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Abstract
In agricultural ecosystems, bees are exposed to combinations of pesticides that may have been applied at different times. For 
example, bees visiting a flowering crop may be chronically exposed to low concentrations of systemic insecticides applied 
before bloom and then to a pulse of fungicide, considered safe for bees, applied during bloom. In this study, we simulate this 
scenario under laboratory conditions with females of the solitary bee, Osmia bicornis L. We studied the effects of chronic 
exposure to the neonicotinoid insecticide, Confidor® (imidacloprid) at a realistic concentration, and of a pulse (1 day) expo-
sure of the fungicide Folicur® SE (tebuconazole) at field application rate. Syrup consumption, survival, and four biomarkers: 
acetylcholinesterase (AChE), carboxylesterase (CaE), glutathione S-transferase (GST), and alkaline phosphatase (ALP) were 
evaluated at two different time points. An integrated biological response (IBRv2) index was elaborated with the biomarker 
results. The fungicide pulse had no impact on survival but temporarily reduced syrup consumption and increased the IBRv2 
index, indicating potential molecular alterations. The neonicotinoid significantly reduced syrup consumption, survival, and 
the neurological activity of the enzymes. The co-exposure neonicotinoid-fungicide did not increase toxicity at the tested 
concentrations. AChE proved to be an efficient biomarker for the detection of early effects for both the insecticide and the 
fungicide. Our results highlight the importance of assessing individual and sub-individual endpoints to better understand 
pesticide effects on bees.
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Introduction

Pesticide use associated with agricultural intensification is 
considered one of the main drivers of pollinator declines 
(Goulson et al. 2015). Although most studies focus on sin-
gle products or active ingredients, pollinators are usually 
exposed to combinations of products (Woodcock et al. 2016; 
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Grab et al. 2019). Multi-pesticide exposure may occur due 
to the application of tank mixtures, but also when differ-
ent products are applied sequentially. For example, residues 
of systemic insecticides from treatments performed before 
bloom (e.g., as seed coating) may appear in the flowers and 
get mixed with fungicides applied during bloom. Due to 
their low toxicity for bees, many entomophilous crops are 
sprayed with fungicides at least once during bloom (Xavier 
et al. 2020; Almasri et al. 2021). Under this scenario, pol-
linators experience chronic exposure to residual concentra-
tions of systemic insecticides and acute exposure to high 
concentrations of fungicides. The levels of insecticides 
applied before bloom appearing in the pollen and nectar of 
crop flowers are typically low (Zioga et al. 2020). Some 
studies have reported that such concentrations pose no lethal 
risk to bees (Maus et al. 2003; Faucon et al. 2005; Nguyen 
et al. 2009), but may cause sub-lethal effects. On the other 
hand, fungicides are not supposed to directly harm insects, 
but sub-lethal effects, including genotoxicity (Caliani et al. 
2021a) and alterations of the feeding behavior (Zhu et al. 
2017a), have been found in Apis mellifera. In addition, sev-
eral studies have demonstrated that some insecticide-fungi-
cide combinations induce synergistic toxicity effects in bees 
(Pilling et al. 1995; Thompson and Wilkins 2003; Johnson 
et al. 2013; Thompson et al. 2014; Mengoni Goñalons and 
Farina 2018; Wang et al. 2020a, b a,b). In particular, sterol 
biosynthesis inhibiting (SBI) fungicides have been shown 
to interact with neonicotinoids (Iwasa et al. 2004; Biddinger 
et al. 2013; Sgolastra et al. 2017; Raimets et al. 2018; Iver-
son et al. 2019). This interaction occurs because SBI fungi-
cides modify the metabolic detoxification processes in bees 
by inhibiting cytochrome P450-monooxygenase (Berenbaum 
and Johnson 2015; Carnesecchi et al. 2019).

Sub-lethal effects are not easy to detect over the course 
of customary toxicological tests in the laboratory. Syrup 
consumption is an easy-to-measure fitness endpoint that 
may provide insights on pesticide-induced changes at the 
individual level. At the sub-individual level, the detoxifi-
cation energy costs related with enzymatic activity may 
have repercussions on fitness-related traits (Castañeda 
et al. 2009). For this reason, biomarkers, which can pro-
vide signals of early stage alterations at lower biological 
levels, represent an important tool to evaluate sub-lethal 
effects (Caliani et al. 2021a). Different biochemical and 
cellular biomarkers have been developed and applied in 
honey bees to assess ecotoxicological health status and the 
sub-lethal effects of different pollutant compounds such 
as pesticides, heavy metals, and PAHs (Badiou-Bénéteau 
et al. 2012; Carvalho et al. 2013; Zhu et al. 2017b; Han 
et al. 2019; Caliani et al. 2021b). Acetylcholinesterase 
(AChE) and carboxylesterases (CaE) have been widely 
used as biomarkers to assess the effects of different insec-
ticide classes, such as organophosphates and carbamates, 

