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Structure illumination microscopy imaging of lipid
vesicles in live bacteria with naphthalimide-
appended organometallic complexes†

AnnaQ2 Maria Ranieri,a Matteo Vezzelli,b Kathryn G. Leslie,c Song Huang,d

Stefano Stagni, e Denis Jacquemin, f Haibo Jiang,d Alysia Hubbard,d

Luca Rigamonti, b Elizabeth L. J. Watkin, g Mark I. Ogden, *a

Elizabeth J. New *c and Massimiliano Massi *a

There is a lack of molecular probes for imaging bacteria, in com-

parison to the array of such tools available for the imaging of

mammalian cells. Here, organometallic molecular probes have

been developed and assessed for bacterial imaging, designed to

have the potential to support multiple imaging modalities. The

chemical structure of the probes is designed around a metal-

naphthalimide structure. The 4-amino-1,8-naphthalimide moiety,

covalently appended through a pyridine ancillary ligand, acts as a

luminescent probe for super-resolution microscopy. On the other

hand, the metal centre, rhenium(I) or platinum(II) in the current

study, enables techniques such as nanoSIMS. While the rhenium(I)

complex was not sufficiently stable to be used as a probe, the

platinum(II) analogue showed good chemical and biological stabi-

lity. Structured illumination microscopy (SIM) imaging on live

Bacillus cereus confirmed the suitability of the probe for super-

resolution microscopy. NanoSIMS analysis was used to monitor the

uptake of the platinum(II) complex within the bacteria and demon-

strate the potential of this chemical architecture to enable multi-

modal imaging. The successful combination of these two moieties

introduces a platform that could lead to a versatile range of multi-

functional probes for bacteria.

Sub-cellular imaging of bacteria is challenging but important.
Antibiotic resistance and infection prevention are pressing
health concerns,1 and bacteria are also used for the natural
synthesis of biopolymers and are potential alternative sources
for oil and fuel production. Where it has been achieved, high
resolution imaging of bacterial cells has contributed to great
advances in prokaryotic cell biology, enabling study of the sub-
cellular structures that play a key role in the growth and patho-
genesis of these unicellular organisms.2 Given the small size
of bacterial cells, super-resolution microscopy is pivotal to suc-
cessful visualisation of microbial specimens with sub-cellular
resolution.3 Most of the fluorescence imaging on bacterial
cells has to date been achieved using genetically encoded tags
or commercially available dyes. Given the lack of small-mole-
cule probes that can readily penetrate the cell envelope of live
bacteria and target cellular sub-structures, considerable recent
research effort has focussed on the development of new fluoro-
phores designed to efficiently stain live bacteria.2,4 While most
of these fluorophores are small organic molecules,2b,3,5 we
have recently reported a sequence of phosphorescent iridium
complexes that selectively stain lipid vacuoles within
bacteria.4d

Here, our aim was to develop probes bearing the 4-amino-
1,8-naphthalimide fluorophore that enable structured illumi-
nation microscopy (SIM) imaging, while also incorporating
heavy metal ions that could support additional imaging
methods,6 or other functionality such as antibacterial pro-
perties. In this proof of concept work, the metal ion was
tracked using nano-scale secondary ion mass spectrometry
(nanoSIMS).7 NanoSIMS is particularly well-suited to analysis
of isotopes and trace elements8 and has been combined with
confocal microscopy to monitor the cellular uptake and sub-
cellular accumulation of platinum-based drugs in human cells
and tissues.9 NanoSIMS protocols previously applied to bac-
teria have generally relied on the more traditional approach
based on the stable isotope labelling of target biological sub-
strates.10 We report the synthesis and characterisation of

†Electronic supplementary information (ESI) available: Synthetic details, NMR,
photophysical measurements, theoretical calculations, bacterial growth and
imaging details. See DOI: 10.1039/d1an00363a
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rhenium(I) and platinum(II) complexes bound to naphthali-
mide-appended ligands (Scheme 1). Similar complexes of
rhenium(I) were previously investigated by Pope et al. in
human osteoarthritic, protistan fish parasite Spironucleus
vortens and fission yeast Schizosaccharomyces pombe cells using
confocal fluorescence miscroscopy,11 but never assessed for
live bacterial imaging. In the present study, we determined
that the stability of the rhenium(I) complex was not sufficient
for synthesis and application as a biological probe, bacterial
imaging was studied using exclusively the platinum(II)
complex. Pt-PyNapht was tested to image the live bacterial
species B. cereus to validate the capability of this system to
enable structure illumination microscopy, with the presence of
the metal confirmed by nano-scale secondary ion mass
spectrometry.

