
Future Generation Computer Systems 158 (2024) 308–322

A
0

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Parallel approaches for a decision tree-based explainability algorithm
Daniela Loreti ∗, Giorgio Visani
Department of Computer Science and Engineering, University of Bologna, Viale del Risorgimento 2, Bologna, 40136, Italy

A R T I C L E I N F O

Keywords:
Parallel computing
Global and Local Explainability
Parallel decision tree building

A B S T R A C T

While nowadays Machine Learning (ML) algorithms have achieved impressive prediction accuracy in various
fields, their ability to provide an explanation for the output remains an issue. The explainability research field
is precisely devoted to investigating techniques able to give an interpretation of ML algorithms’ predictions.
Among the various approaches to explainability, we focus on GLEAMS: a decision tree-based solution that has
proven to be rather promising under various perspectives, but suffers a sensible increase in the execution time
as the problem size grows.

In this work, we analyse the state-of-the-art parallel approaches to decision tree-building algorithms and
we adapt them to the peculiar characteristics of GLEAMS. Relying on an increasingly popular distributed
computing engine called Ray, we propose and implement different parallelization strategies for GLEAMS. An
extensive evaluation highlights the benefits and limitations of each strategy and compares the performance
with other existing explainability algorithms.
1. Introduction

As ML techniques have seen a boost in interest during the last
decade, a key research field strictly related to ML has taken shape
in the direction of explainable Artificial Intelligence (AI). Indeed, ML
algorithms have achieved impressive prediction accuracy in various
fields – spanning from image processing and sentiment analysis, to
recommendation systems and tabular data – but the intrinsical structure
of most of the algorithms is such that it is impossible to provide an
explanation for the output. They lack the crucial ability to clarify the
rationale for that prediction. In some fields, this limitation represents
a major downside that renders almost useless the application of AI
techniques [1].

For this reason, different studies have been conducted in order to
provide general methods to explain the prediction of a ML model [2–6].
Explainability methods are generally classified according to their ability
to provide local or global explanations, i.e., respectively, the ability to
describe the reasons for the prediction of a specific input point; or the
ability to explain the ML model as a whole. In particular, GLEAMS
(Global & Local ExplainAbility of black-box Models through Space
partitioning) [6] is a promising approach that relies on the construction
of a decision tree with peculiar characteristics to provide an accurate
description of the ML model. One of the advantages of GLEAMS with
respect to other existing methods is its ability to naturally provide both
local and global explanations: a key feature that other explainability
algorithms can achieve at the cost of additional computations.

∗ Corresponding author.
E-mail address: daniela.loreti@unibo.it (D. Loreti).

Nonetheless, the execution time of GLEAMS is heavily influenced by
the dimension of the problem. In its more recent implementation [6,
Ch. 8], GLEAMS is an intrinsically sequential algorithm: it cannot take
advantage of a multicore machine, let alone a network of computing
nodes. In this work, we argue that resorting to a parallel approach
might be crucial, not only to improve the performance in terms of
execution time but also to reduce the overall power consumption of
the algorithm—a matter of major concern for modern data centres.

Albeit there exists a large literature on how to parallelize decision
tree-building algorithms, GLEAMS’ peculiar management of the input
training set makes the latest and most promising approaches scarcely
applicable. In this work, we focus on how GLEAMS can be modified to
take advantage of a multiprocessor system or a network of computing
nodes in order to boost both its time and power consumption perfor-
mance. For this purpose, we rely on an increasingly popular distributed
computing engine, Ray [7], known to be particularly suitable for the
parallel execution of ML tasks. We evaluate different possible imple-
mentations of parallel approaches through extensive scalability tests,
thus highlighting the advantages and shortcomings of each implemen-
tation. Finally, since energy consumption is becoming more and more
important for large data centres, we investigate the advantages that a
parallel approach can bring on this front.

The main contributions of this work are the following.

• A study of the parallelization opportunities for GLEAMS con-
ducted after a detailed investigation of the state-of-the-art tech-
niques for parallel decision tree-building algorithms.
vailable online 30 April 2024
167-739X/© 2024 The Author(s). Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.future.2024.04.044
Received 29 September 2023; Received in revised form 5 April 2024; Accepted 22
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

April 2024

https://www.elsevier.com/locate/fgcs
https://www.elsevier.com/locate/fgcs
mailto:daniela.loreti@unibo.it
https://doi.org/10.1016/j.future.2024.04.044
https://doi.org/10.1016/j.future.2024.04.044
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2024.04.044&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Future Generation Computer Systems 158 (2024) 308–322D. Loreti and G. Visani

R
G
v
w
f
o

o
a
o
a
d
a
e

2

f

o

• Four novel parallel approaches to the parallelization of GLEAMS,
which take inspiration from the related work in this field and
make use of Ray distributed processing engine.

• An extensive performance comparison of the proposed approaches
to empirically identify the strengths and weaknesses of each, the
power consumption reduction that can be achieved through par-
allelization, and a comparison with state-of-the-art explainability
techniques in terms of time to compute the solution.

egarding the latter contribution, we clarify that the accuracy of
LEAMS as an explainability method has been already studied in pre-
ious works [6,8,9]. All the parallelization techniques presented in this
ork do not influence the algorithm’s ability to provide an explanation

or a ML model but operate only to subdivide the computational work
ver different nodes in order to obtain a performance improvement.