since they mechanistically interact with the nervous tissues 
of organisms (Sanchez-Hernandez 2011). Other important 
biomarkers, such as glutathione S-transferase (GST) and 
alkaline phosphatase (ALP), are involved in the biotrans-
formation and detoxification of pollutants, and were first 
appointed as good candidates to monitor the defenses of 
the honey bee by a neonicotinoid insecticide (Badiou-
Bénéteau et al. 2012). In the last years, the search for bio-
markers indicative of sub-lethal effects to various organ-
isms has become a priority in ecotoxicological research 
(Tlili and Mouneyrac, 2021; López-Uribe et al. 2020); 
however, most studies on bees have only targeted the west-
ern honey bee, A. mellifera, and studies on solitary bees 
are mostly lacking (Mokkapati et al. 2022). A research 
effort on this topic is fundamental because solitary bees 
are more sensitive than honey bees to certain pesticides 
(Arena and Sgolastra 2014; Sgolastra et al. 2017; Azpiazu 
et al. 2021) and have different routes and levels of expo-
sure (Sgolastra et al. 2019). In fact, the European Food 
Safety Authority pointed out the necessity to include 
Osmia spp. as representative species of solitary bees in 
pesticide risk assessment (EFSA 2013). Osmia bicornis is 
common European solitary bee that is managed for crop 
pollination in some areas (Sedivy and Dorn 2014), and 
therefore is often exposed to pesticides.

In this study, we conducted a laboratory experiment in 
which we combined a chronical exposure to a field-realistic 
concentration of an insecticide (Confidor®, imidacloprid) 
with a single exposure to a fungicide (Folicur® SE, tebu-
conazole) in females of the solitary bee O. bicornis. Despite 
the ban on the use of neonicotinoids (imidacloprid, thia-
methoxam, and clothianidin) in the European Union, their 
presence in the environment is still reported due to the high 
persistence of neonicotinoids (Botías et al. 2016; Winterm-
antel et al. 2020), and therefore they may still pose a threat to 
pollinators. In addition, neonicotinoids are still widely used 
in non-EU countries (Goulson 2020). We thus simulated a 
scenario in which bees foraging on flowers with residual 
concentrations of a systemic insecticide are exposed to a 
high fungicide dose applied during bloom. Our study has 
important implications for pesticide risk assessment: first, 
current risk assessment schemes are mostly based on sin-
gle compounds (Rortais et al. 2017), even in the face of 
increasing evidence that pollinators are exposed to mixtures 
of pesticides (Sgolastra et al. 2020); second, current risk 
assessment schemes mostly overlook sub-lethal effects such 
as behavioral and physiological responses that may affect 
bee health even when no effects on survival are detected 
(Cresswell 2011; Azpiazu et al. 2019; Sandrock et al. 2014); 
third, pesticide risk assessment has traditionally relied on a 
single species, the western honey bee, although pesticide 
effects may be species-dependent (Schmolke et al. 2021), 
and extrapolation from honey bees to wild bees may not 
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adequately reflect realistic scenarios due to colony resilience 
in honey bees (Rundlöf et al. 2015).

In this study, we measured syrup consumption and sur-
vival at the individual level, as well as a set of biomarkers 
covering various biological responses, including neurotoxic-
ity (AChE and CaEs) and metabolic activity (GST and ALP). 
We also propose the development of an integrated biological 
response (IBRv2) index (Sanchez et al. 2013) providing a 
measure of the overall response of the target organism to the 
exposure of pesticides in O. bicornis. This index is based on 
the biomarker deviation from the reference site, allowing 
the identification of how each selected biomarker contrib-
utes to the final toxicological status (Arrighetti et al. 2019). 
To our knowledge, IBRv2 indexes have not been developed 
for insect pollinators except for honey bees (Caliani et al. 
2021a, b a,b), but they are widely used to investigate the 
effects of different contaminants on other groups of organ-
isms. Our goal was to assess whether the chronic exposure 
to the insecticide, the fungicide pulse, and the insecticide-
fungicide combination elicited some biomarker responses 
that could be related to syrup consumption and survival.

