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HÖLDER BEHAVIOR OF VISCOSITY SOLUTIONS OF

SOME FULLY NONLINEAR EQUATIONS IN THE

HEISENBERG GROUP

FAUSTO FERRARI AND EUGENIO VECCHI

Abstract. In this paper we prove the C
0,α regularity of bounded and

uniformly continuous viscosity solutions of some degenerate fully non-
linear equations in the first Heisenberg group.

1. Introduction

In this paper we prove C0,α regularity of bounded and uniformly continu-
ous viscosity solutions of some degenerate fully nonlinear elliptic equations
in the first Heisenberg group H. It is known that the theory of viscos-
ity solutions is very flexible and that the existence of viscosity solutions of
second order PDEs is not strictly related to the degeneracy of the elliptic
operator, see [15], [13]. The regularity of viscosity solutions of second order
elliptic, possibly nonlinear, PDEs is also well established: one of the key in-
gredients is given by the Harnack inequality which, in turn, is based on the
Alexandroff-Bakelman-Pucci inequality, ABP in short, and the consequent
maximum principle. We refer to the books [21, 10] for a comprehensive intro-
duction to the subject. Despite several attempts, see e.g. [22, 23, 18, 19, 2],
a sub-elliptic version of the ABP inequality is not yet available. Neverthe-
less, another approach to prove regularity results is known in the literature
of viscosity solutions, it relies on the so called Theorem of the Sums or max-

imum principle for semicontinuous functions, see e.g. [13, 12, 14, 25, 15].
See also the very interesting improvement obtained in [29].

We are interested in the regularity of viscosity solutions of fully nonlinear
equations that are not uniformly elliptic in the classical sense. To be more
precise, in this note we deal with nonlinear PDEs that are modeled on
the vector fields belonging to the first layer of a stratified algebra. The
simplest example of this kind of geometric structure is provided by the first
Heisenberg group H: let us spend few words about it in order to properly
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describe both the class of equations and the regularity results in which we
are interested in.

The first Heisenberg group H is a non-abelian, homogeneuos, connected
and simply connected Lie group modeled on R

3, whose group law is given
by

(y1, y2, y3) · (x1, x2, x3) = (x1 + y1, x2 + y2, x3 + y3 + 2(x1y2 − x2y1)) .

The corresponding Lie algebra of left-invariant vector fields admits a 2-step
stratification, h = h1 ⊕ h2, where h1 = span{X1, X2} and h2 = span{X3}
for X1 = ∂x1

+ 2x2∂x3
, X2 = ∂x2

− 2x1∂x3
and X3 = ∂x3

= −1
4 [X1, X2].

Given a sufficiently smooth function u : H → R and a point x ∈ H,
the horizontal gradient of u at x is denoted by ∇Hu and is defined as
∇Hu(x) = (X1u(x), X2u(x)). The symmetrized horizontal Hessian of u at

x = (x1, x2, x3) ∈ H is represented by D2,∗
H
u(x) and is defined as the 2 × 2

matrix

D
2,∗
H
u(x) :=

[

X2
1u(x)

1
2(X1X2u(x) +X2X1u(x))

1
2(X1X2u(x) +X2X1u(x)) X2

2u(x)

]

.

We refer to the books [9] and [11] for a detailed introduction to the subject.
We are now ready to introduce the class of intrinsic fully nonlinear equa-

tions we will deal with.

Definition 1.1. Let λ,Λ > 0 be real positive numbers and let S2 the set
of 2× 2 real symmetric matrices. Let F : S2 → R be a continuous function
such that for every H1, H2 ∈ S2, if H1 ≥ H2, then

λTr(H1 −H2) ≤ F (H1)− F (H2) ≤ ΛTr(H1 −H2).

We consider the following class of equations

(1) F (D2,∗
H
u(x))− c(x)u(x) = f(x), in H,

where β, β′ ∈ (0, 1], f ∈ C0,β′

(H), c ∈ C0,β(H), and c ≥ 0 for every x ∈ H.

At first sight, the former class of equations seems to fit within the defi-
nition given for the classical fully nonlinear equations (see e.g. [15]), but it

has to be noted that, despite we work in H ≡ R
3, Ã ∈ S2 and not in S3.

Therefore, the class of operators F are not uniformly elliptic operator in the
classical sense.
We want to highlight an equivalent way to look at the class of equations
coming from (1). For every A ∈ S3 and for every x ∈ Ω ⊆ H, we first define

Ãx :=

[

〈AX1(x), X1(x)〉, 〈AX1(x), X2(x)〉
〈AX1(x), X2(x)〉, 〈AX2(x), X2(x)〉

]

,

where 〈·, ·〉 denotes the standard Euclidean scalar product in R
3. Now,

for every A ∈ S3 and for every x ∈ H, we can define F̃ (A, x) := F (Ãx).
Therefore, (1) can be equivalently written as

(2) F̃ (D2u(x), x)− c(x)u(x) = f(x), in H.