The synthetic routes for the formation of the complexes Pt-
PyNapht and Re-PyNapht are described in Scheme 1, and
further synthetic details are summarised in the ESI.† The dicy-
clometalated platinum(II) precursor Pt-dmso was synthesised
from the corresponding dichloro-bridged dimer, following a
previously reported method,12 whereas the cationic tricarbonyl
diimine rhenium(I) precursor was prepared in situ by reaction

of [Re(CO)3(phen)Br] (phen = 1,10-phenanthroline) with AgBF4
in acetonitrile at reflux. The N-3-pyridyl-4-butylamino-1,8-
naphthalimide ligand (PyNapht) was prepared by reacting
4-nitro-naphthalic anhydride with 3-aminopyridine and butyla-
mine (see ESI†).13 PyNapht was then made to react with the
corresponding precursors to afford the target compounds via a
ligand exchange reaction, with moderate yields for the plati-
num(II) complex (35%) and very low yield for the rhenium(I)
complex, usually after successive flash chromatography to
obtain a pure sample (7%). The complexes Pt-PyNapht and Re-
PyNapht were characterised by NMR spectroscopy and elemen-
tal analysis, confirming the expected structures.

The photophysical properties of the complexes are summar-
ised in Table 1. Due to stability issues, the data for Re-PyNapht
are only reported in CH2Cl2. The absorption and emission
spectra of Pt-PyNapht in CH2Cl2 are depicted in Fig. 1,
whereas the corresponding spectra for the rhenium(I) complex
are reported in the ESI.† The photophysical properties of the
rhenium(I) complex are analogous to previously published
similar complexes, indicating that the presence or absence of a
methylene spacer between the pyridine ring and naphthali-
mide moiety in the ancillary ligand has very little effect.11a The
Pt-PyNapht complex exhibits a strong absorption band centred
at 282 nm (ε = 15.26 × 104 M−1 cm−1) followed by a band at
363 nm of lower intensity (ε = 3.55 × 104 M−1 cm−1) that are
assigned to π–π* transitions of the triphenylpyridine ligand.14

A further red-shifted band is observed at 433 nm (ε = 5.04 ×
104 M−1 cm−1), and is assigned to the lowest dipole-allowed
transition in the 4-amino-1,8-naphthalimide, a transition pre-
senting a partial charge-transfer (CT) character.11a,15 These
assignments are confirmed by ab initio calculations (see the
ESI†). A very similar absorption band was observed by record-
ing the absorption spectra of the uncoordinated PyNapht in
the same solvent (see the ESI†), showing that the contribution
of this lower energy band is mainly ascribed to the naphthali-
mide moiety. The absorption spectra of Pt-PyNapht in DMSO
and H2O followed the same trend (see the ESI†).

With increasing solvent polarity, a red-shift was observed
for the lowest energy band, shifting from around 433 nm to
461 nm moving from CH2Cl2 to H2O. This behaviour is
ascribed to a strong solvatochromism that is typical of excited
states of CT nature.13,15b

Excitation of a CH2Cl2 solution of Pt-PyNapht at 430 nm
resulted in a broad emission band centred at 515 nm, again

Scheme 1 Synthesis of the targeted complex Pt-PyNapht and Re-
PyNapht. Reagents and conditions: (i) acetone/MeOH (9 : 1 v/v), reflux,
overnight; (ii) CH3CN, reflux, overnight.

Table 1 Photophysical data of Pt-PyNapht and Re-PyNapht from dilute (10−5 M) solutions

Complex λabs/nm (104 ε [M−1 cm−1]) λem [nm] τaer
a [ns] Φaer

b %

Pt-PyNapht (CH2Cl2) 282 (15.26), 363 (3.55), 433 (5.04) 515 11 28
Pt-PyNapht DMSO 287 (11.02), 348 (2.60), 448 (3.61) 542 10 5
Pt-PyNapht (H2O)

c 284 (7.59), 365 (2.31), 461 (2.10) 572 3 2
Re-PyNapht (CH2Cl2) 276 (3.17), 435 (1.05) 517 5 (57%) 25

10 (43%)

a τaer refers to the excited state lifetime decay obtained from air-equilibrated solution. bΦaer refers to the photoluminescent quatum yield
obtained from air-equilibrated solution, and was measured vs. [Ru(bpy)3]

2+ in H2O (φr = 0.028). c 0.1% DMSO was added to favour the solubil-
isation of the complex.
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typical of the CT emissive state of 1,8-naphthalimide fluoro-
phores. The excitation spectrum matched the CT absorption
band, suggesting that no electronic interaction existed between
the platinum centre and the naphthalimide ligand.11a,15a

Moreover, the fluorescence lifetime recorded at the emission
maximum exhibited a value of 11 ns, closely matching the value
observed for the uncoordinated PyNapht (see the ESI†). These
observations suggest that the emission observed for Pt-PyNapht
is dominated by the fluorescence of the 1,8-naphthalimide, in
agreement with previously reported Re(I) and Pt(II) complexes
bearing related 1,8-naphthalimide ligands.11a,15a As observed in
the absorption spectra, a positive solvatochromism occurred
with increasing solvent polarity, with a red-shift of 57 nm from
CH2Cl2 to H2O (Fig. 1). The fact that the properties of the
naphthalimide are unchanged upon coordination to the
rhenium(I) or platinum(II) centre is particularly advantageous,
as it allows the photophysical properties of the luminescent
moiety to be selected and tuned independently from the metal
centre, which is acting as a “silent” carrier.