Material and methods

Pesticides

We used commercially available formulates, Confidor® 
(imidacloprid 20% w/v) and Folicur® SE (tebuconazole 
4.35% w/v), rather than active ingredients. The two pesti-
cides were chosen because they are extensively used for pest 
and disease control in bee-pollinated crops such as fruits, 
nuts, and vegetables. Many studies have documented co-
occurrence of the two active ingredients in nectar and pollen 
samples (Chauzat et al. 2006, 2009, 2011; Mullin et al. 2010; 
Pohorecka et al. 2012; David et al. 2015, 2016; Lentola et al. 
2017; Ostiguy et al. 2019).

Stock solutions of each pesticide were prepared by dis-
solving the products in distilled water at nominal concentra-
tions of 50 µg L−1 of Confidor® and 1850 mg L−1 of Foli-
cur® SE. The stock solutions were then diluted in a feeding 
solution (sugar and distilled water at 47.5% w/v; henceforth 
syrup) to achieve the desired concentrations of 5 µg L−1 and 
185 mg L−1 of imidacloprid and tebuconazole, respectively. 
The final concentration of the syrup given to bees was 38% 
w/v (Azpiazu et al. 2019). The concentration of imidaclo-
prid was within the range of residues found in nectar col-
lected from flowers of different crops, either grown from 
imidacloprid-coated seed or treated via soil or spray applica-
tions (citrus: 0.8–6.82 ng mL−1 [Byrne et al. 2014]; apples: 
2–70 ppb [Heller et al. 2020]; cucurbits: 3.8–7.3 ng g−1 and 
6.7–16 ng g−1 [Dively and Kamel 2012], 5–14 ppb [Stoner 
and Eitzer 2012]; sunflower: 0.0019 (± 0.001) mg kg−1 

[Schmuck et al. 2001]; ornamental plants: < 1.2–5.7 ng g−1 
[Lentola et al. 2017]). For tebuconazole, we worked with the 
potential concentration immediately after spray application, 
calculated as the maximum field application rate of its com-
mercial formulation (6.45 L ha−1) in orchards.

Osmia bicornis and test conditions

Bees were supplied by Pollinature Srl. Cocoons were 
shipped to the Department of Agricultural and Food Sci-
ences, University of Bologna, Italy, and kept at wintering 
temperatures of 3–4 °C and 55 ± 10% relative humidity. 
In May 2021, large cocoons, expected to be females, were 
incubated at 22–23 °C until emergence. We worked with 
newly emerged females (< 24 h old). Over a period of 5 days, 
emerging females were distributed randomly and equally 
among the four exposure treatments (see below). Upon 
emergence, females were transferred to a Plexiglas flight 
cage (50 × 50 × 50 cm) for meconium deposition and 24 h 
starvation. Two hundred and forty bees (60 bees per treat-
ment) were then transferred to individual cages (transparent 
plastic cups; volume: 150 cc), with perforated lids to allow 
air circulation. Each cup was provided with a syrup feeder 
consisting of a 1-mL-calibrated syringe (BEROJECT® III, 
accuracy: 0.02 mL) inserted laterally and slightly inclined. 
A petal of Euryops (Asteracea) was attached to the tip of the 
syringe to enhance prompt location of the feeder by the bee 
(Sgolastra et al. 2018; Azpiazu et al. 2019). From emergence 
until death, bees were maintained at 21–24 °C and 50–55% 
relative humidity under natural light, avoiding direct sun-
light to reduce pesticide degradation.

Exposure conditions

After 24 h of starvation, bees were divided into 4 groups: 
control (CTRL), insecticide Confidor® (INS), fungicide 
Folicur® SE (FUNG), and the two pesticides (MIX). Bees of 
the CTRL treatment were fed regular syrup throughout the 
experiment. Bees of the FUNG treatment were also fed regu-
lar syrup throughout the experiment except on day 3 when 
they were offered syrup with fungicide. Bees of the INS 
treatment were fed syrup with insecticide throughout the 
experiment. Bees of the MIX treatment were also fed syrup 
with insecticide throughout the experiment, except on day 
3 when they were fed syrup with insecticide and fungicide. 
In the treatment groups FUNG and MIX, the solution with 
fungicide was only offered for a period of 24 h to simulate a 
pulse exposure. This exposure scenario represents a compro-
mise between a worst-case scenario, which does not account 
for fungicide degradation during the 24 h, and a best-case 
scenario in which the fungicide is completely degraded in 
one day. Tebuconazole is known to be a stable compound 
under hydrolytic and photolytic conditions (Lewis et al. 
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2006; EFSA 2014). In all cases, bees were fed ad libitum 
throughout the experiment. To avoid fungal proliferation, 
feeding solutions were freshly prepared every 3 days.