In this way we can also profit of the classical definition of viscosity solution,
without no need to work with the intrinsic one proposed in [5], see Section
2.

We want now to give a brief account of the operators falling within the
2



framework of Definition 1.1. As a very particular case, that class includes
the real part of the Kohn-Laplace operator in H, namely

∆Hu :=
(

∂
∂x1

+ 2x2
∂

∂x3

)2
u+

(

∂
∂x1

− 2x1
∂

∂x3

)2
u,

that is a degenerate elliptic operator at every point x ∈ H. Another inter-
esting class of operators that falls into this framework is provided by the
Pucci-Heisenberg operators, see e.g. [8, 16, 17]. Given 0 < λ ≤ Λ real
constants, we define

P+
H,λ,Λ(D

2,∗
H
u(x)) := max

A∈Aλ,Λ

Tr(AD2,∗
H
u(x)) = Λ

∑

e>0

e− λ
∑

e<0

e

and

P−
H,λ,Λ(D

2,∗
H
u(x)) := min

A∈Aλ,Λ

Tr(AD2,∗
H
u(x)) = λ

∑

e>0

e− Λ
∑

e<0

e,

where

Aλ,Λ := {A ∈ S2 : λ|ξ|2 ≤ 〈Aξ, ξ〉R2 ≤ Λ|ξ|2, ξ ∈ R
2 \ {0}},

and e denotes the generic eigenvalue of the symmetrized horizontal Hessian
matrix of u at x. As a last example, we also want to mention the sub-elliptic
Monge-Ampére-type operators, see e.g. [3, 4, 32].

We state our main result.

Theorem 1.2. Let u ∈ C(H) be a bounded and uniformly continuous vis-

cosity solution of the equation

F (D2,∗
H
u(x))− c(x)u(x) = f(x), in H,

for F as in Definition 1.1. Let Lc, Lf , β, β
′ be positive constants such that

β, β′ ∈ (0, 1] and

|c(x)− c(y)| ≤ Lc|x− y|β , |f(x)− f(y)| ≤ Lf |x− y|β
′

for every x, y ∈ H. If

inf
x∈H

c(x) := c0 > 0,

then there exist α := α(c0, Lc, Lf ,Λ) ∈ (0, 1], α ≤ min{β, β′}, and L :=
L(c0, Lc, Lf ,Λ) > 0 such that

|u(x)− u(y)| ≤ L|x− y|α, for every x, y ∈ H,

that is u ∈ C0,α(H).

A few comments about Theorem 1.2 are now in order. The proof fol-
lows an argument based on the Theorem of the sums as it appears in the
literature, e.g. [28, 27]. The main ingredient is given by a duplication of

variables and consists in the choice of a suitable function by ψ (see (5)).
This technique is quite classical in the context of fully nonlinear PDE’s (see
[28, Section VII.1]) and it has already been used by Ishii [27] even in the
context of degenerate linear second order operators.
Unfortunately, using this approach, we are not able to address the case in
which infx∈H c = 0 nor to relax the hypothesis on u. At the present stage
we are not even able to deal with equations definite only on bounded sets.
We want to stress further that we cannot weaken our assumptions even in

3



the linear case i.e. F (D2,∗
H
u(x)) = ∆Hu(x), which is well known to be a hy-

poelliptic operator, see [24]. We think that these problems could represent
only a technical difficulty that we hope to solve in a future research.

We are principally interested in a Hölder regularity property of viscosity
solutions of (1), without using a Harnack inequality (we refer to [1] for the
proof of a Harnack inequality in a similar setting). Moreover, at this stage,
we are not interested in finding a sharp Hölder exponent as we shall explain
in few rows. For this reason we do not use neither the Carnot-Charathéodory
distance nor the equivalent distance coming from the so called Kóranyi norm,
(see [11] for further details about these distances). It has to be noted that
our result implies a local Hölderianity in terms of any intrinsic distance.
Indeed, denoting by dCC the Carnot-Charathéodory distance in the Heisen-
berg group and K ⊂ H any compact set, it is well known that there exist
positive constants C1, C2 such that for every x, y ∈ K

C1|x− y| ≤ dCC(x, y) ≤ C2|x− y|
1

2 .

It would be certainly interesting to find a suitable technique to obtain global
Hölderianity in terms of an intrinsic distance.

