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ABSTRACT
Coastal lagoons are complex ecosystems characterized by the
interaction of several actors, that can have a significant im-
pact on them. The SMARTLAGOON project has the primary
aim of integrating novel artificial intelligence-based tech-
nologies with an efficient Internet of Things (IoT) sensing
infrastructure in the Mar Menor coastal lagoon. This paper
presents an approach to predict some variables (chlorophyll
and turbidity) usually sensed by the smart bouy in future
instants of time. Results show that machine learning algo-
rithms can accurately predict them.

CCS CONCEPTS
• Computing methodologies → Machine learning; •
Computer systems organization → Sensor networks; Em-
bedded systems.
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1 INTRODUCTION
Coastal lagoons are highly productive ecosystems with a 
number of different uses and services. Making up 13% of
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the world’s coastline and approximately 5.3% of Europe [19],
they are exploited for fishing, aquaculture, saltworks, and
recreational activities, and play a crucial role in retaining
and purifying pollutants, which is essential for the ecology
of coastal areas [13]. Being affected by hydrological, hydro-
dynamic, ecological, and socioeconomic processes [6], these
highly complex systems are particularly susceptible to both
climate-related and human-induced pressures [1].
The Mar Menor coastal lagoon, situated in southeastern

Spain, is the largest saltwater lagoon in Europe and is lo-
cated in a region characterized by aridity and water scarcity
[7]. The basin that drains into the Mar Menor experiences
extensive land irrigation through water diversion from the
near Tagus River, as well as excessive use of aquifers during
drought periods [20]. Additionally, the Mar Menor attracts a
significant population around it, as it relies on fishing and
agriculture, as well as tourism during the summer season,
as key economic activities [4, 9]. The rapid economic, social,
and urban changes over the past several decades, along with
historical mining impacts, have had numerous adverse ef-
fects on the ecological status of the Mar Menor, raising the
need for urgent protective measures [10].
In this context, the SMARTLAGOON project, funded in

a H2020 call, was developed with the primary aim of inte-
grating novel artificial intelligence-based technologies with
an efficient Internet of Things (IoT) sensing infrastructure.
These technologies would gather input data for innovative
socio-environmental dynamic models, enabling the forecast-
ing of both short and long-term changes in the lagoon’s con-
ditions. This information would then provide added value
for management decisions aimed at safeguarding the ecosys-
tem and services offered by the Mar Menor lagoon [2]. Not
only that but the acquired knowledge can be applied to the
realization of similar systems that help lagoon ecosystems
all around the world.

In this paper, we describe our approach to predict chloro-
phyll and turbidity using the data collected by the smart bouy,
taking advantage of machine learning algorithms. Being able
to predict future values of the sensed variables, would allow
to turn off the smart bouy at regular time intervals, reducing
its operating time to better manage the battery consumption.
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Several machine learning algorithms have been evaluated in
the experiments.
The remainder of the paper is structured as follows. Sec-

tion 2 details the dataset and the methodology that drove
this study. Section 3 presents the accuracy of the machine
learning algorithms. Finally, Section 4 concludes the paper,
highlighting some final remarks and future works.

2 METHODS
This Section details the dataset used, the followed methodol-
ogy, and the machine learning algorithms employed in the
experiments.