Syrup consumption and survival

Syrup consumption and survival were monitored daily until 
all bees died. To account for potential evaporation, syrup 
levels were measured in eight cages without bees. After 
dead, the head width of each bee was measured under a 
stereomicroscope with a micrometer as a proxy of body size 
(Bosch and Vicens 2002).

Collection of tissue samples

Ten bees per treatment were collected for biomarker assess-
ment at two different time points: T1 (on the fourth day of 
exposure, that is 24 h after the fungicide pulse) and T2 (on 
the sixth day of exposure, that is 72 h after the fungicide 
pulse). Bees were anesthetized in ice (4 °C) for 30 min and 
then the midgut and the head were removed and immediately 
frozen at − 80 °C.

Biomarker analysis

For each specimen, the head and midgut were processed 
separately to obtain the extracts on which to perform the 
enzymatic tests. Nervous tissue extracts from the head were 
used to evaluate AChE and CaE, and midgut extracts were 
used to measure GST and ALP activities. Tissues were 
weighted, and extraction medium was added proportionally 
to the weight of the tissue at a ratio of 10% (w/v). The buffer 
contained 40 mM Na phosphate buffer (pH 7.4), a mixture 
of protease inhibitors enzymes and 1% Triton X-100. The 
samples were homogenized by a tissuelyser (Qiagen) at 20 F 
for three periods of 30 s at 30-s intervals. The homogenates 
were centrifuged at 4 °C for 20 min at 13,000 g and 15,000 g 
for head and gut samples, respectively. The resulting super-
natants were frozen at − 80 °C and used for the analyses.

AChE

The AChE activity was assayed in the head extracts accord-
ing to Ellman et al. (1961) with modification from Caliani 
et al. (2021b). The reaction mixture was prepared in a 3-mL 
cuvette and contained 0.1 M sodium phosphate buffer (pH 
7.4), 10 mM DTNB, 41.5 mM acetylthiocholine, and 5 μL 
head extract. The activity was monitored continuously with 
a spectrophotometer (Agilent CARY UV60) for 5 min at 
410 nm (25 °C) and expressed in μmol−1 g tissue−1 min.

CaE

The CaE activity was measured in the head extracts and 
quantified at 538 nm according to Caliani et al. (2021a). 
A mixture containing 100 mM sodium phosphate buffer 
(pH 7.4) and a 0.1-mL head extract was prepared and incu-
bated at 25 °C for 5 min. The reaction was started by adding 
0.4 mM α-NA as a substrate. After 3 min, the reaction was 
stopped adding 1.5% SDS and 0.4 mg/L Fast Garnet GBC. 
The products of the reaction were quantified spectrophoto-
metrically (Agilent CARY UV60) at 538 nm (25 °C) and the 
enzyme activity was expressed as nmol α-NA min−1 mg−1 
protein (ε = 23.59 × 103 mM−1 cm−1).

GST

The GST activity was measured in the midgut samples fol-
lowing the method of Habig et al. (1974), modified. The 
reaction mixture consisted of 0.1 M sodium phosphate buffer 
(pH 7.4), 8 mM GSH (reduced glutathione), 8 mM CDNB, 
and 30 μL extract. The conjugation of GSH with 1-chloro-
2,4-dinitrobenzene (CDNB) was recorded spectrophoto-
metrically (Agilent CARY UV60) at 340 nm (25 °C) and 
expressed as nmol CDNB conjugate formed min−1 mg−1 
protein (ε = 9.6 × 103 mM−1 m−1).

ALP

The ALP activity was assayed in the midgut samples fol-
lowing the formation of p-nitrophenol, a product of the 
hydrolysis of the substrate (PNPP) due to the enzyme’s 
activity, according to Bounias et al. (1996), modified. The 
reaction mixture consisted of 100 mM Tris–HCl buffer (pH 
8.5), 100 mM MgCl2, 100 mM p-NPP as the substrate and 
a 25-μL gut extract. The reaction was monitored continu-
ously for 5 min at 405 nm (25 °C) at the spectrophotometer 
(Agilent CARY UV60), and the activity was expressed as 
nmol p-nNPP min−1 mg−1 protein (ε = 18.81 × 103 mM−1 c
m−1 cm−1).

Protein concentrations

Protein concentrations were measured according to the 
method of Bradford (1976) by BioRad Protein Assay (Bio-
Rad), using bovine serum albumin (BSA) as standard.

Statistical analysis

Statistical analysis was carried out with STATA (Stata-
Corp 2015) and data visualization with R software (Team 
R Core 2013). Only bees that consumed at least 10 µL on 

27639Environmental Science and Pollution Research  (2023) 30:27636–27649

1 3



the first 2 days of exposure were included in the analy-
ses. Individuals collected for biomarker analysis were not 
included in the syrup consumption and survival analyses.