Regularity of viscosity solutions is a subject that attracts the interests of
many researchers. Thus we like to point out the following more or less recent
results about some properties of the solutions of nonlinear equations in the
degenerate elliptic case: [26, 6, 35, 33, 7, 1] and, concerning the evolutive
framework, [30].

We conclude this introduction recalling that in [27] the Lipschitz regular-
ity, in the classical Euclidean sense, to viscosity solutions of linear smooth
second order elliptic operators, even possibly degenerate elliptic, has been
proved in all of Rn. In this perspective, our result could be seen as an ex-
tension of his result to the fully nonlinear setting.

The paper is organized as follows, in Section 2 we introduce the notation
and the basic definitions in the Heisenberg group. Section 3 is devoted to
the proof of Theorem 1.2.

2. Preliminaries

In this section we will fix the notation we will use throughout the paper.
We will also introduce the basics facts about the first Heisenberg group H,
including the notion of viscosity solution as introduced in [5].

First of all, for every m ∈ N we will denote by Sm the set of m×m real
symmetric matrices.

2.1. The first Heisenberg group. The first Heisenberg group H is a ho-
mogeneous, non-abelian, connected and simply connected Lie group modeled
on R

3. It is endowed with the following non-commutative group law

x · y = (x1 + y1, x2 + y2, x3 + y3 + 2(y1x2 − y2x1)),

where x = (x1, x2, x3), y = (y1, y2, y3) ∈ H. The inverse of a point x ∈
H is given by −x = (−x1,−x2,−x3). To simplify the notation in future
computations, we will also denote a point x ∈ H as x = (x′, x3), for x

′ =
(x1, x2).
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The Heisenberg group is also endowed with a homogeneous semigroup of
dilation

δλ(x) = (λx1, λx2, λ
2x3), for every λ > 0 and for every x ∈ H.

Its Lie algebra h admits a step 2 stratification, namely h = h1
⊕

h2, where

h1 = span{X1, X2} and h2 = span{X3},

for X1 = ∂
∂x1

+ 2x2
∂

∂x3
, X2 = ∂

∂x2
− 2x1

∂
∂x3

and X3 = ∂
∂x3

. In particular

[X1, X2] = −4X3. The vector fields X1 and X2 span the so called horizontal

distribution and are usually addressed as horizontal vector fields. They can
be identified with the vectors (1, 0, 2x2) and (0, 1,−2x1) respectively, so
that we can also write X1(x) = (1, 0, 2x2) and X2(x) = (0, 1,−2x1). Given
a sufficiently smooth function u : H → R, the horizontal vector fields are
homogeneous of degree 1 with respect to the family of dilation δλ, that
means

X1u(δλx) = λ(X1u)(δλx) and X2u(δλx) = λ(X2u)(δλx).

Continuing with the notation, we denote by ∇Hu(x) = X1u(x)X1(x) +

X2u(x)X2(x) = (X1u(x), X2u(x)) the intrinsic gradient of u, and byD2,∗
H
u(x)

its symmetrized horizontal Hessian at the point x ∈ H, which is given by

D
2,∗
H
u(x) =

[

X2
1u(x),

(X1X2+X2X1)u(x)
2

(X1X2+X2X1)u(x)
2 , X2

2u(x)

]

.

By a straightforward computation we obtain the following

Lemma 2.1. Let Ω ⊆ H be an open set and let u ∈ C2(Ω). Then

D
2,∗
H
u(x) =

[

X2
1u(x),

X1X2u(x)+X2X1u(x)
2

X1X2u(x)+X2X1u(x)
2 , X2

2u(x)

]

=

[

〈D2u(x)X1(x), X1(x)〉, 〈D2u(x)X1(x), X2(x)〉
〈D2u(x)X1(x), X2(x)〉, 〈D2u(x)X2(x), X2(x)〉

]

.

Moreover, for every α, β ∈ R and for every x ∈ Ω

〈D2u(αX1 + βX2)
T , (αX1 + βX2)〉 = 〈D2,∗

H
u(α, β)T , (α, β)〉.

Analogously a simple computation yields

Lemma 2.2. Let A,B ∈ S3 and let Ω ⊆ H be an open set. Assume that

φ ∈ C2(Ω× Ω). If
[

A, 0
0, −B

]

≤ D2φ(x, y) +
1

µ
(D2φ(x, y))2

then

〈A(α1X1 + β1X2), (α1X1 + β1X2)〉 − 〈B(α2X1 + β2X2), (α2X1 + β2X2)〉

≤ 〈D2φ(x, y)

[

α1X1 + β1X2,

α2X1 + β2X2

]

, [α1X1 + β1X2, α2X1 + β2X2]〉R2

+
1

µ
〈(D2φ(x, y))2

[

α1X1 + β1X2

α2X1 + β2X2,

]

, [α1X1 + β1X2, α2X1 + β2X2]〉R2 .
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2.2. Viscosity solutions. We recall the definition of viscosity solution for
our particular equation written in the form (2), as it is given in [15].

