

Early-life respiratory tract infections and the risk of school-age lower lung function and asthma: a meta-analysis of 150 000 European children

Evelien R. van Meel^{1,2}, Sara M. Mensink-Bout ^{0,2}, Herman T. den Dekker^{1,2,3}, Tarunveer S. Ahluwalia^{4,5}, Isabella Annesi-Maesano ⁶, Syed Hasan Arshad^{7,8,9}, Nour Baïz⁶, Henrique Barros ^{10,11}, Andrea von Berg¹², Hans Bisgaard⁴, Klaus Bønnelykke⁴, Christian J. Carlsson⁴, Maribel Casas^{13,14,15}, Leda Chatzi¹⁶, Cecile Chevrier¹⁷, Geertje Dalmeijer¹⁸, Carol Dezateux¹⁹, Karel Duchen²⁰, Merete Eggesbø²¹, Cornelis van der Ent²², Maria Fantini²³, Claudia Flexeder²⁴, Urs Frey²⁵, Fransesco Forastiere²⁶, Ulrike Gehring ⁶, Davide Gori²³, Raquel Granell²⁸, Lucy J. Griffiths²⁹, Hazel Inskip^{9,30}, Joanna Jerzynska³¹, Anne M. Karvonen ³², Thomas Keil^{33,34,35}, Cecily Kelleher³⁶, Manolis Kogevinas^{13,14,37,38}, Gudrun Koppen³⁹, Claudia E. Kuehni ^{640,41}, Nathalie Lambrechts³⁹, Susanne Lau ⁶⁴², Irina Lehmann⁴³, Johnny Ludvigsson²⁰, Maria Christine Magnus^{28,44}, Erik Mélen ⁶⁴⁵, John Mehegan³⁶, Monique Mommers⁴⁶, Anne-Marie Nybo Andersen⁴⁷, Wenche Nystad⁴⁸, Eva S.L. Pedersen ⁶⁴⁰, Juha Pekkanen ^{632,49}, Ville Peltola⁵⁰, Katharine C. Pike⁵¹, Angela Pinot de Moira ⁶⁴⁹, Costanza Pizzi⁵², Kinga Polanska³¹, Maja Popovic ⁶⁵², Daniela Porta ⁶²⁶, Graham Roberts^{7,8,9}, Ana Cristina Santos¹⁰, Erica S. Schultz⁴⁵, Marie Standl^{24,53}, Jordi Sunyer^{13,14,15,38}, Carel Thijs⁴⁶, Laura Toivonen⁵⁰, Eleonora Uphoff⁵⁴, Jakob Usemann ⁶²⁵, Marina Vafeidi⁵⁵, John Wright⁵⁴, Johan C. de Jongste², Vincent W.V. Jaddoe^{1,3,56} and Liesbeth Duijts ^{62,57}

¹The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands. ²Dept of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands. ³Dept of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands. ⁴COPSAC (Copenhagen Prospective Studies on Asthma in Childhood), Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark. 5Steno Diabetes Center Copenhagen, Gentofte, Denmark. ⁶Sorbonne Université and INSERM, Epidemiology of Allergic and Respiratory Diseases Dept (EPAR), Pierre Louis Institute of Epidemiology and Public Health (IPLESP UMRS 1136), Saint-Antoine Medical School, Paris, France. ⁷The David Hide Asthma and Allergy Research Centre, St Mary's Hospital, Newport, UK. ⁸Faculty of Medicine, University of Southampton, Southampton, UK. ⁹NIHR Respiratory Biomedical Research Unit, University Hospital Southampton NHS Foundation Trust, Southampton, UK. 10 EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal. 11 Departamento de Ciências da Saúde Pública e Forenses e Educação Médica, Faculdade de Medicina, Universidade do Porto, Porto, Portogal. 12 Research Institute, Dept of Pediatrics, Marien-Hospital Wesel, Wesel, Germany. ¹³ISGlobal, Barcelona, Spain. ¹⁴Universitat Pompeu Fabra (UPF), Barcelona, Spain. ¹⁵CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain. ¹⁶Dept of Preventive Medicine, University of Southern California, Los Angeles, CA, USA. ¹⁷University Rennes, Inserm, Irset UMR_S 1085, Rennes, France. ¹⁸Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands. ¹⁹Institute of Population Health Sciences, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK. ²⁰Crown Princess Victoria Children's Hospital and Division of Pediatrics, Dept of Biomedical and Clinical Sciences, Linköping University, Linköping, Victoria Children's Hospital and Division of Pediatrics, Dept of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden. ²¹Norwegian Institute of Public Health, Oslo, Norway. ²²Dept of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands. ²³Dept of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy. ²⁴Institute of Epidemiology I, Helmholtz Zentrum München, Munich, Germany. ²⁵University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland. ²⁶Dept of Epidemiology, Lazio Regional Health Service, Rome, Italy. ²⁷Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands. ²⁸MRC Intergrative Epidemiology Unit, Dept of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK. ²⁹Population Data Science, Swansea University Medical School, U Swansea, UK. 30MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton, UK. Swansea, OK. MRC Ellectourse Epidemiology Unit, University of Southampton, Southampton, General Hospital, Southampton, OK.

