
Unlocking Human-Robot Dynamics: Introducing SenseCobot,  
a Novel Multimodal Dataset on Industry 4.0 

Simone Borghi† 
 Department of Engineering “Enzo 

Ferrari”, 
 University of Modena and Reggio 

Emilia. Modena, Italy 
 simone.borghi@unimore.it 

 
Andrea Ruo 

 Department of Sciences and 
Methods for Engineering,  

University of Modena and Reggio 
Emilia. Reggio Emilia, Italy 
  andrea.ruo@unimore.it 

Federica Zucchi 
 Department of Sciences and 

Methods for Engineering, 
University of Modena and Reggio 

Emilia. Reggio Emilia, Italy 
 289728@studenti.unimore.it 

 
Valeria Villani 

 Department of Sciences and 
Methods for Engineering,  

University of Modena and Reggio 
Emilia. Reggio Emilia, Italy 
valeria.villani@unimore.it 

 
Margherita Peruzzini 
 Department of Industrial 

Engineering,  
University of Bologna. Bologna, Italy 

 margherita.peruzzini@unibo.it 

Elisa Prati 
 Department of Sciences and 

Methods for Engineering,  
University of Modena and Reggio 

Emilia. Reggio Emilia, Italy 
elisa.prati@unimore.it 

 
Lorenzo Sabattini 

 Department of Sciences and 
Methods for Engineering,  

University of Modena and Reggio 
Emilia. Reggio Emilia, Italy 

 lorenzo.sabattini@unimore.it 

ABSTRACT 
In the era of Industry 4.0, the importance of human-robot 
collaboration (HRC) in the advancement of modern 
manufacturing and automation is paramount. Understanding the 
intricate physiological responses of the operator when they 
interact with a cobot is essential, especially during programming 
tasks. To this aim, wearable sensors have become vital for real-
time monitoring of worker well-being, stress, and cognitive load. 
This article presents an innovative dataset (SenseCobot) of 
physiological signals recorded during several collaborative 
robotics programming tasks. This dataset includes various 
measures like ElectroCardioGram (ECG), Galvanic Skin Response 
(GSR), ElectroDermal Activity (EDA), body temperature, 
accelerometer, ElectroEncephaloGram (EEG), Blood Volume Pulse 
(BVP), emotions and subjective responses from NASA-TLX 
questionnaires for a total of 21 participants. 
By sharing dataset details, collection methods, and task designs, 
this article aims to drive research in HRC advancing 
understanding of the User eXperience (UX) and fostering efficient, 
intuitive robotic systems. This could promote safer and more 
productive HRC amid technological shifts and help decipher 
intricate physiological signals in different scenarios. 

 

This work is licensed under a Creative Commons 
Attribution International 4.0 License.  

 
HRI ‘24, March 11–14, 2024, Boulder, CO, USA 
© 2024 Copyright is held by the owner/author(s). 
ACM ISBN 979-8-4007-0322-5/24/03. 
https://doi.org/10.1145/3610977.3636440  
 
 

CCS CONCEPTS 

• Human-centered computing. 

KEYWORDS 
Human-Robot Collaboration, Human-Robot Interaction, 
Multimodal Dataset, Psychophysiological Signals, Stress 
Evaluation.  
 
ACM Reference Format: 

Simone Borghi, Federica Zucchi, Elisa Prati, Andrea Ruo, Valeria Villani, 
Lorenzo Sabattini, and Margherita Peruzzini. 2024. Unlocking  
Human-Robot Dynamics: Introducing SenseCobot, a Novel Multimodal 
Dataset on Industry 4.0. In Proceedings of the 2024 ACM/IEEE International 
Conference on Human-Robot Interaction (HRI ‘24), March 11–14, 2024, 
Boulder, CO, USA. ACM, New York, NY, USA, 5 pages. 
https://doi.org/10.1145/3610977.3636440 
 