Definition 2.3. We say that u ∈ C(Ω) is a sub-solution of (2) if for every
φ ∈ C2 and for every x0 ∈ Ω if u − φ realizes a maximum at x0 in a open
neighborhood Ux0

of x0 then

F (D2φ(x0), x0)− c(x0)φ(x0) ≥ f(x0).

Analogously we shall say that u ∈ C(Ω) is a super-solution of (2) if for
every φ ∈ C2 and for every x ∈ Ω if u − φ realizes a minimum at x0 in a
open neighborhood Ux0

of x0 then

F (D2φ(x0), x0)− c(x0)u(x0) ≤ f(x0).

If u ∈ C(Ω) is both a sub-solution and a super-solution of (2), then u is
a viscosity solution of the equation (2).

Since we can also work with the equation written in the form (1), we recall
also that there exists an intrinsic definition of viscosity solution concerning
sub-elliptic semi-jets, see [5], [31].

2.3. Theorem on Sums. This result is described with different names,
for instance, in the papers [14] and [28] see also [34]. In the following part
J2,+u(x̂) and J2,−u(x̂) denote respectively the classical super-jet and sub-jet
of u at the point x̂ ∈ Ω for the function u ∈ C(Ω).

Theorem 2.4. Let Ω ⊂ R
n be an open and bounded set. Let u ∈ USC(Ω̄)

and v ∈ LSC(Ω̄). For φ ∈ C2(Rn × R
n). If there exists (x̂, ŷ) ∈ Ω such that

u(x̂)− v(ŷ)− φ(x̂, ŷ) = max
(x,y)∈Ω×Ω

(u(x)− v(y)− φ(x, y)) ,

then for each µ > 0, there are A = A(µ) and B = B(µ) such that

(Dxφ(x̂, ŷ), A) ∈ J
2,+
u(x̂), (−Dyφ(x̂, ŷ), B) ∈ J

2,+
u(ŷ)

and

−
(

µ+ ‖D2φ(x̂, ŷ)‖
)

[

I, 0
0, I

]

≤

[

A, 0
0, −B

]

≤ D2φ(x̂, ŷ)+
1

µ
(D2φ(x̂, ŷ))2,

where

D2φ(x̂, ŷ) =

[

D2
xxφ(x̂, ŷ), D2

yxφ(x̂, ŷ)
D2

xyφ(x̂, ŷ), D2
yyφ(x̂, ŷ)

]

and ‖D‖ is the norm given by the maximum, in absolute value, of the eigen-

values of the symmetric matrix D.

3. Proof of Theorem 1.2

In this section we prove our main result. In order to do this, we have to
fix some notations. Let α ∈ (0, 1] and let u : H → R be a bounded and
uniformly continuous function. We consider

w(x, y) = u(x)− u(y)− L|x− y|α − δ|x|2 − ǫ.

For simplicity, let us denote by ϕ(x, y) := L|x− y|α.
Assume for the moment that we have satisfied the hypothesis requested to
apply the Theorem of sums. This means that, still denoting with (x, y)

6



the point that realizes the maximum there exist two symmetric matrices
A,B ∈ S3 such that

(Dxϕ(x, y) + 2δ x,A+ 2δI) ∈ J̄2,+u(x)

and

(−Dyϕ(x, y), B) ∈ J̄2,−u(y),

with
(

A 0
0 −B

)

≤ D2ϕ+
1

µ
(D2ϕ)2 =:

(

M −M
−M M

)

+
2

µ

(

M2 −M2

−M2 M2

)

,

where

(3) M = Lα|x− y|α−2

(

(α− 2)
x− y

|x− y|
⊗

x− y

|x− y|
+ I

)

and

(4) M2 = L2α2|x− y|2(α−2)

(

α(α− 2)
x− y

|x− y|
⊗

x− y

|x− y|
+ I

)

.

It is worth to remark that the matrix

(α− 2)
x− y

|x− y|
⊗

x− y

|x− y|
+ I

has smallest eigenvalue α − 1 associated with the eigenvector x−y
|x−y| , while

the largest eigenvalue is 1.

Remark 3.1. To improve the readability, we will denote by N the matrix
N :=M + 2

µ
M2. In particular recalling (3) and (4) we get

‖N‖ ≤ Lα|x− y|α−2 +
2

µ
L2α2|x− y|2(α−2).

Lemma 3.2. Let A,B,N ∈ S3 such that
[

A, 0
0, −B

]

≤

[

N, −N
−N, N

]

.