2.1 Dataset Description
The dataset is collected using the smart bouy deploying
within the Smart Lagoon project.

With the only exception of chlorophyll (Mean_Chl_ugl)
and turbidity (Mean_Turb_NTU), which are available hourly,
the other variables are sensed every five minutes. Gener-
ally, they are then aggregated computing the average values.
For some of them, it is available also the standard devia-
tion or the maximum value. The sensed variables are the air
temperature (Air_Temp_HS_Avg), the relative humidity (Rel-
Humidity_Avg), the steam pressure (Vapor_Pressure_Avg),
the wind speed (WS_ms_Avg, WS_ms_Std, WS_ms_Max,
and WS_ms_TMx), the wind power (WS3_Avg), water tem-
perature measured by a thermistor at different depths (0.5m -
ThermTemp1_Avg, 1.5m, 2m, 2.5m, 4m, and 5mThermTemp6_Avg),
water temperature measured by oximeter at different depths
(1m - Wtemp_C1_Avg, 3m, and 6.5m - Wtemp_C3_Avg),
water temperature measured by conductimeter at different
depths (1m - SDI_Temp_1m, 3m, 6.5m - SDI_Temp_6m), oxy-
gen saturation at different depths (1m - O2_sat1_Avg, 3m,
and 6.5m - O2_sat3_Avg), oxygen concentration at different
depths (1m - O2_conc1_Avg, 3m, and 6.5m - O2_conc3_Avg),
conductivity at different depths (1m -SDI_Cond_1m, 3m, and
6.5m - SDI_Cond_6m), and conductivity corrected with the
temperature at 25º (1m - SDI_TempCorrCond_1m, 3m, and
6m - SDI_TempCorrCond_6m). The overall dataset is com-
posed of 4,653 rows, recorded from the 28th of August 2022
to the 10th of April 2023.

2.2 Methodology
The pre-processing activities simply consisted in the detec-
tion of missing values and outliers. Some variables, contain-
ing many missing values, were dropped.

Initially, data analysis has been carried out to understand
possible correlations between the sensed variables. This ac-
tivity is particularly relevant in this context, given that the
same variables (e.g., water temperature, oxygen saturation,

and conductivity) are surveyed at different depths. The re-
sults of such an activity are described in the next Section.

Once the correlated variables are dropped to avoid weight-
ing them more than once, the dataset for training activities
has been prepared. The objective of this study is to be able
to predict future values of chlorophyll and turbidity with
the aim of reducing the amount of time that sensors have
to work. Hence, they are treated as the target variables. The
training examples are created using the values sensed at a
given time t, which are used as the input data, the values of
chlorophyll and turbidity at a given time t + offset, that are
used as the output data. The higher the value of the offset
is, the higher the energy saving is. The number of samples
available for training is equal to 4,653 - offset.
Once the dataset has been defined, it was divided into

two different parts. The former one, used for the training
phase, is composed of the 80% of samples while the latter
one for the testing phase, is composed of the remaining 20%
of subjects. No validation set has been defined since the k-
fold cross-validation is used [5, 12]. Such a technique is used
to reduce the bias derived from random sampling and to
better tune the hyper-parameter of the various algorithms.
The number of folds used in the experiments was set to ten,
which is a commonly used value in the scientific literature.
At each iteration of the cross-validation, data are scaled,
subtracting the average value and dividing by the standard
deviation. Finally, once the most promising algorithms have
been identified, they are used to evaluate the test set.
With regard to the evaluation metrics used to assess the

performance of the different algorithms, two metrics were
selected and used: Mean Absolute Error (MAE) and Pear-
son Correlation Coefficient (PCC). The two metrics serve
different purposes. The MAE, that is the average deviation
between the real chlorophyll and turbidity values and the
predicted ones, is used to measure the accuracy of the pre-
dictions. Instead, the PCC is used to understand if the algo-
rithms really learned something. In fact, a naive regressor
that always returns the mean value could be able to achieve
good MAE scores. Hence, since the PCC quantifies the de-
gree of the linear association between real and predicted
chlorophyll and turbidity values, is able to highlight such a
situation, since its value would be low in this case.

2.3 Machine Learning Algorithms
Since chlorophyll and turbidity are continuous values, the
problemwas modeled as a regression one. Several algorithms
were evaluated to determine which one is best suited for this
case study.

In order to have a baseline comparison, Linear Regression
(LR) [22] and other variations such as Lasso [18] and Elastic
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Figure 1: Correlation Analysis

Net (EN) Regression [23] were first evaluated. Then, also K-
Nearest Neighbor (KNN) [8], Support Vector Machine (SVM)
[14], and Multi-Layer Perceptron (MLP) [16] were analyzed.
Finally, Classification And Regression Tree (CART) [3] and
other ensemble algorithms, including Ada Boosting with

decision trees (AB) [17], Gradient Boosting (GB) [11], Ran-
dom Forest (RF) [15], and Extra Tree (ET) [21] were taken in
consideration.