The article is structured as follows. Section 2 provides a brief
verview of existing explainability techniques and introduces GLEAMS
lgorithm in detail. Section 3 reports a literature review of state-
f-the-art approaches to the parallelization of decision tree-building
lgorithms. Section 4 introduces Ray’s programming paradigm and
escribes how it can be employed to implement the proposed par-
llelization strategies for GLEAMS. Section 5 presents the empirical
valuation and Section 6 draws conclusions.

. Background on GLEAMS

The GLEAMS [6,10] technique aims to offer an explanation – in the
orm of a decision tree 𝑇 – for a generic black-box ML model 𝑓 . It can

be applied to both regression and classification scenarios.

2.1. Related work on explainability

The idea of approximating globally a complex ML model 𝑓 by a sim-
pler surrogate model relying on a tree-based partition of the space can be
dated back at Craven and Shavlik [5]. The proposed method, TREPAN,
approximates the outputs of a neural network by a decision tree,
choosing the splits using the gain ratio criterion [11]. More recently,
inspired by Gibbons et al. [12], Zhou and Hooker [13] proposed to use
another split criterion, based upon an asymptotic expansion of the Gini
criterion. Both these approaches are limited to the classification setting
and also require access to the training data (which is implicitly assumed
to have a good covering of the input space).

From the interpretability side, a standard way to explain 𝑓 , which
is closely related to our approach, is to compute attributions scores,
i.e. a measure of importance, for each variable in the dataset. Lei et al.
[14] exclude a specific feature from 𝑓 and define its impact as the
deterioration of model predictions. On the contrary, Partial Dependence
Plots (PDP) developed by Friedman [15] measure the sensitivity of 𝑓
to changes in the specific feature, isolating its effect from the ones of
the other features.

Particularly relevant for our work are the papers [3,4]. Ribeiro
et al. [4] propose LIME, a well-known local, model-agnostic explanation
algorithm. The method creates a surrogate linear model valid in the
local region around the individual to be explained. Specifically, LIME
generates random points all over the R𝑑 space of the variables used
to train the ML model, then smoothly assigns higher weights to points
closer to the reference, effectively considering only points in a small
neighbourhood. The weights’ decay is governed by the kernel width
parameter. The generated points and respective weights are used to
train a linear local model, whose coefficients are regarded as LIME
explanations.

LIME has already been employed several times in medicine, such
as on Intensive Care data [16] and cancer data [17,18]. However, the
technique is known to have few important weak points. The most no-
table ones are instability [19] (i.e., repeated LIME explanations on the
same individual with equal settings may achieve quite different results)
309
and locality (i.e., to determine the proper size of the neighbourhood for
the local explanation). The former hindrance is mainly caused by the
randomness introduced in the sampling step and has been addressed,
among others, in [8] where Stability Indices inform the user of possible
faults and help her improve the explanations. On the other hand, the
explanation’s locality is extremely important, but the kernel width
parameter lacks a straightforward interpretation and prescriptions on
how to tune it. In recent years, the work [9] provided an automated
optimization policy to select the best kernel width value. Nonetheless,
it is still hard to know the precise neighbourhood boundaries where
the explanation is valid. From a regulatory point of view, such a
desideratum is much needed to trust the explanations. A change of
paradigm was necessary, towards a global explanation method exploit-
ing the same LIME linear explanations but providing precise and clear
prescriptions to be useful in practice. GLEAMS [6] fills the gap, by
producing a set of linear models covering the entire variable space, each
one valid in a precisely delimited region. GLEAMS effectively extends
the LIME intuition to the realm of global explanations, while addressing
an important regulatory requirement.

Similarly to LIME, SHAP [3] introduces the idea of decomposing
𝑓 predictions into single variables attributions. The technique samples
combinations of features 𝑆 and average changes in single instance
prediction between the restricted 𝑓 (𝑆 ∪ 𝑗) against 𝑓 (𝑆), obtaining local
attributions for the feature 𝑗. Global SHAP attributions arise by averaging
local attributions over the entire dataset.

Attribution methods usually have to be recomputed for each new
example, a caveat that GLEAMS proposes to overcome by computing a
global surrogate and relying on it to provide explanations for any new
unseen data point. GLEAMS is not the first algorithm to provide expla-
nations on a global scale: Ribeiro et al. [20] propose Anchors, a method
extracting local subsets of the features (anchors) that are sufficient to
recover the same prediction while having a good global coverage. Setzu
et al. [21] propose to aggregate local explanations: starting from local
decision rules, GlocalX combines them in a hierarchical manner to form
a global explanation of the model. In the ad hoc setting, Harder et al.
[22] propose to train an interpretable and differentially private model
by using several local linear maps per class: the pseudo-probability of
belonging to a given class is the softmax of a mixture of linear models.
This approach is limited to the classification setting, as with GlocalX
and Anchors.

In summary, LIME and SHAP are the most widely utilized explain-
ability methods due to their user-friendly nature, robust mathematical
foundations, and abundant online resources, along with clear and
comprehensive code implementations. Consequently, in the upcoming
experimental section, we will conduct a computational comparison of
GLEAMS with LIME and SHAP, as these two methods are the primary
contenders within the field of explainability.