Then, for every [ξ, η] ∈ R
6

[ξ, η]

[

A, 0
0, −B

] [

ξ

η

]

≤ [ξ, η]

[

N, −N
−N, N

] [

ξ

η

]

and

〈Aξ, ξ〉 − 〈Bη, η〉 ≤ 〈N(ξ − η), (ξ − η)〉

In addition we get that, for every a, b ≥ 0 and for every ξ1, ξ2, η1, η2 ∈ R
3

a〈Aξ1, ξ1〉+ b〈Aξ2, ξ2〉 − a〈Bη1, η1〉 − b〈Bη2, η2〉

≤ (a〈N(ξ1 − η1), (ξ1 − η1)〉+ b〈N(ξ2 − η2), (ξ2 − η2)〉) .

Proof. The result follows by straightforward calculation recalling Lemma
2.2. �
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Remark 3.3. By Lemma 3.2, we get that for every A,B ∈ S3,

〈AX1(x), X1(x)〉 − 〈BX1(y), X1(y)〉

≤ 〈M(X1(x)−X1(y), X1(x)−X1(y)) +
1

µ
〈M2(X1(x)−X1(y), X1(x)−X1(y))〉

and

〈AX2(x), X2(x)〉 − 〈BX2(y), X2(y)〉

≤ 〈M(X2(x)−X2(y), X2(x)−X2(y)) +
1

µ
〈M2(X2(x)−X2(y), X2(x)−X2(y))〉.

Moreover summing term by term the previous inequalities we have

〈AX1(x), X1(x)〉+ 〈AX2(x), X2(x)〉 − (〈BX1(y), X1(y)〉+ 〈BX2(y), X2(y)〉)

≤ 〈M(X2(x)−X2(y), X2(x)−X2(y)) +
1

µ
〈M2(X2(x)−X2(y), X2(x)−X2(y))

+〈M(X1(x)−X1(y), X1(x)−X1(y)) +
1

µ
〈M2(X1(x)−X1(y), X1(x)−X1(y))

Since, X1(x)−X1(y) = (0, 0, 2(y1 − x1)) and X2(x)−X2(y) = (0, 0, 2(x2 −
y2)), we get

〈AxX1(x), X1(x)〉+ 〈AxX2(x), X2(x)〉 − (〈ByX1(y), X1(y)〉+ 〈ByX2(y), X2(y)〉)

≤ 4((x1 − y1)
2 + (x2 − y2)

2)〈Me3, e3〉+
4

µ
((x1 − y1)

2 + (x2 − y2)
2)〈M2e3, e3〉.

Corollary 3.4. Let A,B,N ∈ S3 such that
[

A, 0
0, −B

]

≤

[

N, −N
−N, N

]

.

Then, if ξ1 = X1(x), η1 = X1(y), ξ2 = X2(x) and η2 = X2(y), we get that

for every a, b ≥ 0

a〈AX1(x), X1(x)〉+ b〈AX2(x), X2(x)〉 − a〈AX1(y), X1(y)〉 − b〈AX2(y), X2(y)〉

≤
(

a(x2 − y2)
2 + b(x1 − y1)

2
)

n33,

where n33 = 〈Ne3, e3〉. In particular, if a = 1 = b

Tr(Ã)− Tr(B̃) ≤
(

(x2 − y2)
2 + (x1 − y1)

2
)

n33,

Proof. Keeping in mind Lemma 3.2 and choosing ξ1 − η1 = 2(0, 0, x2 − y2)
and ξ2 − η2 = −2(0, 0, x1 − y1), then the result immediately follows. �

We can now proceed with the proof of our main result. For sake of
simplicity we denote by ‖u‖∞ := ‖u‖L∞(H).

Proof of Theorem 1.2. Let u : H → R be a bounded and uniformly contin-
uous viscosity solution of

F (D2∗u(x))− c(x)u(x) = f(x), x ∈ H.

Let L > 0 be a fixed constant and let L > L0. Let δ and ǫ be positive
constants, and let α ∈ (0, 1]. We define the function ψ : H×H → R as

(5) ψ(x, y) := u(x)− u(y)− L|x− y|α − δ|x|2 − ǫ.

We also put θ := supH×H ψ(x, y).
Claim: there exist L0 > 0 and α0 = α0(‖u‖∞,Λ, λ, c0) ∈ (0, 1] such that

8



θ ≤ 0, for every δ > 0 and for every ǫ > 0. This would be enough to conclude
the proof, indeed

ψ(x, y) ≤ u(x̂)− u(ŷ)− L0|x̂− ŷ|α0 − δ|x̂|2 − ǫ ≤ 0

and letting δ → 0 and ǫ→ 0 we get

u(x)− u(y)− L0|x− y|α0 ≤ 0, for every x, y ∈ H.