In the experiments, the implementation of the algorithms
available in the Scikit-learn library was employed. Each algo-
rithm has been used with its default parameters with the only
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exception of the random state, which was set to guarantee
the reproducibility of the obtained results.

3 RESULTS
This Section presents the output of the analysis of the vari-
ables in the dataset and the accuracy of the algorithms in
predicting chlorophyll and turbidity.

3.1 Data Analysis
To evaluate the correlation between the variables present in
the dataset, the Pearson correlation was employed. The cor-
relation matrix is shown in Figure 1. The colors of the matrix
range from black, which indicates a negative correlation (-1)
to yellow, which indicates a positive correlation (+1), passing
from purple, which indicates an absence of correlation (0).
As shown, several variables are highly correlated (with

the PCC higher than 0.9). Such correlations are important
not only to understand which variables have to be dropped
but also to highlight which sensors could not be included
in further versions of the smart bouy since their sensed
variables can be obtained using a simple correlation. The
highly correlated variables are (in bold there is the variable
that was kept for the training activities):

• The average wind speed (WS_ms_Avg) and the maxi-
mum wind speed (WS_ms_Max).

• All the water temperature measured by a thermistor
at different depths (ThermTemp1_Avg,
ThermTemp2_Avg, ThermTemp3_Avg,
ThermTemp4_Avg, ThermTemp5_Avg), the water tem-
peraturemeasured by oximeter at 1m (WTemp_C1_Avg),
water temperature measured by conductimeter at dif-
ferent depths (SDI_Temp_1m,
SDI_Temp_3m, and SDI_Temp_6m).

• The oxygen concentration at 1m (O2_conc1_Avg) and
the oxygen saturation at 1m (O2_sat1_Avg).

It is also interesting to notice that some variables measured
at different depths are not correlated, such as the oxygen
concentration, the oxygen saturation, conductivity, and con-
ductivity corrected with the temperature at 25º.

3.2 Chlorophyll Prediction
First, we investigate the prediction of chlorophyll using the
other variables sensed by the smart bouy, employing all the
algorithms described in the previous Section. The results
obtained during the cross-validation are depicted in Figure
2. As shown, LR works significantly better than LASSO and
EN and has slightly worse performance than AB. Anyway, it
has performance comparable with the ones obtained by the
other algorithms. The best performance is achieved by ET
and GBwith anMAE equal to 0.11 while the other algorithms
obtained an MAE in the range of 0.12 to 0.18. About the PCC

scores, all the algorithms highlighted strong correlations
with values in the range of 0.79 - 0.98, with the only exception
of LASSO, which achieved a PCC of 0.53.

Once identified the most performing algorithms, we eval-
uated their performance on the test sets, without a further
tuning phase. Results are reported in Table 1. As shown, in
both cases, the algorithms achieved MAE scores similar to
the ones obtained during the cross-validation, which high-
lights the ability of such algorithms to successfully predict
the chlorophyll.

Table 1: Results of ET and GB during the cross-
validation and on the test set for the prediction of
chlorophyll.

Algorithm Cross-validation Test Set
MAE PCCC MAE PCCC

ET 0,11 ± 0,01 0,98 0.126 0.883
GB 0,11 ± 0,01 0,98 0.130 0.880

3.3 Turbidity Prediction
Finally, we investigate the prediction of turbidity, with the
same approach used for the chlorophyll prediction. The re-
sults obtained during the cross-validation are depicted in
Figure 3. Also, in this case, LR, LASSO, EM, and AB have
the worst performance while ET and GB, together with RF,
got the best ones, with the MAE of 0.06 (ET) and 0.07 (GB
and RF). With regard to the PCC scores, all the algorithms
highlighted strong correlations with values in the range of
0.84 - 0.93, except for the ones with lower performance.
Also for the prediction of turbidity, the most performing

algorithms have been evaluated on the test sets, always with-
out a further tuning phase. Table 2 reports the results. Also
in this case, even on the test set the three algorithms have
similar performance with respect to the one obtained dur-
ing the cross-validation, thus indicating the possibility of
predicting future values of turbidity.