To avoid confounding effects of reduced syrup con-
sumption due to aging, we used daily syrup consumption 
data only up to the median survival date of each treat-
ment. Differences in daily consumption among treatments 
were analyzed at three different times (the first 2 days of 
exposure or “pre-pulse,” the day of fungicide exposure 
or “pulse,” and between the day after fungicide exposure 
until the median survival date “post-pulse”). We used the 
Kruskall-Wallis (KW) non-parametric test to detect dif-
ferences among treatments in daily syrup consumption at 
each time. Dunn’s test (with Benjamini–Hochberg correc-
tion) was performed for pairwise multiple-comparison. A 
Mann–Whitney U test for paired samples was used to test 
for differences among pre-pulse and post-pulse periods 
and treatments. Bees that died before the post-pulse period 
were excluded from this analysis.

Survival functions S(t) were estimated using a Kaplan-
Maier estimator with no censoring. Accordingly, S(t) was 
estimated as 1 − F

n
(t) , where F

n
(t) is the empirical cumula-

tive distribution function.
The comparison of survival rates between CTRL and 

the other treatments was performed using the Flem-
ing–Harrington test, belonging to the weighted log-rank 
test G�,� class (Fleming and Harrington 2011). We used 

G
1,1 to detect differences between treatments especially in 

the intermediate section of the survival curves.
We performed a Kernel regression (KR) to detect a possi-

ble relationship between body size (measured as head width) 
and syrup consumption, and Cox regression model to detect 
the potential effect of body size on survival time.

Biomarker data were first analyzed by comparing the 
median of the two collection times (T1 and T2) for each bio-
marker and treatment. KW non-parametric test and Dunn’s 
test were conducted. Spearman’s rank correlation coeffi-
cient was used to explore the relationship between pairs of 
biomarkers. Lastly, integrated biological response (IBRv2) 
index (Sanchez et al. 2013) was used to quantify in a single 
value the overall degree of response to each treatment, in 
which higher IBRv2 values represent a higher stress level. 
Results are reported with a significance level of 5%.

Results

Syrup consumption

Significant differences in syrup consumption were found 
between treatments with and without the insecticide (Dunn’s 
test; p ≤ 0.0001; Fig. 1 and Table A.1); overall, bees from 
INS and MIX consumed approximately 74% less syrup than 
bees of the CTRL and FUNG treatments. The fungicide 

Fig. 1   Daily syrup consumption (µl day−1) up to the date of 50% 
mortality within each treatment. CTRL, control (n = 25); FUNG, 
tebuconazole (n = 26); INS, imidacloprid (n = 26); MIX, tebucona-
zole + imidacloprid (n = 24)l PRE, first 2 days of exposure; PULSE, 

day 3; POST, after the 3.rd day up to the date of 50% mortality within 
each treatment. Boxplots with asterisks are significantly different 
from the control (Dunn’s pairwise comparison, ****p < 0.0001)

27640 Environmental Science and Pollution Research  (2023) 30:27636–27649

1 3



pulse (FUNG) caused a decrease in feeding rate, which 
returned to control levels over the post-pulse period. Overall, 
syrup consumption significantly (p < 0.0001) decreased from 
the pre-pulse to the post-pulse assessments in all treatments 
(see Table A.2 for Mann–Whitney U test results). Kernel 
regression analysis indicates that body size had no effect on 
daily syrup consumption (Table A.3).

Survival analysis

Exposure to INS and MIX had an effect on survival of O. 
bicornis females. Survival significantly differed among treat-
ments (p < 0.01) in the intermediate part of the distribution 
curves (Fig. 2 and see Table A.4 for results of Fleming–Har-
rington tests). Median survival time dropped from approxi-
mately 21 days for CTRL and FUNG bees to 11 days for 
INS and MIX bees. Body size had no effect on survival (see 
Table A.5 for Cox model results).

Biomarkers

Biomarkers of neurotoxicity (AChE and CaE) and metabolic 
activity (ALP and GST) were assessed on days 4 (T1) and 6 
(T2), that is 24 h and 72 h after the fungicide pulse, respec-
tively. The results of the four biomarkers at T1 and T2 are 
shown in Fig. 3. The results of the descriptive statistics, the 
Kruskal–Wallis tests for the assessment of statistically sig-
nificant differences among groups for each biomarker and 
syrup consumption at T1 and T2, and the Dunn’s pairwise 
comparison with the control group are summarized in the 
supplementary material (Tables A.6, A.7 and A.8). AChE 
activity was significantly inhibited in the INS treatment 

at both times compared to the control (Dunn’s test; T1, 
p < 0.01; T2, p < 0.001); AChE was also significantly inhib-
ited in FUNG treatment at T1 (Dunn’s test; p < 0.05). No sig-
nificant differences were observed for CaE, GST, and ALP 
activity, in none of the assessment times. Overall, we found a 
significant positive correlation between ALP and GST at T1 
(p < 0.05; ρ = 0.666) and at T2 (p < 0.001; ρ = 0.806) and a 
positive and significant correlation between syrup consump-
tion and AChE activity at T1 (p < 0.05; ρ = 0.4072) and T2 
(p < 0.01; ρ = 0.4710).