2.2. GLEAMS sequential implementation

Given a set 𝑋 = {𝑥1,… , 𝑥𝑖,… , 𝑥𝑁} of 𝑑-dimension input points
(i.e, 𝑥𝑖 ∈ R𝑑), the ML model 𝑓 computes a prediction for each point
in 𝑋. We denote with 𝑌 the set of output target values (i.e., 𝑌 =
{𝑦𝑖 = 𝑓 (𝑥𝑖) ∀𝑖 = 1,… , 𝑁}). Each 𝑦𝑖 can be either a continuous variable
predicted by the model (in the case of regression), or the probability of
a sample 𝑥𝑖 being predicted as class 𝑐 out of 𝐶 possible classes (in case
f classification).

GLEAMS operates to build a piecewise linear approximation of 𝑓
as depicted in Fig. 1. In very simple terms, it aims to split the input
space into non-overlapping parts (similar to what a common decision
tree-building algorithm would do) and associate to each part a local
linear approximation of 𝑓 . The result is therefore a peculiar decision
tree 𝑇 , where each leaf contains the linear approximation of a portion
of the input space. The set of coefficients obtained from these linear ap-
proximations is regarded as proxies of the importance that each feature
has on the whole input space, thus providing a global explanation for 𝑓 .

Future Generation Computer Systems 158 (2024) 308–322D. Loreti and G. Visani
Fig. 1. Overview of the GLEAMS explanation tree construction. Left panel: the black-box 𝑓 model maps the input space (here [0, 1]2) to R, which we can visualize as a surface.
Middle panel: we generate 𝑁 Sobol points, giving rise to 𝑁 measurement points on the surface (in blue). Right panel: we fit the GLEAMS piecewise-linear global surrogate model
on the measurement points by recursively splitting the input space, in a tree fashion [6].
It is important to underline that, given its characteristics, GLEAMS can
also provide local explanations of predictions for given unseen examples.
Any new example will fall into a leaf of 𝑇 and the coefficients of the
linear approximation of that leaf will help to understand which of the
model features influenced the prediction the most.

As shown in Algorithm 1,1 GLEAMS starts by synthetically gener-
ating a set of points (line 2) in the input space. To get good coverage
of the input space, the generation is not pseudorandom but follows the
criteria of Sobol [23]. For each Sobol point 𝑥𝑖, the algorithm computes
the prediction 𝑦𝑖 using the input ML model 𝑓 (line 3). Finally, the
RecTree procedure is called to actually compute the tree by means of
the Model-Based recursive partitioning (MOB) algorithm [24].

Algorithm 1 Computation of the global surrogate model used by
GLEAMS.
Input: 𝑓 : black-box model ; : boundaries of the input space
Output: 𝑇 : decision tree explanation for 𝑓
1: procedure GlobalSurrogate(𝑓,)
2: generate 𝑋 = {𝑥1,… , 𝑥𝑁} Sobol points in
3: 𝑦𝑖 ← 𝑓 (𝑥𝑖) ∀𝑖 ∈ {1,… , 𝑁}
4: 𝑌 ← {𝑦1,… , 𝑦𝑁}
5: return 𝑇 ← RecTree𝑋, 𝑌

The pseudocode of RecTree is shown in Algorithm 2. It takes as
input the set of (generated) points 𝑋 and their predictions 𝑌 computed
through 𝑓 , and recursively operates to emit 𝑇 , the root node of the
decision tree explanation of 𝑓 . Like in any tree-building algorithm,
starting from the root node, a procedure is called (GetBestSplit in line
7) to compute the point in which it is best to split the input space. The
best-split point is identified here by a (𝑗, 𝑡𝑗) pair, where 𝑗 is the feature
and 𝑡𝑗 is the value of the split on 𝑗 (more details on this procedure
are given in Algorithm 3). According to the computed best-split point,
the input set 𝑋 is divided into two parts 𝑋𝓁 and 𝑋𝑟 (line 9), and the
RecTree procedure is recursively called on each of them to generate the
left and right child nodes. In the serial implementation, the decision
tree is therefore constructed following a left-most, depth-first traversal.

The recursion terminates when, for a given node of the tree, the
linear regression computed on 𝑋, 𝑌 (procedure LinReg in line 5) is
deemed good enough, i.e. it is a good linear approximation of 𝑓 in the
subspace of the current node, in terms of 𝑅2 metric. In such a case, the
algorithm returns a leaf node (line 6).

During the algorithm execution, it may also happen that, for a given
candidate leaf, the number of points in 𝑋 is not enough to correctly
assess if the regression displays a good fit.2 In this case, we need to

1 The pseudocodes in this section are taken from [6] but many mathemat-
ical foundations are omitted for space reasons. Please refer to [6] for any
further details.

2 Intuitively, for example, computing linear regression on 3 points in a 3-
dimensional space would yield a plane perfectly fitting the points. However,
310
generate new points in the current node subspace. To do so, we simply
call again Algorithm 1 (lines 2 to 4).