Table 2: Results of RF, GB, and ET during the cross-
validation and on the test set for the prediction of tur-
bidity.

Algorithm Cross-validation Test Set
MAE PCCC MAE PCCC

RF 0,07 ± 0,01 0,92 0.078 0.728
GB 0,07 ± 0,01 0,92 0.08 0.726
ET 0,06 ± 0,01 0,93 0.079 0.726
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Figure 2: Comparison among algorithms performances for the chlorophyll prediction

Figure 3: Comparison among algorithms performances for the turbidity prediction

4 CONCLUSION AND FUTUREWORKS
This paper presents some experiments about the prediction
of some variables (i.e., chlorophyll and turbidity) sensed by

the smart bouy. The results indicate that machine learning
algorithms can be effectively used to predict the variable of
interest. This could allow us to avoid continuously sensing
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all the variables, saving energy, which is a crucial aspect in
IoT projects.

There are plenty of future works. First, a tuning phase of
the hyper-parameters could be carried out to try to improve
the presented results. Then, higher values of the offset could
be tested to evaluate if it is possible to predict values more
distant in time. Finally, a study on the prediction of all the
sensed variables could be carried out. This would allow us to
completely turn off the smart bouy in some fixed intervals
between the different measurements.

ACKNOWLEDGMENTS
This work has been supported by the European Union’s
Horizon 2020 research and innovation programme under
grant agreement No 101017861.

REFERENCES
[1] Ana C. Brito, Alice Newton, Paul Tett, and Teresa F. Fernandes. 2012.

How will shallow coastal lagoons respond to climate change? A mod-
elling investigation. Estuarine, Coastal and Shelf Science 112 (2012),
98–104. https://doi.org/10.1016/j.ecss.2011.09.002 Assessing Ecologi-
cal Quality in Estuarine and Coastal Systems - Functional Perspective.

[2] José M. Cecilia, Pietro Manzoni, Dennis Trolle, Anders Nielsen, Pablo
Blanco, Catia Prandi, Salvador Peña Haro, Line Barkved, Don Pier-
son, and Javier Senent. 2021. SMARTLAGOON: Innovative Modelling
Approaches for Predicting Socio-Environmental Evolution in Highly
Anthropized Coastal Lagoons. In Proceedings of the Conference on
Information Technology for Social Good (Roma, Italy) (GoodIT ’21). As-
sociation for Computing Machinery, New York, NY, USA, 204–209.
https://doi.org/10.1145/3462203.3475925

[3] Wei Chen, Xiaoshen Xie, Jiale Wang, Biswajeet Pradhan, Haoyuan
Hong, Dieu Tien Bui, Zhao Duan, and Jianquan Ma. 2017. A compara-
tive study of logistic model tree, random forest, and classification and
regression tree models for spatial prediction of landslide susceptibility.
Catena 151 (2017), 147–160.

[4] Héctor M. Conesa and Francisco J. Jiménez-Cárceles. 2007. The Mar
Menor lagoon (SE Spain): A singular natural ecosystem threatened
by human activities. Marine Pollution Bulletin 54, 7 (2007), 839–849.
https://doi.org/10.1016/j.marpolbul.2007.05.007

[5] Giovanni Delnevo, Silvia Mirri, Catia Prandi, and Pietro Manzoni. 2023.
An evaluation methodology to determine the actual limitations of a
TinyML-based solution. Internet of Things 22 (2023), 100729.

[6] S. García-Ayllón. 2017. Integrated management in coastal lagoons
of highly complexity environments: Resilience comparative analysis
for three case-studies. Ocean & Coastal Management 143 (2017), 16–
25. https://doi.org/10.1016/j.ocecoaman.2016.10.007 The challenge
of developing policies and management strategies under changing
baselines and unbounded boundaries.

