glia cell

surface (41–43, 94, 130–135).

This important topic will be discussed in the next section

with an emphasis on the potential implications for the design of

new pharmacological approaches to combat neuropsychiatric

diseases (42, 43, 74, 133, 136, 137).
4 A novel pharmacological approach
based on targeting allosteric sites in
receptor mosaics: focus on
adenosine receptors

As pointed out above and by several groups (83, 129) a new

approach to advance in solving the TP is to develop allosteric

modulators capable of selectively favor or reduce the selected

iso-receptor response to its orthosteric ligand. Thus, allosteric

modulators especially of iso-receptors in RMs represent a new

therapeutic approach with the added value of probably reducing

side effects compared to classical receptor agonists

and antagonists.

To provide therapeutic benefit, allosteric modulators can be

considered based on three properties that were outlined by

Korkutata et al. (129)
1. affinity modulation of the binding of the orthosteric

ligand to the receptor;

2. modulation of the receptor decoding signaling triggered

by the orthosteric ligand;

3. possible effects of the allosteric modulator on the

receptor conformation and/or membrane location in

the absence of the orthosteric ligand.
The latter property is often underestimated even though it

may play an important role in the formation and location of

RMs at the cell membrane level.

Allosteric modulators can have at least three different effects

on the orthosteric binding sites as far as agonist/antagonist

affinity and efficacy are concerned, namely can be positive,

negative or neutral allosteric modulators (138). Neutral

allosteric modulators have no effects on the orthosteric ligand

affinity/efficacy but by occupying the allosteric binding site

inhibits the activity of positive/negative allosteric modulators.

Summing up, since the integrative actions of signals by RMs

are based on inter-GPCRs interactions, allosteric modulators can

play important roles in at least partially solving the TP. In other

words, allosteric modulators could offer a new perspective to solve

the “selectivity problem”, i.e., how to hit only the proper target

avoiding side effects due to targeting receptors in cells located

within not altered brain areas. In view of the possible crucial role

of RMs at this BHN node, the most suitable “allosteric drugs”

would be those acting on GPCRs (tesserae) of the RMs especially
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at PPS. In this context it is important to briefly report some

experimental evidence supporting the relevance of the allosteric

modulations of adenosine receptors in RMs resulting in marked

modulatory shifts in their integrative actions.

One example is provided by results obtained in CHO cells

stably co-transfected with dopamine D2 and adenosine A2A

receptors. The interaction of these two receptors was one of

the first reported for class A GPCRs (139, 140).

In CHO cells expressing the A2A-D2 receptor heteromer,

homocysteine (Hcys) selectively reduced the internalization of

these heteromers induced by D2 receptor agonists stimulation. It

is important to underline that Hcys did not disrupt or prevent

the heteromerization of A2A and D2 receptors, suggesting that

Hcys probably behaves as a modulator of the allosteric process of

energy transmission between the two partners (see Figure 5) (74,

105, 141). Hence, Hcys acts as an allosteric modulator that

specifically binds to an ad hoc (allosteric) binding site made

available by the structure of the heteromer.

Notably, the allosteric modulation of Hcys previously

reported in heterologous systems of expression was

demonstrated for the associations of native receptors in

heterodimers in astrocytes where Hcys reduced D2 receptor-

mediated inhibition of glutamate release without altering the

A2A-D2 receptor interaction; in fact, the A2A receptor-mediated

antagonism of dopaminergic actions was maintained (see

Figure 6). These findings, as discussed also in recent published
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papers, open the possibility to explore novel, glia-mediated

strategies to address neurodegenerative and functional BHN

disorders such as Parkinson’s disease (136, 143). As a matter of

fact, inhibition of astrocytic D2 receptor-mediated signaling by

A2A receptor agonists may contribute to striatal glutamatergic

transmission dysfunction by increasing the extracellular glutamate

levels. Thus, astrocytic A2A-D2 receptor heteromers can be a

proper target to control, also by means of allosteric modulators,

striatal glutamate transmission in Parkinson’s disease.