Algorithm 2 Recursive construction of 𝑇 .
Input: 𝑋: set of input points pertaining to the current node; 𝑌 : values
of 𝑓 on 𝑋; 𝑛𝑚𝑖𝑛: minimum size of each leaf.
Output: 𝑇 : root note of the decision tree that approximates 𝑓
1: procedure RecTree(𝑋, 𝑌)
2: if |𝑋| < 2𝑛𝑚𝑖𝑛 then
3: ← boundaries of the input space of 𝑋
4: return GlobalSurrogate𝑓,
5: 𝑓 ← LinReg𝑋, 𝑌
6: if 𝑅2(𝑋, 𝑓) > 𝜌 then return 𝑇 as leaf
7: (𝑗, 𝑡𝑗) ← GetBestSplit𝑋, 𝑌 , 𝑓
8: 𝑇 ← Node𝑋, 𝑌 , 𝑗, 𝑡𝑗
9: (𝑋𝓁 , 𝑌 𝓁 , 𝑋𝑟, 𝑌 𝑟) ← SplitData𝑋, 𝑌 , 𝑗, 𝑡𝑗

10: 𝑇 .𝓁 ← RecTree𝑋𝓁 , 𝑌 𝓁

11: 𝑇 .𝑟 ← RecTree𝑋𝑟, 𝑌 𝑟

12: return 𝑇

Eventually, Algorithm 3 takes as input 𝑋, 𝑌 and the local linear
approximation 𝑓 in the form of a linear regression formula, to compute
the best-split point for the current node. 𝑓 is used on 𝑋 to estimate 𝑌 ,
i.e. the linear approximation of target values. The GetScores procedure
uses it to compute the array of scores . Intuitively, GetScores compares
the similarity between 𝑌 and 𝑌 , per each point in 𝑋. Such array is then
used to produce a cumulative score process 𝐵(𝑗) per feature, containing
information about the goodness of any possible split on the generic
variable 𝑗. From 𝐵(𝑗) we compute the objective function 𝑚𝑗 – which
we want to maximize – and choose the best variable for the split as the
one yielding maximum 𝑚𝑗 value. For the mathematical details of this
procedure, we refer to the work [6].

From a parallelization point of view, the GetScores procedure to
compute the array is the most computationally intensive part and
it requires the whole 𝑋 dataset. Contrarily to other tree algorithms, we
cannot decompose its computation into different tasks, each one taking
care of a specific feature. Indeed, in order to compute the score of any
dimension 𝑗, the values of the input examples for 𝑗 are not sufficient:
the procedure needs the values of the input points for all the features.

For completeness, Table 1 reports the performance of GLEAMS on
three datasets of real-world data w.r.t. other methods when explaining
two types of ML models: XGBoost [25] and multi-layer perceptron
(MLP). A detailed description of these experiments is reported in [6].
The comparison is carried out in terms of local and global monotonicity,
and recall. Briefly, local monotonicity reports how well the algorithm’s
attributions reflect the variations in prediction locally (i.e., in each data

this is just due to the limited number of input points while it is not ensured
that the plane truly approximates 𝑓 .

Future Generation Computer Systems 158 (2024) 308–322D. Loreti and G. Visani

s
t
f
s
t
p
P
w
I
a
s
a
i
p
a

𝑋

Table 1
Performance of GLEAMS w.r.t. state-of-the-arts.
Source: Taken from [6].

Dataset Metrics LIME SHAP PDP GLEAMS

XGB MLP XGB MLP XGB MLP XGB MLP

Winea
local m. 0.38 0.51 0.40 0.53 0.56 0.84 0.51 0.77
global m. 0.24 0.74 0.27 0.78 0.70 0.89 0.36 0.85
recall 0.89 0.80 1.0 0.87 0.50 0.50 0.77 0.75

Houseb
local m. 0.05 0.63 0.52 0.82 0.51 0.83 0.37 −0.19
global m. 0.23 0.63 0.37 0.81 0.38 0.82 0.47 0.24
recall 0.85 0.74 0.99 0.69 0.40 0.40 0.61 0.58

Park.c
local m. 0.10 0.26 0.47 0.55 0.28 0.49 0.50 0.01
global m. 0.31 0.46 0.41 0.71 0.52 0.66 0.30 0.36
recall 0.86 0.77 0.97 0.80 0.40 0.40 0.50 0.60

a https://archive.ics.uci.edu/ml/datasets/wine+quality.
b https://www.openml.org/search?type=data&status=active&id=42092.
c https://archive.ics.uci.edu/ml/datasets/parkinsons+telemonitoring
p
t
s
i
d
v
v
a
t
e
s
n

a
t
d
t
t
o
H

t
f
p
t
H
t
a

w
i
h
w
c
i
o

plit); global monotonicity measures how well the attributions reflect
he variations in prediction on the whole input space along a certain
eature; and recall reports the average recall over all points of the test
et. Refer to [6] (Chapter 3.3 and 4.3) for a detailed explanation of
hese metrics and datasets. In Table 1, GLEAMS’ runs on 215 Sobol
oints are compared with LIME for tabular data [4], SHAP [3] and
DP [15] using default parameters. In general, GLEAMS is on par
ith state-of-the-art methods in terms of the reliability of explanations.

ndeed, it provides better local and global monotonicity w.r.t. LIME
nd SHAP on the Wine dataset, while (as expected) its performance
tarts to degrade when the number of features increases, as in the House
nd Parkinson datasets. This behaviour can be partially mitigated by
ncreasing the number of Sobol points. As for the recall metric, GLEAMS
erformance is slightly worse than SHAP, but comparable with LIME,
nd systematically better than PDP.