[7] J. García-Pintado, M. Martínez-Mena, G.G. Barberá, J. Albaladejo, and
V.M. Castillo. 2007. Anthropogenic nutrient sources and loads from
a Mediterranean catchment into a coastal lagoon: Mar Menor, Spain.
Science of The Total Environment 373, 1 (2007), 220–239. https://doi.
org/10.1016/j.scitotenv.2006.10.046

[8] Ikbal Gazalba, Nurul Gayatri Indah Reza, et al. 2017. Comparative
analysis of k-nearest neighbor and modified k-nearest neighbor algo-
rithm for data classification. In 2017 2nd international conferences on
information technology, information systems and electrical engineering
(ICITISEE). IEEE, 294–298.

[9] Noelia Guaita-García, Julia Martínez-Fernández, Carlos Javier Barrera-
Causil, and H. Carl Fitz. 2022. Stakeholder analysis and prioritization
of management measures for a sustainable development in the social-
ecological system of theMarMenor (SE, Spain). Environmental Develop-
ment 42 (2022), 100701. https://doi.org/10.1016/j.envdev.2022.100701

[10] Patricia Jimeno-Sáez, Javier Senent-Aparicio, José M. Cecilia, and Julio
Pérez-Sánchez. 2020. Using Machine-Learning Algorithms for Eu-
trophication Modeling: Case Study of Mar Menor Lagoon (Spain).
International Journal of Environmental Research and Public Health 17,
4 (2020). https://doi.org/10.3390/ijerph17041189

[11] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Wei-
dong Ma, Qiwei Ye, and Tie-Yan Liu. 2017. Lightgbm: A highly efficient
gradient boosting decision tree. Advances in neural information pro-
cessing systems 30 (2017).

[12] Ron Kohavi. 1995. A study of cross-validation and bootstrap for accu-
racy estimation and model selection. In Proceedings of the 14th inter-
national joint conference on Artificial intelligence-Volume 2. 1137–1143.

[13] Alice Newton, Ana C. Brito, John D. Icely, Valérie Derolez, Inês Clara,
Stewart Angus, Gerald Schernewski, Miguel Inácio, Ana I. Lillebø,
Ana I. Sousa, Béchir Béjaoui, Cosimo Solidoro, Marko Tosic, Miguel
Cañedo-Argüelles, Masumi Yamamuro, Sofia Reizopoulou, Hsiao-
Chun Tseng, Donata Canu, Leonilde Roselli, Mohamed Maanan, Sónia
Cristina, Ana Carolina Ruiz-Fernández, Ricardo F. de Lima, Björn
Kjerfve, Nadia Rubio-Cisneros, Angel Pérez-Ruzafa, Concepción Mar-
cos, Roberto Pastres, Fabio Pranovi, Maria Snoussi, Jane Turpie, Yurii
Tuchkovenko, Brenda Dyack, Justin Brookes, Ramunas Povilanskas,
and Valeriy Khokhlov. 2018. Assessing, quantifying and valuing the
ecosystem services of coastal lagoons. Journal for Nature Conservation
44 (2018), 50–65. https://doi.org/10.1016/j.jnc.2018.02.009

[14] Derek A Pisner and David M Schnyer. 2020. Support vector machine.
In Machine learning. Elsevier, 101–121.

[15] Philipp Probst, Marvin N Wright, and Anne-Laure Boulesteix. 2019.
Hyperparameters and tuning strategies for random forest. Wiley
Interdisciplinary Reviews: data mining and knowledge discovery 9, 3
(2019), e1301.

[16] Hassan Ramchoun, Youssef Ghanou, Mohamed Ettaouil, and Mo-
hammed Amine Janati Idrissi. 2016. Multilayer perceptron: Archi-
tecture optimization and training. (2016).

[17] Kuldeep Randhawa, Chu Kiong Loo, Manjeevan Seera, Chee Peng Lim,
and Asoke K Nandi. 2018. Credit card fraud detection using AdaBoost
and majority voting. IEEE access 6 (2018), 14277–14284.

[18] Jonas Ranstam and JA Cook. 2018. LASSO regression. Journal of
British Surgery 105, 10 (2018), 1348–1348.
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