IBRv2

The results of the integrated biological response (IBRv2) for 
each treatment are shown in Fig. 4. In the FUNG treatment, 
the IBRv2 value declined from T1 (6.26) to T2 (2.67). The 
most discriminant factor for this treatment shifted from GST 
at T1 to CaE at T2. Bees exposed to INS and MIX showed 
increasing IBRv2 values from T1 to T2, with CaE as the 
predominant factor in all the star plots. The MIX treatment 
showed the lowest IBRv2 at T1 (4.09).

Discussion

In this study, we tested the effects of oral co-exposure to a 
neonicotinoid, imidacloprid, and a SBI fungicide, tebucona-
zole, on adult O. bicornis females. Our first objective was 
to establish whether exposure to a fungicide pulse could 
enhance the toxicity of low-level chronic exposure to the 
neonicotinoid. Our second objective was to identify neuro-
toxicity and metabolic activity biomarkers that could act as 
early warning signals of sub-lethal effects.

Our results clearly indicate a feeding reduction due to the 
continued feeding of imidacloprid, which agrees with the 
findings of other studies (Zhu et al. 2017a; Azpiazu et al. 
2019). The fungicide pulse at the maximum field application 
concentration caused a temporary decrease in feeding rate 
but did not affect post-pulse syrup consumption. In addition, 
the fungicide pulse did not impact the feeding of bees of the 
MIX treatment. A study in which bumble bees were exposed 
to the combination imidacloprid-imazalil also failed to find 
synergistic effects on feeding rate (Raimets et al. 2018). The 
observed effect of imidacloprid on syrup consumption may 
be related to the reduction of bee mobility, leading bees to 
ingest less syrup (Medrzycki et al. 2003; Wu et al. 2017).

In addition, the median survival time of bees exposed to 
imidacloprid at 5 µg L−1 (alone and in combination with 
the fungicide) was significantly shorter (e.g., 10 days) than 
in bees from CRTL and FUNG treatments. In our study, 
bees were chronically exposed to a constant concentra-
tion of imidacloprid throughout their lifespan, an approach 
that does not account for pesticide degradation over time 

Fig. 2   Survival curves of Osmia bicornis females orally exposed 
to various pesticide treatments. CTRL, control (n = 38); FUNG, 
tebuconazole (n = 31); INS, imidacloprid (n = 33); MIX, tebucona-
zole + imidacloprid (n = 27). The dashed line indicates 50% survival 
rate
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or “dilution effect” due to visitation to uncontaminated 
flowers. However, levels of imidacloprid higher than the 
concentration tested in our study have been found in the 
flowers of crop and non-crop plants potentially extend-
ing the period of pesticide exposure beyond the bloom-
ing of the target crop (Botías et al. 2016; Wintermantel 
et al. 2020). Interestingly, the toxicity of imidacloprid in 
our study was higher than in a previous study that used 
a threefold higher concentration of the same commercial 
product, Confidor®, on O. bicornis females (Azpiazu et al. 
2019). Median mortality time in the control bees of the 
two studies was similar (19 and 20 days, respectively), but 
the median mortality time of the group treated with imida-
cloprid was 10 days in our study compared to 16 days in 
Azpiazu’s study (Azpiazu et al. 2019). These differences 
could be explained by the different diet offered to the bees. 
Our bees were provided with syrup only whereas those of 
Azpiazu et al. (2019) also had access to pollen. Several 
studies have shown that pollen feeding positively affects 
health and longevity in honey bees (Pasquale et al. 2013; 

Huang 2012) and may mitigate the negative impact of pes-
ticides (Castle et al. 2022).