Algorithm 3 Get the best split for a given node.
Input: 𝑋: set of Sobol points in the current node; 𝑌 : values of 𝑓 on

; 𝑑: number of features in the input, 𝑓 : linear regression formula
approximating 𝑓 on the given node input space.
Output: 𝑗∗: feature to split; 𝑡𝑗∗ value of the split
1: procedure GetBestSplit(𝑋, 𝑌 , 𝑓)
2: 𝑌 ← 𝑓 (𝑋)
3: ← GetScores𝑓, 𝑌 ,𝑋
4: for 𝑗 = 1 to 𝑑 do
5: (𝑚𝑗 , 𝑡𝑗)=GetBestSplitForFeature𝑋, 𝑌 , , 𝑗

6: 𝑗∗ ← argmax𝑗=1,…,𝑑 𝑚𝑗
7: 𝑡𝑗∗ , value of the split
8: return (𝑗∗, 𝑡𝑗∗)
9: procedure GetBestSplitForFeature(𝑋, 𝑌 , , 𝑗)

10: sort [𝑋, 𝑌 ,] according to feature 𝑗
11: 𝐵(𝑗) ← CumulativeScoreProcess
12: 𝑚𝑗 ← max𝑖=1,…,𝑁

‖

‖

‖

𝐵(𝑗)(𝑖)‖‖
‖1

13: 𝑡𝑗 ← argmax𝑖=1,…,𝑁
‖

‖

‖

𝐵(𝑗)(𝑖)‖‖
‖1

14: return 𝑚𝑗 , 𝑡𝑗

3. Literature review on parallel decision tree learning algorithms

GLEAMS’ objective is constructing a decision tree to explain an
input ML model. When it comes to parallelizing the training phase
of a decision tree, extensive literature exists: several approaches have
been proposed in the last decades [26]. The work by Amado et al. [27]
distinguishes between three categories of parallel decision tree-building
algorithms according to their choice of domain decomposition: task
parallelism, horizontal data parallelism and vertical data parallelism. The
311

first class of works (task parallel algorithms) stems from the intuition O
that different subtrees can be computed independently. For this reason,
the works falling into this category propose a decomposition of the
domain such that each processor is in charge of a tree’s node (or a
subtree). The main observed drawback of this strategy is the difficulty
of balancing the resulting computational load to be assigned to different
machines. Indeed, as it is not possible to foresee the structure of the
final tree, it is also not possible to understand in advance what is the
best number of parallel processors to employ: if a tree is particularly
unbalanced in its structure, so will the parallel execution. Furthermore,
if the final tree is very deep and not particularly wide, this can limit
the degree of parallelism that can be reached. Therefore, a second set
of works has been proposed, which Amado et al. [27] refer to as data
arallel algorithms. Instead of parallelizing the structure of the tree,
hey try to subdivide the computation by splitting the input training
et. As this operation can be performed in two ways, Amado et al.
dentify the category of vertical and horizontal data parallelism. Vertical
ata parallelism refers to the possibility of splitting the training set by
ariable: each different computing processor receives only the vector of
alues referring to a particular variable for the whole input examples,
nd the vector of the target. Horizontal parallelism instead refers to
he possibility of providing each processor with a partition of the input
xamples, i.e., the whole set of variables (and the target) for just a
ubset of the examples in the training set is given to each computing
ode.

The work [28] offers examples of all three parallel approaches
pplied to C4.5 [29]: Dynamic Task Distribution (DTD) implementing
ask parallelism with a master processor that allocates a subtree of the
ecision tree to any idle slave processor; the DP-rec scheme distributes
he data horizontally and builds decision tree one node at a time; while
he DP-att scheme distributes the attributes, bringing the advantages
f being both load-balanced and requiring minimal communications.
owever, DP-att suffers from limited scalability.

Pearson [30] proposes a particular example of vertical data par-
itioning in which this strategy is coupled with a master-worker in-
rastructure in charge of the assignment of the subtasks to computing
rocessors. Since Pearson’s solution dates back to 1994, it could not
ake advantage of modern distributed computing engines (like Spark,
adoop or Ray). Hence, when the degree of parallelism is too high,

he algorithm’s computation time is dominated by the overhead of task
ssignment and bookkeeping activities on the master.

Since many decision tree training algorithms rely on large datasets,
hich cannot fit a single machine RAM, horizontal data parallelism

s the most explored category. One of the first attempts to resort to
orizontal data parallelism dates back to 1995’s work by Kuffrin [31],
hich proposes a ‘‘systolic shift’’ phase to put together the results of the

omputations carried on separately by each processor. Albeit effective
n finding the best-split point, this strategy entails a relevant number
f messages exchanged, which can become a significant bottleneck.
ther well-known horizontal data parallel approaches are SPRINT [32]

https://archive.ics.uci.edu/ml/datasets/wine+quality
https://www.openml.org/search?type=data&status=active&id=42092
https://archive.ics.uci.edu/ml/datasets/parkinsons+telemonitoring