In order to prove the claim, we argue by contradiction. Let us suppose that
there exist δ0 and ǫ0 such that for every δ < δ0 and for every ǫ < ǫ0

0 < θ = sup
H×H

{u(x)− u(y)− L|x− y|α − δ|x|2 − ǫ}.

Then, for every fixed 0 < δ < δ0 and 0 < ǫ < ǫ0, there exists a sequence
{(xj , yj)}j∈N ∈ H×H such that

lim
j→∞

(u(xj)− u(yj)− L|xj − yj |
α − δ|xj |

2 − ǫ) = θ.

Since θ > 0, there exists j̄ ∈ N such that u(xj)−u(yj)−L|xj−yj |
α−δ|xj |

2−

ǫ > θ
2 > 0, for every j > j̄. Therefore

∞ > 2‖u‖∞ ≥ u(xj)− u(yj) > L|xj − yj |
α + δ|xj |

2 + ǫ, for every j > j̄.

Thus

δ|xj |
2 < 2‖u‖∞, and |xj − yj |

α <
2||u||∞
L

.

By compactness, possibly extracting a subsequence, we get that there exists
(x̂, ŷ) ∈ H×H such that

lim
k→∞

xjk = x̂ and lim
k→∞

yjk = ŷ.

Possibly taking L sufficiently large, by the uniformly continuity of u we

would get a contradiction whenever
(

2||u||∞
L

)
1

α
< η(ǫ), where η is the pa-

rameter independent of x̂, ŷ ∈ H associated with the uniform continuity of
u. Therefore there exists γ > 0 such that

lim
k→∞

|xjk − yjk |
α = γ.

This implies that |x̂− ŷ|α = γ > 0, independently of δ. Thus, we can assume
that γ does not depend on δ. As a consequence, if θ > 0 then there exists
(x̂, ŷ) ∈ H and γ > 0 such that

θ := sup
H×H

ψ(x, y) = ψ(x̂, ŷ),

and there exists γ̄ independent of δ such that

0 < γ̄ < |x̂− ŷ|α <
2‖u‖∞
L

.

Recalling that u is a viscosity solution, and keeping in mind the hypotheses
on c and f , we get by Theorem of the sums:

c0(L|x̂− ŷ|α + δ|x̂|2) ≤ c0(u(x̂)− u(ŷ)) ≤ c(x̂)(u(x̂)− u(ŷ))

= c(x̂)u(x̂)− c(ŷ)u(ŷ) + u(ŷ)(c(ŷ)− c(x̂))

≤ F (Ã+ 2δĨ)− F (B̃) + f(ŷ)− f(x̂) + u(ŷ)(c(ŷ)− c(x̂)).

(6)

We consider now two cases.
9



If Ã+ 2δĨ ≥ B̃, keeping in mind Definition 1.1, we get

c0L|x̂− ŷ|α + c0δ|x̂|
2 ≤ ΛTr(Ã− B̃) + 2δ(|X(x̂)|2 + |Y (x̂)|2)

+ f(ŷ)− f(x̂) + u(ŷ)(c(ŷ)− c(x̂)).

To simplify the notation, let us denote

R := |X1(x̂)|
2 + |X2(x̂)|

2 = 2(1 + 2|x̂′|2).

Moreover, by the Theorem of the sums and recalling Corollary 3.4, we deduce
that:

Tr(Ã− B̃) ≤
(

(x̂2 − ŷ2)
2 + (x̂1 − ŷ1)

2
)

n33.

We recall also that keeping in mind the classical computation we get

n33 = Lα|x̂− ŷ|α−2

(

(α− 2)
(x̂3 − ŷ3)

2

|x̂− ŷ|2
+ 1

)

+
2

µ
L2α2|x̂− ŷ|2(α−2)

(

α(α− 2)
(x̂3 − ŷ3)

2

|x̂− ŷ|2
+ 1

)

.

Hence

c0 ≤
Λ

L
|x̂− ŷ|−α

(

(x̂2 − ŷ2)
2 + (x̂1 − ŷ1)

2
)

n33

+
Lf

L
|x̂− ŷ|β−α +

Lc

L
|x̂− ŷ|β

′−α +
δ
(

2R− c0(|x̂|
2)
)

L|x̂− ŷ|α

= Λ
(

(x̂2 − ŷ2)
2 + (x̂1 − ŷ1)

2
)

α|x̂− ŷ|−2

(

(α− 2)
(x̂3 − ŷ3)

2

|x̂− ŷ|2
+ 1

)

+ ΛLα2 2

µ

(

(x̂2 − ŷ2)
2 + (x̂1 − ŷ1)

2
)

|x̂− ŷ|α−4

(

α(α− 2)
(x̂3 − ŷ3)

2

|x̂− ŷ|2
+ 1

)

+
Lf

L
|x̂− ŷ|β−α +

Lc

L
|x̂− ŷ|β

′−α +
δ

L
|x̂− ŷ|−α

(

2R− c0|x̂|
2
)

.