To further investigate the structural and photophysical pro-
perties of PyNapht and Pt-PyNapht, we performed time-depen-

dent density functional theory (TD-DFT) calculations, using a
protocol described in the ESI.† For PyNapht, the lowest state
can be ascribed to a π–π* transition, involving a CT of 0.60 e
over 2.10 Å. The computed 0–0 energy is 2.77 eV, 0.19 eV off
the experimental value (2.58 eV), a mismatch typical for
TD-DFT (see ESI for details†).16 In Pt-PyNapht, the dihedral
angle between the pyridyl ring and the 1,8-naphthalimide (PT
complex) plane is 62° (54°). This leads to a near orthogonality
of the two chromophores (angle of 86.2°, see the ESI†), pre-
venting direct electronic interactions. The TD-DFT calculations
reveal that the lowest singlet excited state in Pt-PyNapht is
located on the 1,8-naphthalimide moiety (no lower CT-like
state is found) and presents a 0–0 energy of 2.78 eV, almost
identical to that determined in PyNapht. Overall, theoretical
calculations therefore confirm that there is almost no inter-
action between the two moieties in Pt-PyNapht and that the
lowest excited state is always located on the naphthalimide.

The use of Pt-PyNapht as a molecular probe for fluo-
rescence microscopy in live bacteria was investigated by struc-
tured illumination microscopy (SIM). The complex was incu-
bated with live B. cereus directly in the growth medium
(Nutrient Broth, 0.1% DMSO), and the fluorescence of Pt-
PyNapht was easily detected upon excitation with a 488 nm
laser after only 15 min incubation (Fig. 2). To gain further
spatial information about the interaction of the complex with
B. cereus, bacteria were co-stained with MitoTracker Red. This
commercial dye specifically stains the mitochondria in mam-
malian eukaryotic cells and while its use to label bacteria is
quite limited,17 we show here that MitoTracker could stain live
B. cereus in the growth medium and enabled simultaneous
staining with Pt-PyNapht. Notably, the super-resolution
images showed that the complex exhibited sub-cellular localis-
ation in well-defined inclusions, whose shape resembled lipid
bodies. As reported previously,4d we confirmed the lipid nature
of these organelles by staining with the lipophilic dye BODIPY
493/503 (see the ESI†). The uncoordinated ligand PyNapht
exhibited the same sub-cellular localisation as Pt-PyNapht (see
the ESI†), in line with related 4-amino1,8-naphthalimides that

Fig. 1 Top: Absorption (blue line), normalised excitation (purple line,
λem = 515 nm) and normalised emission (green line, λexc = 430 nm)
spectra of Pt-PyNapht from a 10−5 M CH2Cl2 solution. Bottom:
Normalised emission spectra ((exc = 430 nm) of Pt-PyNapht in CH2Cl2
(violet line), DMSO (blue line), H2O (orange line).

Fig. 2 SIM images of live B. cereus incubated with Pt-PyNapht (left)
and co-stained with MitoTracker Red (right). Pt-PyNapht was excited at
488 nm and the emission collected in the 525/50 nm region.
MitoTracker Red was excited at 561 nm and the emission collected in
the 605/50 region. Scale bars: 5 μm.
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showed preferential affinity for lipid droplets in eukaryotic
cells.13 The staining experiments suggest that while the
platinum(II) dicyclometalated fragment does not affect the sub-
cellular localisation of the 4-amino-1,8-naphthalimide unit,
adding the metal centre to the dye provides the additional
opportunity to detect the probe with electron or isotope-based
techniques not readily accessible for organic dyes. In addition,
very few probes have been reported to date for use in super-
resolution microscopy. Hence, the detectability of Pt-PyNapht,
as well as the uncoordinated PyNapht, by structured illumina-
tion microscopy opens the potential development of new
classes of dyes for super-resolution microscopy.

The presence of platinum introduced using Pt-PyNapht was
assessed using nanoSIMS to confirm the uptake of the plati-
num-based dye in the bacteria. 12C14N− secondary ions were
used to show the morphology of single bacteria, and 195Pt−

secondary ion was used to indicate the distributions of Pt-
PyNapht (Fig. 3). The resulting nanoSIMS images confirmed
the internalisation of Pt-PyNapht within B. cereus. The distri-
bution of Pt-PyNapht in these cells is not homogenous, and
there are some subcellular regions that yield higher 195Pt−

signals. It should be noted that nanoSIMS images were gener-
ated from the top < 50 nm of the section whereas signals of Pt-
PyNapht in structural illumination microscope images were
obtained from entire bacteria. Nevertheless, the images are
consistent enough with the SIM images to suggest that the
platinum has been retained in the probe molecule.

This work demonstrates that the small molecule probe Pt-
PyNapht efficiently stains B. cereus and enables imaging with
both structured illumination microscopy (SIM), and nano-
scale secondary ion mass spectrometry (nanoSIMS). The plati-
num(II) moiety does not change the sub-cellular localisation or
photophysical properties of the 4-amino-1,8-napththalimide
dye. Given the readily tailored range of known napththalimide
dyes, the platform reported here can be used to develop new
probes targeted to specific bacterial imaging applications.
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