Future Generation Computer Systems 158 (2024) 308–322D. Loreti and G. Visani

f
t
l
p
t
p
t

i
s
p
h
P
t
D
o
o
(
c
s
s
d

i
s
b
r

G
d
e
h
i
a
s

t
p

g
n
f
v
o
o
d
e

4

f
t
G

4

o
u
p
o
s
o
a
s
m
t
A
a
m
a
s
G
w
m
t
i
C
f
p
t
d

and SLIQ [33], where the authors propose the employment of addi-
tional data structures to avoid sorting the same array multiple times.
Nonetheless, the problem of the significant number of exchanged mes-
sages remains unsolved, because for all these algorithms an all-to-all
broadcast is needed each time the identification of a global best-split
point is required. ScalParC [34] enhances SPRINT with a distributed
hash table that reduces the latency of the splitting decision, especially
for continuous attributes. The works [35,36] propose to exchange
quantized histograms between machines when estimating the global
attribute distributions. However, in all these works, the communication
cost is still proportional to the total number of attributes.

An actual reduction of the communications is proposed in [37],
where each computing processor builds its own decision tree based on a
subset of the training examples. An unseen example is evaluated by all
the models and a majority vote is taken to determine its class. Voting is
also employed in [38–41]. In particular, Meng et al. [40] show through
theoretical analysis that the proposed PV-Tree algorithm can learn a
near-optimal decision tree because it can find the best attribute with a
large probability. A similarity-based approach is instead employed in
the ensamble technique of [42] to select the tree that is most similar
to others as the best representative of the entire dataset.

Amado et al.’s classification of the works into approaches that
parallelize the model or the input data (in different ways) is indeed
common to other ML-related fields [43–47]. Alternative to Amado
et al.’s classification is instead the subdivision of parallel decision
tree algorithms by Srivastava et al. [48], which propose to distinguish
between synchronous and partitioned tree construction depending on the
act that the final tree is either, respectively, built step by step by all
he processors (which entails a global synchronization at each iteration,
ike in most horizontal data parallel approaches) or subdivided into
ieces independently computed by different processors (like in pure
ask parallelism or in approaches that combine task and vertical data
arallelism). For better clarity, in this work, we have decided to employ
he classification of Amado et al. [27].

It is important to underline that, in more recent years, with the
ncreasing interest and diffusion of the MapReduce approach [49],
everal works [50–54] have explored the possibilities to apply this
rogramming paradigm to the training of large decision trees with
orizontal data parallelism. Panda et al. [53] in particular, presented
LANET, a scalable distributed framework that applies MapReduce
o distribute and scale decision tree induction to very large datasets.
espite the employment of MapReduce, the communication overhead
f the algorithm is significant. Dai et al. [52] propose a parallelization
f the classical C4.5 algorithm which relies on new data structures
the attribute, count, and hash tables) to minimize the communication
ost. An initial MapReduce step is employed to compute these data
tructures, then other MapReduce steps build the tree on the basis of the
tructures. MapReduce-based parallelization has been applied to fuzzy
ecision trees too [55,56].

All these works propose a Reduce step in which results computed
ndependently by different processors are composed together. This
trategy allows for a decrease in the number of messages exchanged,
ut the key point of weakness stands precisely in the way the partial
esults are combined.

Recent years have also seen a rise in the employment of GP-
PUs for the acceleration of decision tree induction. Task and vertical
ata parallelisms are combined in the works [57,58], while Jurczuk
t al. [59–63] focus on GPU-based evolutionary algorithms (EAs) using
orizontal data parallel approaches. The technique of [59] is enhanced
n [64] to take advantage of multiple GPUs. Finally, CRO-DT [65] uses

matrix encoding of the decision tree and a GPU implementation to
peedup an ensemble algorithm and evolve better univariate trees.

Table 2 summarizes the main characteristics of the papers related
o our work. For each solution, it highlights the chosen domain decom-
312

osition: task (T), horizontal (HD) or vertical (VD) parallelism [27], e
the strategy adopted for the tree construction: synchronous or par-
titioned [48], the implementation framework employed, the decision
tree type on which it is tailored, and the distributed platform (if any)
that supports the parallelization.

The parallelization of the GLEAMS decision tree procedure differs
from any of the above-mentioned approaches in the fact that GLEAMS
assumes the training set size can fit the RAM of a single computer.
Indeed, the algorithm starts by synthetically generating an arbitrar-
ily large set of examples, i.e. the Sobol points, and computing their
prediction using the input ML model. Then, during the computation
of any candidate leaf, if necessary, other examples can be generated
in order to improve the accuracy of the explanation. Hence, it is not
crucial for GLEAMS parallelization to resort to horizontal partitioning:
the communication overhead which characterizes the solutions based
on this domain decomposition can be easily avoided.

Another key difference consists in the 𝑌 value assigned to each leaf:
eneral decision tree algorithms assign the average �̄� value inside the
ode, while GLEAMS stores the hyperplane formula, in the form of
eature coefficients. Through the formula, GLEAMS assigns different �̂�
alues at different points in the node. As described in Section 2, in
rder to compute the hyperplane, the algorithm needs all the values
f the features and the target. This difference automatically hinders a
omain decomposition that assigns just one feature and the target to
ach computing processor as in pure vertical data parallelism.

. Parallelizing GLEAMS

Since we resort to Ray in order to parallelize GLEAMS, in the
ollowing we start by describing the key characteristics of this dis-
ributed computing engine and then move on to depict how we adapted
LEAMS to Ray’s programming paradigm.