(7)

We remark that if the factor

(α− 2)
(x̂3 − ŷ3)

2

|x̂− ŷ|2
+ 1

were negative then, possibly taking µ sufficiently large, we could assume
that

0 > Λ
(

(x̂2 − ŷ2)
2 + (x̂1 − ŷ1)

2
)

α|x̂− ŷ|−2

(

(α− 2)
(x̂3 − ŷ3)

2

|x̂− ŷ|2
+ 1

)

+ ΛLα2 2

µ

(

(x̂2 − ŷ2)
2 + (x̂1 − ŷ1)

2
)

|x̂− ŷ|α−4

(

α(α− 2)
(x̂3 − ŷ3)

2

|x̂− ŷ|2
+ 1

)

concluding that

(8) c0 ≤
Lf

L
|x̂− ŷ|β−α +

Lc

L
|x̂− ŷ|β

′−α +
δ

L
|x̂− ŷ|−α

(

2R− c0|x̂|
2
)

and obtaining a contradiction possibly taking a larger L as it explained in
an analogous case later on. Otherwise,

(α− 2)
(x̂3 − ŷ3)

2

|x̂− ŷ|2
+ 1 ≥ 0 and α(α− 2)

(x̂3 − ŷ3)
2

|x̂− ŷ|2
+ 1 > 0,
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we can obtain from (7), possibly fixing µ in such a way that

Λ
(

(x̂2 − ŷ2)
2 + (x̂1 − ŷ1)

2
)

α|x̂− ŷ|−2

(

(α− 2)
(x̂3 − ŷ3)

2

|x̂− ŷ|2
+ 1

)

= ΛLα2 2

µ

(

(x̂2 − ŷ2)
2 + (x̂1 − ŷ1)

2
)

|x̂− ŷ|α−4

(

α(α− 2)
(x̂3 − ŷ3)

2

|x̂− ŷ|2
+ 1

)

,

the following inequality

c0 ≤ 2Λα
(

(x̂2 − ŷ2)
2 + (x̂1 − ŷ1)

2
)

|x̂− ŷ|−2

(

(α− 2)
(x̂3 − ŷ3)

2

|x̂− ŷ|2
+ 1

)

+
Lf

L
|x̂− ŷ|β−α +

Lc

L
|x̂− ŷ|β

′−α +
δ

L
|x̂− ŷ|−α

(

2R− c0|x̂|
2
)

(9)

holds. Notice that with respect to the inequality (8) the worst case is given
by previous inequality (9). Thus we have to discuss the following term that
appears in (9):

δ
(

2R− c0|x̂|
2
)

= 4δ + (8− c0)δ|x̂
′|2 − c0δx̂

2
3.

We know that
δ|x̂|2 ≤ 2||u||2∞, for every δ < δ0.

Moreover
δ
(

2R− c0|x̂|
2
)

≤ 4δ + (8− c0)δ|x̂|
2,

and, if c0 > 8, we deduce that

δ
(

2R− c0|x̂|
2
)

≤ 4δ.

Thus, from (9) it follows that

c0 ≤ 2Λα
(

(x̂2 − ŷ2)
2 + (x̂1 − ŷ1)

2
)

|x̂− ŷ|−2

(

(α− 2)
(x̂3 − ŷ3)

2

|x̂− ŷ|2
+ 1

)

+
Lf

L
|x̂− ŷ|β−α +

Lc

L
|x̂− ŷ|β

′−α +
8δ

L
|x̂− ŷ|−α

≤ 2Λα+
Lf

L
|x̂− ŷ|β−α +

Lc

L
|x̂− ŷ|β

′−α +
8δ

L
|x̂− ŷ|−α

≤ 2Λα+ 2
β

α
−1

(

Lf

L
β

α

||u||
β

α
−1

∞ +
Lc

L
β′

α

||u||
β′

α
−1

∞

)

+
8δ

L
|x̂− ŷ|−α.

Now, letting δ → 0, we get

(10) c0 ≤ 2Λα+ 2
β

α
−1

(

Lf

L
β

α

||u||
β

α
−1

∞ +
Lc

L
β′

α

||u||
β′

α
−1

∞

)

.

Hence, taking L sufficiently large and α sufficiently small, we get a contra-
diction with the positivity of c0. In particular we need that

α <
c0

2Λ
.