In our study, the fungicide did not affect bee survival, 
even when combined with the insecticide. Some oral acute 
exposure studies have found a synergistic effect of the fun-
gicide propiconazole on the toxicity of the neonicotinoid 
clothianidin (Sgolastra et al. 2018, 2017). In contrast, the 
tebuconazole pulse did not reduce the survival of O. bicornis 
females chronically exposed to imidacloprid in our study. 
These results are in line with other studies in which honey 
bees chronically exposed to imidacloprid-tetraconazole 
(Zhu et al. 2017b) and imidacloprid-difenoconazole (Pal 
et al. 2022) mixtures did not yield synergistic effects; simi-
larly, no interactions between imidacloprid (15 µg L−1) and 
myclobutanil were found following chronic oral exposure in 
O. bicornis (Azpiazu et al. 2019).

We assessed four selected biomarkers (AChE, CaE, GST, 
and ALP) to determine the impact of the two pesticides at 
the neurological and metabolic levels. AChE, an important 
enzyme responsible for the hydrolyses of acetylcholine at 

Fig. 3   Activity of biomarkers AChE (μmol−1  g tissue−1  min), CaE 
(nmol min−1  mg−1 protein), GST (nmol min−1  mg−1 protein) and 
ALP (nmol min−1  mg.−1 protein) in Osmia bicornis females orally 
exposed to various pesticide treatments. CTRL, control; FUNG, 
tebuconazole; INS, imidacloprid; MIX, tebuconazole + imidacloprid. 

Measurements were taken at T1 (day 4 of exposure; A and T2 (day 
6 of exposure; B boxplots with asterisks are significantly different 
from the control (Dunn’s pairwise comparison, *p < 0.05; **p < 0.01, 
***p < 0.001)
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the cholinergic synapses (Badiou-Bénéteau et al. 2012), 
allows the control and modulation of neural transmission 
(Badiou et al. 2008). In our work, AChE was significantly 
inhibited by the tebuconazole (27% reduction, at T1) and 

by the imidacloprid (29% reduction, at T1 and 49% at T2), 
indicating a clear neurotoxic effect of the two pesticides and 
confirming AChE as an excellent biomarker for the assess-
ment of sub-lethal effects in O. bicornis.

Fig. 4   Star plots of the integrated biological response (IBRv2) in 
Osmia bicornis females orally exposed to three pesticide treatments. 
FUNG, tebuconazole; INS, imidacloprid; MIX, tebuconazole + imi-

dacloprid. Measurements were taken at T1 (day 4 of exposure) and 
T2 (day 6 of exposure). The dashed line indicates the control values
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The levels of inhibition can be considered relevant in 
altering the proper functioning of the nervous system. AChE 
inhibition has been associated with exposure to some classes 
of insecticides, such as carbamates and organophosphates 
(Fulton and Key 2001; Rabea et al. 2010). To date, AChE 
activity is also used for studying the neonicotinoids and their 
metabolites neurotoxic effects (Boily et al. 2013; Shao et al. 
2013; Samson-Robert et al. 2015; Gyori et al. 2017). As 
observed by Badawy et al. (2015), neonicotinoids such as 
dinotefuran (nitro-substituted compound) and acetamiprid 
(cyano-substituted), enhance the inhibition of AChE activ-
ity in honey bees after exposure to different field relevant 
doses, even though AChE is not the target site of neonico-
tinoids. In our study, we also observed a neurotoxic effect 
positively correlated to alterations in the feeding behavior 
of O. bicornis. Caliani et al. (2021b) found a neurotoxic 
effect of Amistar® Xtra (a.i., azoxystrobin), but no data 
were produced regarding syrup consumption. The inhibi-
tory effect on the AChE activity by tebuconazole, related 
with immobility, has been also reported in aquatic organ-
isms (Altenhofen et al. 2017; Lebrun et al. 2021). The use 
of fungicides may also be associated with sub-lethal effects 
disrupting the bee’s overall fitness and behavior (Artz and 
Pitts-Singer, 2015; Fisher et al. 2021). As for the MIX group, 
in our study, non-statistically significant alterations in this 
enzyme activity were observed. We can hypothesize the 
absence of a synergic effect of the two pesticides because 
we did not observe the highest inhibition in the MIX group. 
Yet, we cannot exclude an antagonistic or a predominant 
effect of one compound over the other.

CaE are phase-I detoxifying enzymes that mainly hydro-
lyse non-polar carboxyl esters (Badiou-Bénéteau et al. 2012; 
Stone et al. 2002; Barata et al. 2005). Besides, they also play 
a role in the defense mechanism, protecting AChE from the 
inactivation caused by organophosphates and carbamates. 
Several studies have also shown differential expression of 
CaEs after exposure to pesticides (Badiou-Bénéteau et al. 
2012; Zhu et al. 2017a,b). In our study, CaE was not modu-
lated by the fungicide or the insecticide. This result, together 
with the AChE inhibition, leads us to hypothesize that the 
AChE was the most affected enzyme.