Therefore, Hcys D2 silencing at the astrocytic level could be

effective targets to be considered in the context of the classical

treatments aimed, inter alia, to reduce the neuro-inflammatory

cascade for the Parkinson’s disease onset (74).
5 Concluding remarks

It is obvious that each component of the BHN can be target

of a pharmacological treatment, but components that operate in

an integrative mode can be more suitable targets for drug

development. Proper pharmacological treatments may be those

triggering synergistic effects to compensate the morpho-

functional alterations of CNS diseases. For example, actions on

the cell surface (e.g., Lipid Rafts) can affect RMs assemblage and

composition, hence their recognition and decoding processes of

signals. RMs can be modulated by, for instance, electromagnetic
FIGURE 5

On the possible existence of modifiers along the allosteric communication channels in receptor heteromers. Allosteric communication in
receptor heteromers (Receptor Mosaics, RMs) can be modulated by modifiers. Along the allosteric pathway connecting A2A with D2 receptors,
homocysteine (Hcys) can modulate the heteromer integrative action. Left panel: the Hcys allosteric binding site is an epitope on the ICL3 of D2-
R, hence it can efficiently modulate two out of three of the domains involved in the binding pocket of the D2 receptor (for experimental
procedures see (141)). This finding can be of great importance since indicates a new pharmacological approach to produce a biasing action on
RMs involved in PD. Lan et al., 2006 (142); Agnati et al., 2006 (141). DA, dopamine; ECL, extracellular loop; ICL, intracellular loop; PD, Parkinson’s
disease; TM, transmembrane.
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fields and also by the Roamer Type VT since, as mentioned

above, micro-vesicles can transfer/exchange GPCRs. However,

the evaluation of drug effectiveness and side effects can be made

more difficult in poly-therapies involving pharmacological and

non-pharmacological approaches.

According to the proposal discussed in the paper, a rational

possible approach to the “Target Problem” is based on:
Fron
1. careful investigations by means of different diagnostic

techniques of the BHN structures that are altered in

their integrative mechanisms;

2. detection of biochemical targets (especially at the PPS

level) that play a crucial role in the functional

dysregulation, with special emphasis on GPCRs;

3. development of allosteric modulators that acting on the

target GPCR-containing macromolecular complexes in

the RMs restore the proper function of the PPS.
As far as the development of drugs acting on selected GPCRs

is concerned, the development of drugs acting on dimers, hence

of bivalent ligands has been also taken into account (144–153). A
tiers in Endocrinology 09
bivalent ligand consists of two pharmacophoric entities linked

by an appropriate spacer. In this way it should be possible to

target GPCR heteromers by adequate, potent, and receptor-

selective pharmacophores. A potential drawback could be the

hydrolysis of the compound before reaching the CNS.

Furthermore, it is worth evaluating the efficacy of drugs

targeting heteromers composed of GPCRs for neurotransmitters/

gliotransmitters and GPCRs for cytokines or chemokines. The

combination of these different type of receptors in the RMs in the

PPS, allow novel possibilities for the development of very selective

allosteric modulators; this strategy might acquire relevance in the

integrated signaling at PPS, i.e. when activated microglial cells are in

proximity of neuronal and astrocytic synaptic structures (51, 52, 55,

56). In fact, heteromers formed by chemokine and opioid receptors

in the plasma membrane of lymphocytes or cell models provide

novel functional properties in response to opioids and to

chemokines ( (154–156); see also (157)).

Summing up, pharmacology aimed at opposing

neuropsychiatric diseases requires revisiting the target selection

criteria and including the integrative modules that are

morphologically and/or functionally altered in the disease. In this

sense, experimental investigations should be developed that seek

procedures capable of restoring, at least partially, the physiological

conditions without leading to serious side effects. The development

of allosteric modulators selective for structural domains in GPCR

heteromers appears as a very promising strategy.
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FIGURE 6

Representation of astrocytic A2A-D2 receptor heteromers in the
striatum. A confocal image showing immunofluorescence
staining of an astrocyte with the astrocyte marker Glial Fibrillary
Acidic Protein (GFAP) in a striatal slice from adult rat. The
presence of A2A-D2 receptor heteromers was demonstrated in
striatal astrocytes both on perisynaptic processes and astrocyte
branchlets (42, 137). Activation of the A2A receptor in the
heteromer prevented the effect of D2 receptor activation (42);
intracellular homocysteine (Hcys) behaved as an allosteric
antagonist of the D2 receptor while maintaining A2A-D2

interaction (136). The heteromers were involved in the control of
glutamate release from the processes (42, 136). The findings
suggest that A2A-D2 receptor heteromer may play crucial roles
to control glutamatergic transmission in striatal functional
modules, supporting exploration of strategies targeting at the
heteromers to address neurodegenerative and functional striatal
disorders. Yellow arrows: allosteric antagonism; red arrow:
inhibition of vesicular glutamate release.
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39. Franco R, Casadó V, Cortés A, Mallol J, Ciruela F, Ferré S, et al. G-Protein-
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Interactions between intracellular domains as key determinants of the quaternary
structure and function of receptor heteromers. J Biol Chem (2010) 285(35):27346–
59. doi: 10.1074/jbc.M110.115634

91. Navarro G, Cordomı ́ A, Zelman-Femiak M, Brugarolas M, Moreno E,
Aguinaga D, et al. Quaternary structure of a G-protein-coupled receptor
heterotetramer in complex with gi and gs. BMC Biol (2016) 14(1):1–12.
doi: 10.1186/s12915-016-0247-4

92. Navarro G, Cordomı ́A, Brugarolas M, Moreno E, Aguinaga D, Pérez-Benito
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