.1. Ray programming paradigm

Ray3 is a unified framework for scaling AI Python applications. It
ffers a toolkit of libraries for ML computation designed for the end-
sed, as well as a simple, yet powerful, Core API that can be used to
arallelize custom applications on a local machine or a cluster. W.r.t
ther, more popular frameworks such as Apache Spark,4 Ray shows
everal key advantages that made it preferable for the parallelization
f GLEAMS: (i) as we describe in the following, Ray offers a simpler
rchitecture and programming paradigm than Spark, making it more
uitable to implement unified solutions meant to be launched on a
ultiprocessor machine, as well as on a large cluster; (ii) Ray offers

ools for the automatic provisioning, launch and auto-scale on GCP,
mazon EC2, MS Azure and Kubernetes,5 thanks to which, the par-
llelized application can be quickly deployed on a cluster of several
achines with virtually zero effort; (iii) Ray is also able to maintain
smaller state for each running application and to provide speedy

cheduling of light tasks—crucial points of advantage over Spark for
LEAMS’ parallelization as well as for various ML applications; (iv)
hile Spark envisages shared immutable objects managed only by the
aster node – a choice that can sometimes create bottlenecks – in Ray

his task can be carried out by any node; (v) instead of being written
n Scala as Spark, Ray Core is Python code supported by an underlying
++ layer that handles the heaviest tasks, making it extremely per-

ormant. Indeed, Ray offers higher performance than other distributed
rocessing engines according to various comparisons [7,66,67]. For all
hese reasons, our choice for the parallelization of GLEAMS fell on Ray
istributed engine.

3 https://www.ray.io/
4 https://spark.apache.org/
5 https://docs.ray.io/en/latest/ray-overview/ray-libraries.html#the-ray-

cosystem

https://www.ray.io/
https://spark.apache.org/
https://docs.ray.io/en/latest/ray-overview/ray-libraries.html#the-ray-ecosystem
https://docs.ray.io/en/latest/ray-overview/ray-libraries.html#the-ray-ecosystem

Future Generation Computer Systems 158 (2024) 308–322D. Loreti and G. Visani
Table 2
Classification of related works on parallel decision tree-building algorithms.

Approach Domain
decomposition

Tree construction
strategy

Implementation
Framework

Decision tree
type

Distributed
platform

PDT [31] HD synch. custom, 3-phase ID3, C4, CART not implemented

Pearson [30] VD part. master/worker general custom

Bowyer et al. [37] HD part. ensemble
(majority voting)

C4.5 custom for ASCI
Red parallel

DTD [28] T part. master/worker C4.5 custom

DP-rec [28] HD synch. custom C4.5 custom

DP-att [28] VD synch. custom C4.5 custom

ScalParC [34] HD part. pre-sort general custom MPI

SLIQ [33] HD part. pre-sort general custom

SPRINT [33] HD part. pre-sort general custom

Amado et al. [27] HD synch. custom C4.5 custom MPI

Srivastava et al. [48] T+HD hybrid master/worker general custom MPI

SPIES [35] HD synch. sampling &
histogram
building

general approx. tree FREE- RIDE

PLANET [53] HD part. ensamble + MR general Google
MapReduce

SPDT [36] HD synch. sampling &
histogram
building

general approx. tree custom MPI

Dai et al. [52] HD synch. MR C4.5 Hadoop

PV-Tree [40] HD part. ensamble
(2-stage voting)

general custom

Mu et al. [50] HD synch. MR C4.5 Hadoop+ WEKA

Mu et al. [51] HD synch. MR PCC-tree WEKA

Segatori et al. [55] T+HD part. MR Fuzzy DTs Spark

Mu et al. [56] HD synch. MR Fuzzy rule-based DTs Hadoop

SySM [42] HD part. ensamble CART, J48 (*)

Fan et al. [41] HD part. ensamble general (*)

Nasridinov et al. [57] T+VD part. single-GPU ID3 CUDA

Strnad et al. [58] T+VD part. single-GPU CART CUDA

Jurczuk et al. [59] HD synch. single-GPU EA/classification CUDA

Jurczuk et al. [60] HD synch. single-GPU EA/regression CUDA

Jurczuk et al. [61] HD synch. single-GPU EA/classification CUDA

Jurczuk et al. [64] HD synch. multi-GPU EA/classification CUDA

Jurczuk et al. [62] HD synch. single-GPU EA+ML/regression CUDA

Jurczuk et al. [63] HD synch. single-GPU EA/classification CUDA

Costa et al. [65] HD synch. single-GPU
ensamble

EA/classification CUDA

(*) Does not specifically address parallelization but proposes an ensamble strategy that can be easily applied to HD.
Like Apache Spark, Ray’s architecture is based on a master–slave
paradigm. As shown in Fig. 2, both the master, called Head node, and
the slave, called Worker, run a Raylet process for daemon coordina-
tion and object management, and an Object Store, which works as a
distributed shared-memory space for ray applications, allowing com-
munications between processes on the same machine. Finally, the Head
node also runs the Global cluster store: a Redis in-memory database that
contains information about the cluster.