1 STUDY OVERVIEW 
Over the past decade, collaborative robots, also known as cobot [1] 
have gained extensive acceptance in industrial settings. HRC 
involves situations where humans and cobots work together to 
perform tasks [2]; for this purpose, cobots are designed for direct 
interaction with humans in shared spaces or proximity situations. 
Unlike industrial robots which are typically isolated from human 
contact, cobots prioritize safety through features like lightweight  
materials, rounded edges, speed and force limitations, and the use 
of sensors and software to guarantee safe operation. Cobots are 
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generally considered to offer a higher level of intuitiveness and ease 
of programming and the best synergy with humans is achieved 
when they collectively address complex issues in a dynamic, 
observable, and predictable work environment. For task execution, 
cobots need to be programmed by the user: procedures and 
movements can be defined in different ways, such as using a teach 
pendant (i.e., a programmable interface), free drive mode, and 
computer vision based on deep learning algorithms [3]. The 
programming phase represents a central part of HRC and for this 
reason, it should be as intuitive as possible. However, initial 
programming can be daunting for those unfamiliar with these 
technologies and could lead to stressful situations that can 
compromise a good collaboration. For this reason, it is important to 
monitor the user’s stress level, cognitive load, and effort during this 
task, in such a way that the programming phase is made as simple 
and intuitive as possible [4]. The evaluation and prediction of these 
states can help make changes and adapt the platform or productive 
process in real-time to make it more sustainable and closer to the 
well-being of the user. To date, for monitoring working well-being, 
stress level, and cognitive workload in real-time, different types of 
wearable sensors can be used [5] and extract interesting metrics as 
an interpretation of physical and mental load [6]. Previous studies 
have focused on the generation of datasets of collected 
physiological signals for the assessment of stress in occupational 
settings. For example, WESAD dataset [7] includes physiological 
and motion signals (e.g., electrodermal activity and blood volume 
pulse) collected from volunteers in office working contexts; and [8] 
emphasizes the importance of cobot adaptation to the 
psychophysical state of the user, monitored in real-time via 
electroencephalography. Due to the complexity of human 
psychophysiological signals needed for reliable evaluation of stress 
level and cognitive load, a collection of multiple biological signals is 
required. To the best of our knowledge, there are no such datasets 
in HRC contexts, and this work proposes SenseCobot dataset to fill 
in this lack. The latter is a multimodal dataset of physiological 
signals and subjective evaluation collected from participants 
involved in HRC tasks. They have been collected in real-time with 
wearable and minimally invasive sensors and questionnaires, 
applicable also in real contexts. The purpose of this work was to 
offer high-quality data obtained in multiple modalities for 
understanding different psychophysiological states related to 
mental effort and stress evaluation in cobot programming.  
 

2 METHODS 
The experiment has been structured into three phases, described in 
detail below: introduction to the learning materials, baseline 
measurement task, and hands-on practice. The learning platform 
has been organized in such a way as to provide information 
gradually as needed for the execution of task phases to make cobot 
programming as easy as possible for novices. It includes expository 
slides, video, and audio. The hypothesis has been that if unskilled 
workers are better informed about collaborative robots and receive 
systematic training, they could gain the ability to independently 
program effectively these devices. 

 
2.1 Experiment Phases and Tasks. The experiment was organized in 
such a way that the user follows the cobot programming 
instructions shown on a monitor, first in a trial phase and 
subsequently in an actual simulation. To make the procedure 
standardized and reproducible, the experimental setup has been 
structured to include the following three macro-phases: 
 
Introduction to the Learning Materials - A set of slides, with 
instructions regarding the cobot programming procedure, have 
been provided. Participants had to execute the first four tasks which 
will be presented again in the Hands-on practice phase, with no 
specified time constraints. They could revisit the instructions as 
needed, no errors were formally monitored, and no subjective 
questionnaires have been administered.  
Baseline Measurement Task – Participants have been 
accommodated and dressed in the sensors, while 3 minutes of 
neutral screen, followed by eight videos have been shown. The 
videos were carefully chosen to evoke emotions from the platforms 
OpenLav [9] and Moody Digital [10], mirroring those that the 
operator might experience during task execution. The baseline has 
the function of objectifying and standardizing the psychophysical 
conditions of each participant and establishing a reference against 
which it is possible to compare the signals acquired during other 
tasks.  
Hand-On Practice - Participants have been required to complete 5 
tasks, whose first 4 already faced in the learning phase and 
organized in a progression of complexity to mimic the difficulties 
that might be encountered in a real working context: 
• Task 1. It has been asked to move the cobot arm between two 

designated points (A and B).  
• Task 2. It has been asked to maneuver the cobot arm among 

three designated points (A, B, and C).  
• Task 3. It has been asked to maneuver the cobot’s arm to an 

arbitrary height from point A (A’), and then gradually move 
towards point A while maintaining its perpendicular 
orientation to the work surface. After a short pause, the cobot 
should ascend again to point A’. 

• Task 4. The objective was to pick up a screw located at point 
A on the work surface and perform a placement action. Using 
the cobot’s gripper, it has been required to grasp the screw, 
elevate it, and subsequently deposit it onto point B. 