In case Ã+ 2δĨ < B, then

λTr(B̃ − Ã− 2δĨ) ≤ F (B̃)− F (Ã+ 2δĨ) ≤ ΛTr(B̃ − Ã− 2δĨ),

so that

−ΛTr(B̃ − Ã− 2δĨ) ≤ F (Ã+ 2δĨ)− F (B̃) ≤ −λTr(B̃ − Ã− 2δĨ)
11



and, as a consequence, we get that

F (Ã+ 2δĨ)− F (B̃) ≤ −λTr(B̃ − Ã− 2δĨ) < 0.

The contradiction follows from (6) since we immediately obtain

c0L|x̂− ŷ|α ≤ F (Ã+ 2δĨ)− F (B) + f(ŷ)− f(x̂) + u(ŷ)(c(ŷ)− c(x̂))

≤ −λTr(B̃ − Ã− 2δĨ) + Lf |x̂− ŷ|β + Lc|x̂− ŷ|β
′

≤ Lf |x̂− ŷ|β + Lc|x̂− ŷ|β
′

.

Moreover we obtain

c0 ≤
Lf

L
|x̂− ŷ|β−α +

Lc

L
|x̂− ŷ|β

′−α.

For β, β′ ≥ α, we reach a contradiction by sending L → +∞. This closes
the proof. �
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1291–1330.

[5] T. Bieske, On ∞-harmonic functions on the Heisenberg group, Communications in
PDE 27 (2002), 727–761.

[6] I. Birindelli and F. Demengel, C1,β regularity for Dirichlet problems associated

to fully nonlinear degenerate elliptic equations, ESAIM Control Optim. Calc. Var.
20 (2014), 1009–1024.

[7] I. Birindelli, G. Galise and H. Ishii, A family of degenerate elliptic operators:

maximum principle and its consequences, Ann. Inst. H. Poincar Anal. Non Linaire
35 (2018), no. 2, 417–441.

[8] I. Birindelli and B. Stroffolini, Existence theorems for fully nonlinear equations

in the Heisenberg group, Subelliptic PDE’s and applications to geometry and finance,
Semin. Interdiscip. Mat. (S.I.M.), Potenza, 2007, 6, 49–55.

[9] A. Bonfiglioli, E. Lanconelli and F. Uguzzoni, Stratified Lie groups and Po-
tential theory for their Sub-Laplacians, Springer Monographs in Mathematics, 26.
New York, NY: Springer-Verlag, 2007.
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419–435.

[13] M.G. Crandall, Viscosity solutions: a primer. Viscosity solutions and applications
(Montecatini Terme, 1995), 1–43, Lecture Notes in Math., 1660, Fond. CIME/CIME
Found. Subser., Springer, Berlin, 1997.

[14] M.G. Crandall and H. Ishii, The maximum principle for semicontinuous func-

tions, Differential Integral Equations 3 (1990), 1001–1014.

12



[15] M.G. Crandall, H. Ishii and P.-L. Lions, User’s guide to viscosity solutions of

second order partial differential equations, Bull. Amer. Math. Soc. (N.S.) 27 (1992),
1–67.

[16] A. Cutr̀ı and N. Tchou, Fully nonlinear degenerate operators associated with the

Heisenberg group: barrier functions and qualitative properties, C. R. Math. Acad.
Sci. Paris 344 (2007), 559–563.

[17] A. Cutr̀ı and N. Tchou, Barrier functions for Pucci-Heisenberg operators and

applications, Int. J. Dyn. Syst. Differ. Equ. 1 (2007), 117–131.
[18] D. Danielli, N. Garofalo and D.-M. Nhieu, On the best possible character of the

L
Q norm in some a priori estimates for non-divergence form equations in Carnot

groups, Proc. Amer. Math. Soc. 131 (2003), 3487–3498.
[19] N. Garofalo and F. Tournier, New properties of convex functions in the Heisen-

berg group, Trans. Amer. Math. Soc. 358 (2006), 2011–2055.
[20] F. Ferrari Some a priori estimates for a class of operators in the Heisenberg group,

Ann. Mat. Pura Appl. 193 (2014), 1019–1040.
[21] D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second

order. Reprint of the 1998 edition. Classics in Mathematics. Springer-Verlag, Berlin,
2001.

[22] C.E. Gutiérrez and E. Lanconelli, Maximum principle, nonhomogeneous Har-

nack inequality, and Liouville theorems for X-elliptic operators, Comm. Partial Dif-
fer. Equ. 28 (2003), 1833–1862.

[23] C.E Gutiérrez and A. Montanari, Maximum and comparison principles for

convex functions on the Heisenberg group, Comm. Partial Differ. Equ. 29 (2004),
1305–1334.
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