31Dept of Environmental Epidemiology, Nofer Institute of Occupational Medicine, Lodz, Poland. 32Dept of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland. 33Institute of Social Medicine, Epidemiology and Health Economics, Charité – Universitätsmedizin Berlin, Berlin, Germany. 34Institute for Clinical Epidemiology and Biometry, University of Würzburg, Würzberg, Germany. 35State Institute for Health, Bavarian Health and Food Safety Authority, Bad Kissingen, Germany. 36School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland. 37National School of Public Health, Athens, Greece. ³⁸Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain. ³⁹Flemish Institute for Technological Research (VITO), Environmental Risk and Health Unit, Mol, Belgium. 40 Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland. ⁴¹Paediatric Respiratory Medicine, Children's University Hospital of Bern, University of Bern, Bern, Switzerland. ⁴²Dept of Pediatric Pulmonology, Immunology and Intensive Care Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany. 43Dept of Environmental Immunology, Helmholtz Centre for Environmental Research Leipzig – UFZ, Leipzig, Germany. ⁴⁴Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway. ⁴⁵Dept of Clinical Science and Education Södersjukhuset, Karolinska

Institutet, Sach's Children Hospital, Stockholm, Sweden. ⁴⁶Dept of Epidemiology, Care and Public Health Research Institute (CAPHRI), Maastricht University Medical Centre+, Maastricht, The Netherlands. ⁴⁷Dept of Public Health, University of Copenhagen, Copenhagen, Denmark. ⁴⁸Domain for Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway. ⁴⁹Dept of Public Health, University of Helsinki, Finland. ⁵⁰Dept of Pediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland. ⁵¹Bristol Royal Hospital for Children, Bristol, UK. ⁵²Dept of Medical Sciences, University of Turin, Italy. ⁵³German Research Center for Environmental Health, Munich, Germany. ⁵⁴Born in Bradford, Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK. ⁵⁵Dept of Social Medicine, University of Crete, Heraklion, Greece. ⁵⁶Dept of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands. ⁵⁷Dept of Pediatrics, Division of Neonatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.

Corresponding author: Liesbeth Duijts (l.duijts@erasmusmc.nl)

Shareable abstract (@ERSpublications)

This meta-analysis of 150 000 children suggests that mostly lower respiratory tract infections are associated with an increased risk of asthma and lower lung function. This is independent from preceding respiratory tract infections or early-life asthma. https://bit.ly/3weE62l

Cite this article as: van Meel ER, Mensink-Bout SM, den Dekker HT, et al. Early-life respiratory tract infections and the risk of school-age lower lung function and asthma: a meta-analysis of 150 000 European children. Eur Respir J 2022; 60: 2102395 [DOI: 10.1183/13993003.02395-2021].

This single-page version can be shared freely online.

Copyright ©The authors 2022.

This version is distributed under the terms of the Creative Commons Attribution Non-Commercial Licence 4.0. For commercial reproduction rights and permissions contact permissions@ersnet.org

This article has an editorial commentary: https://doi.org/10.1183/13993003.01214-2022

Received: 2 Sept 2021 Accepted: 9 March 2022

Abstract

Background Early-life respiratory tract infections might affect chronic obstructive respiratory diseases, but conclusive studies from general populations are lacking. Our objective was to examine if children with early-life respiratory tract infections had increased risks of lower lung function and asthma at school age. **Methods** We used individual participant data of 150 090 children primarily from the EU Child Cohort Network to examine the associations of upper and lower respiratory tract infections from age 6 months to 5 years with forced expiratory volume in 1 s (FEV₁), forced vital capacity (FVC), FEV₁/FVC, forced expiratory flow at 75% of FVC (FEF_{75%}) and asthma at a median (range) age of 7 (4–15) years.

Results Children with early-life lower, not upper, respiratory tract infections had a lower school-age FEV_1 , FEV_1/FVC and $FEF_{75\%}$ (z-score range: -0.09 (95% CI -0.14--0.04) to -0.30 (95% CI -0.36--0.24)). Children with early-life lower respiratory tract infections had a higher increased risk of school-age asthma than those with upper respiratory tract infections (OR range: 2.10 (95% CI 1.98-2.22) to 6.30 (95% CI 5.64-7.04) and 1.25 (95% CI 1.18-1.32) to 1.55 (95% CI 1.47-1.65), respectively). Adjustment for preceding respiratory tract infections slightly decreased the strength of the effects. Observed associations were similar for those with and without early-life wheezing as a proxy for early-life asthma.

Conclusions Our findings suggest that early-life respiratory tract infections affect development of chronic obstructive respiratory diseases in later life, with the strongest effects for lower respiratory tract infections.