• Task 5. The last task encompasses all the previously acquired 
commands. It has been asked to manipulate a box, initially 
oriented at a 45° angle to the surface, and precisely siting it on 
a predetermined spot of the plane. Following this, it is required 
to elevate the robotic arm slightly, close the grip, and create a 
continuous boundary at a consistent pace.  

In each task the user was free to use teach pendant or free drive 
mode: this information was recorded, as it could be useful to 
evaluate whether the perceived stress varies. To collect a subjective 
perception of the stress level, at the end of each task, participants 
answered two NASA-TLX [11] questions: one about physical 
demand and the other one on general effort, while at the end of the 
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Hands-on practice phase, the participants filled in an extended 
version of the NASA-TLX. 
 
2.2 Equipment and Sensors Used. The workstation arrangement was 
settled as shown in Fig. 1 and as described below: the cobot UR10e 
model with six degrees of freedom has been positioned in front of 
the participant, while a touch screen monitor with explanation 
slides has been placed on the participant’s left side.  
Various sensors were employed to capture participants’ 
physiological states, enabling a comprehensive analysis of their 
interactions with the cobot. Specifically:  
1. Shimmer 3 ECG with five electrodes has been used to measure 

electrocardiogram; 
2. Enobio 20 EEG has been used to measure 

electroencephalogram. In particular, 17 EEG channels, 2 EOG 
ocular electrodes, and a reference EXT channel have been used, 
according to the 10:20 standard [12]; 

3. Shimmer 3 GSR has been used to measure Galvanic Skin 
Response (GSR). It was equipped with two electrodes 
positioned on the index and middle fingers of the non-
dominant hand to reduce motion artifacts and ensure greater 
freedom of movement;  

4. Empatica E4 wristband sensor measures several signals 
including the ElectroDermal Activity (EDA) of the skin. It has 
been placed on the subject’s non-dominant hand wrist, with an 
inverted orientation to align the optical sensors with the area 
containing the highest concentration of blood vessels; 

5. Bangle JS 2, a smartwatch capable of recording the Heart Rate 
(HR) via a photoplethysmography sensor has been placed on 
the wrist of the dominant arm; 

6. AFFDEX 2.0 module of IMotions software was used to monitor 
real-time facial expressions. This module comprises a 
convolutional and recurrent neural network that has been 
trained to capture the 3D position of the user’s head and 
recognize 7 fundamental emotions: joy, anger, fear, disgust, 
contemplation, sadness, and surprise. Furthermore, it records 
other additional features such as neutral expressions, valence, 
attention, and confusion. 

The IMotions platform has been used not only for emotion 
recognition but also for data collection and synchronization of the 
data from Shimmer 3 ECG, Shimmer GSR 3, and Enobio 20.  
 

 

Figure 1: Study setup. 

2.3 Participants.  For the experiments, a total of 21 individuals took 
part, 17 were male and 4 were female. All participants volunteered 
for the study through an online scheduling tool and were 
university students. The main inclusion criteria have been: no 
prior experience in cobot programming, no significant medical 
history, age over 18 years old, and having an intermediate level of 
English knowledge (B1). Participants have been instructed to 
avoid substances like coffee, nicotine, and alcohol on the day of 
the experiment, as these could potentially affect brain activity and 
stress-related physiological signals. Each participant filled in a 
consent form. 

3   DATASET 
In this project, a dataset named SenseCobot, comprising the 
collected physiological signals from the participants has been 
developed. Each file in the dataset is in .csv format and, to 
facilitate its use, the data have been organized into the following 
main folders, based on the type of the collected signal: 

• Additional_Information  
• ECG_Shimmer3_Signals 
• EDA_Empatica_Signals 
• EEG_Enobio20_Signals 
• Emotions_AFFDEX_Signals 
• GSR_Shimmer3_Signals 
• HR_Bangle_Signals 
• IBI_Empatica_Signals 
• Video_Baseline 
• Video_Tasks 

Within each folder, .csv files are presented and nominated 
following this format: Signal_Type_Task_N_P_M, where ‘N’ 
represents the baseline or the task number (from 1 to 5) and ‘M’ 
the participant number (from 1 to 21). This approach facilitates the 
selection of signals collected during the same task execution 
across all participants, or signals collected by a specific participant 
across all the tasks.  
 