The main role of the phase-II metabolizing GST isoen-
zymes is to catalyze the reaction with reduced glutathione 
(GSH) and conjugate xenobiotic compounds, facilitating 
their detoxification (Shi et al. 2012). The tendency for the 
decreased of GST activity, in particular in INS treatment at 
T1 and T2, could be indicative of an organism’s attempt to 
respond to an oxidative stress condition. This result could be 
expected, since imidacloprid is known to induce metabolic 
disruptions and oxidative stress in honey bees and other ani-
mals (Nicodemo et al. 2014; Powner et al. 2016).

ALP is included in the final process of digestion and in 
the mechanism of active membrane transport (Cheung and 

Low 1975; Srivastava and Saxena 1967). Although ALP is 
not involved in detoxification processes, its activity can be 
modulated in reaction to chemical stress. In our study, the 
ALP activity was not statistically inhibited by any treat-
ment or time, although we observed an overall decrease 
in its activity. Other studies showed a modulation of ALP 
in honey bees exposed to insecticides, such as fipronil, 
spinosad, imidacloprid, or following infection by Nosema 
(Dussaubat et al. 2012; Carvalho et al. 2013; Kairo et al. 
2017; Paleolog et al. 2020). An inhibition was also found 
by Caliani et  al.( 2021a), after honey bee exposure to 
fungicides and heavy metals. A previous study (Almasri 
et al. 2020) on honey bees did not find ALP modulation 
after the administration of combinations of imidacloprid, 
glyphosate and difenoconazole. We also found a positive 
correlation between GST and ALP at both times. The posi-
tive correlation between these two enzymes could indicate 
that both are affected by imidacloprid and tebuconazole.

We used the IBRv2 index to integrate the responses 
of the selected biomarkers (AChE, CaE, GST, and ALP). 
This approach facilitates the visualization of the spatial 
arrangement of different enzymatic responses and the 
possible effects of different contaminant compounds. 
At T1, the FUNG treatment showed the highest IBRv2 
value, followed by the INS treatment and finally the MIX 
treatment. This result indicates that the fungicide alone 
induced a high oxidative stress, particularly expressed by 
GST activity, although no difference was found between 
treatments. Previous studies also found increased GST 
response after fungicide exposure (Johansen et al. 2007; 
Han et al. 2014). Since the fungicide was administered as 
a pulse, we expected an improvement of the organisms’ 
health status at T2 that was confirmed by the IBRv2 low-
est value. This result suggests that the bees are able to 
biotransform and detoxify when they are not chronically 
exposed to the fungicide. On the other hand, the IBRv2 
value increased from T1 to T2 in the INS treatment, as 
expected given the continuous exposure to the pesticide. 
This treatment group is also the one that shows the high-
est IBRv2 value at T2. This could be due to the fact that 
the bees of FUNG group at T2 were not exposed anymore 
to the fungicide, and they were recovering from the fun-
gicide pulse exposure, while bees of the INS treatment 
were in contact with the pesticide for a prolonged period 
of time. As with the INS treatment, the IBRv2 value of 
the MIX treatment was higher at T2 than at T1. The MIX 
IBRv2 value confirms the results of FUNG at T2, indi-
cating recovery from the fungicide pulse. The obtained 
MIX value is probably due to the insecticide action only. 
These results confirm that biomarkers can be a useful tool 
in the framework of pesticide risk assessment as an early 
warning signal of pesticide side effects on bees in post-
registration monitoring programs.
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Conclusions

Our study demonstrates that exposure to the commercial 
insecticide Confidor® and fungicide Folicur® may impact 
the solitary bee O. bicornis at different levels of biological 
organization: from enzymatic responses to feeding rate and 
survival. Our results showed that (i) chronic exposure to 
residual concentrations of imidacloprid affected feeding 
and survival of this solitary bee; (ii) an acute exposure to 
a fungicide, considered safe to use during bloom, had a 
temporary sub-lethal impact; (iii) contrary to our expecta-
tion, the pulse of fungicide did not exacerbate the effects 
of imidacloprid. As for the molecular tools, one of the four 
biomarkers tested, AChE, was inhibited by the fungicide 
and the insecticide, showing promise as an indicator of 
sub-lethal effects in O. bicornis. The IBRv2 index proved 
to be a powerful tool to describe the toxicological status 
of O. bicornis, highlighting a good ability of the bees to 
recover from the fungicide pulse, while a chronic exposure 
to INS caused increased sub-lethal effects. No effects of 
the binary mixture were observed. Overall, this study pro-
vides evidence for improving the current risk assessment 
procedures by including sub-lethal endpoints and other bee 
species in addition to A. mellifera.
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