The Additional Information folder was conceived to contain all the 
necessary information to interpret and correctly use the dataset. 
The INFO.txt file explains how to interpret the data of the other 
files of the folder, specifically:  

• Movement_Type.csv summarizes the participant’s 
choices regarding the cobot manipulation modality (i.e., 
jogging, freedriving, mixed). This could be useful in 
evaluating motion artifacts in EDA and GSR signals; 

• NASA_TLX.csv reports the ratings derived from 
questionnaire responses;  

• Participants_Information.csv comprises basic 
participant details, including age and gender; 

• Tasks_Duration.csv contains tasks duration time in 
minutes. 

In the same way, each signal folder contains an Info_.txt file that 
describes the contents of the .csv files. For a clearer 
comprehension, they are also reported below.  
The files within the ECG_Shimmer3_Signals report the: 
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• Timestamp, i.e., the recording period of the experiment; 
• ECG CAL, i.e., the calibrated values of 

Electrocardiography measured between electrodes, 
using the milliVolt (mV) unit. 

The EDA_Empatica files report the: 
• Timestamp; 
• BVP (Blood Volume Pulse) obtained from a 

photoplethysmography sensor; 
• EDA, expressed in microSiemens (µS), which conveys 

the skin’s electrical activity, fluctuating based on the 
subject’s stress level; 

• HR obtained from BVP; 
• TEMP, i.e., body temperature in °C; 
• ACC_X, ACC_Y, and ACC_Z, obtained from the 

accelerometer along the X, Y, and Z axes. 
The EEG_Enobio20 files contain the following information:  

• Timestamp; 
• Data collected from the 20 channels, expressed in 

MicroVolt (μV). 
The Emotions files report the following information:  

• Timestamp; 
• Raw data of the recorded emotions; 
• Measurement Proportion value, that is the ratio of the 

number of successful registrations during task 
execution to the number of successful registrations 
during the baseline, used as reference. This was defined 
since emotion registration relies on the recording of the 
subject’s face, which can be interrupted by occlusions 
and signal losses during dynamic activities. Based on the 
Measurement Proportion value of 100 for the baseline, a 
value exceeding 100 indicates that during a specific task, 
the face was recorded for a number of measurements 
higher than that of the baseline and a value below 100 
implies the opposite. 

GSR_Shimmer3 folder’s files report: 
• Timestamp; 
• GSR Resistance CAL, i.e., resistance data from the 

Shimmer 3 GSR sensor expressed as KiloOhm (kΩ); 
• GSR Conductance CAL, i.e., conductance data from 

Shimmer 3 GSR sensor expressed as microSiemens (μS). 
HR_Bangle files contain information regarding the: 

• Timestamp; 
• HR derived from photoplethysmography sensor; 
• Confidence, a parameter that gives information about 

the quality of measurement. It is expressed on a scale 
from 0 to 100, with 0 being the least accurate and 100 
being the most accurate. 

IBI_Empatica files include information on: 
• Timestamp; 
• IBI (Inter Beats Intervals), i.e. the distance between 

successive peaks of the blood volume pulse expressed in 
seconds, obtained from Empatica E4 device. 

An appended ‘Label’ column has been included in all the files 
except for the baseline. This column contains the results of the 

NASA-TLX subjective questionnaires, reporting “STRESS” if the 
values obtained from the sum of the two response scores are equal 
to or greater than 7, and “NO-STRESS” if the score is less than 7. 
Moreover, in the Baseline files an additional column named 
‘SourceStimuliName’ has been added. This column reports the 
name of the video (see Section 2) visualized in the corresponding 
timestamp.  
For completeness, two additional folders have been added: 
• Video_Baseline folder contains videos used for the Baseline 

creation downloaded from OpenLav and MoodyDigital 
platforms; 

• Video_Tasks folder contains a video regarding task execution 
and experimental set-up to facilitate comprehension. 

SenseCobot could help other researchers and practitioners in 
robotics to enhance their understanding of HRC, assess cognitive 
workload, and optimize collaborative robotic systems during 
programming tasks. Ultimately, this dataset could drive progress 
in creating more user-friendly programming interfaces, new 
predictive machine-learning models to monitor stress levels in 
real-time and promoting efficient human-robot collaboration 
across various applications. All data in the SenseCobot dataset 
have been encrypted with SHA 256 cryptography. SenseCobot has 
been uploaded to the repository Zenodo (DOI: 
https://doi.org/10.5281/zenodo.8363762); the language used has 
been English. An open-source policy was used in publishing this 
dataset, according to the “Creative Commons Attribution 4.0 
International” license. If using SenseCobot dataset partially or 
completely, you are asked to cite this article and the authors. 

4   USAGE NOTES 
The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to 
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