The Python process that starts to execute the script containing Ray
code is called driver process. This process then either connects to a Ray
cluster or generates a new local one to handle the remote function calls
by spawning worker processes. For both the driver and the workers, Ray
employs processes rather than threads, to avoid incurring Python’s GIL
mutual exclusion. By default, each node hosts a number of workers
equal to the number of logical CPU cores of the node. These workers
form a pool used to schedule tasks. As shown in Fig. 2, both the driver
and the workers can be allocated either on the Head node (if enough
cores are available), or another Worker machine of the cluster.
313
Fig. 2. Architecture of Ray Core.

Ray’s programming paradigm is based on three key concepts: tasks,
actors and remote objects. Ray tasks allow arbitrary functions to be exe-
cuted asynchronously on separate Python worker processes. To define a
task a user simply needs to annotate a function with the @ray.remote

Future Generation Computer Systems 158 (2024) 308–322D. Loreti and G. Visani
decorator, and the task is executed by adding .remote() to the
function call like this:

asynchronous remote call
future = func.remote(params)
blocking call to get the result
result = ray.get(future)
The remote call schedules the execution of the function on a Ray

worker, either on the local machine or on a remote one in the case of
a cluster. Even in the case of a cluster, the worker could still be in the
local machine unless all the available CPUs on that machine are already
busy. In order to obtain parallelism, the user simply invokes multiple
asynchronous .remote() functions before waiting with .get() for
the list of remote results references.

Ray actors are essentially stateful workers, created by annotat-
ing classes with the @ray.remote decorator and instantiated with
the .remote() form. Then, all its methods can be called with the
.remote()-.get() paradigm. Each actor instance is assigned a single
dedicated worker on which are scheduled all the method calls of that
instance. The method calls are guaranteed to be executed sequentially
and in order, which makes the management of the internal state simple
to handle. It is possible to create special asynchronous actors that forgo
the order and sequential guarantee, in which case it is the developer’s
responsibility to maintain the coherence of the internal state.

Tasks and actors produce and process remote objects that can be
saved in the Object Store of any node of the Ray cluster. Actually, a
remote object can reside on one or more nodes’ Object Store, regardless
of who has the object reference, but in general, the data is only
transferred to the nodes that actually need it, avoiding unnecessary
network overhead.

4.2. GLEAMS on ray

Employing a profiler, it is possible to see how the most time-
consuming part of GLEAMS’ code is related to the computation of
the best-split point and its score for each dimension. Therefore, our
initial goal was to parallelize this task following a vertical data parallel
approach.

4.2.1. Parallelization of the best-split point computation
GLEAMS input dataset is composed of a set of examples, each

one representable through a 𝑑-dimensional point. Each dimension is
a different variable (aka feature) of the domain. The algorithm needs
to figure out along which dimension it is best to split the subdomain
so that the points on each side present the most similar features. To do
so, the best-split points along all the dimensions are computed together
with a score. The score is then used to select the best dimension
and, with it, the best-split point overall. In each node of the tree,
the computation of the split point and score for each dimension is
independent of the others and can be performed in parallel, thus
following a vertical data strategy. We will refer to this solution as VD-
GLEAMS in the following. As shown in Fig. 3 VD-GLEAMS envisages
that the computation of the tree structure (black elements in Fig. 3) is
carried out by the Ray driver process, while the computation of the split
point is computed on a dedicated worker for each dimension (coloured
elements in Fig. 3).

Thanks to Ray’s programming paradigm, this parallelization did not
require many changes apart from annotating the function
GetBestSplitForFeature (responsible for the split-point computation for
each dimension) with the @ray.remote decorator and changing the
loop where it was invoked with the .remote()-.get() paradigm.
As shown in Algorithm 4, this means, firstly, asynchronously calling
the remote function GetBestSplitForFeature for each dimension (line 7)
to get a reference to the best-split point and score on that dimension;
then triggering the resolution of the references (line 9) to obtain the
parallelly computed results.
314
Fig. 3. Architecture of VD-GLEAMS. Different colours correspond to executions on
different Ray processes.

As anticipated, differently from traditional decision tree-building
algorithms, the computation of the split points in GLEAMS is based on
the computation of a cumulative score process. Therefore, to compute
the best split along a certain dimension, the values of the points for
that dimension are not sufficient. The algorithm requires the values
of the points for all the model features. From the point of view of
parallelization, this entails the need for each worker process to access
very large arrays containing all feature and target values for the initially
generated input points. To efficiently manage these large data the calls
to ray.put() in lines 4 and 5 preemptively place the feature and
target values on the Ray Shared Object storage and return a reference
to them. The references are then passed to the remote functions in order
to avoid duplicating the arrays for each domain dimension.

The level of parallelism of this vertical data parallel solution is
nonetheless limited by the number of features of the examined model.

Algorithm 4 Parallel computation of the best split for a given tree’s
node: VD-GLEAMS.
Input: 𝑋: set of Sobol points in the current node; 𝑌 : values of 𝑓 on 𝑋;
𝑑: number of features in the input.
Output: 𝑗∗: feature to split; 𝑡𝑗∗ value of the split
1: procedure ParallelGetBestSplit(𝑋, 𝑌 , 𝑓)
2: 𝑌 ← 𝑓 (𝑋)
3: ← GetScores𝑓, 𝑌 ,𝑋
4: 𝑋ref=ray.put()
5: 𝑌ref=ray.put()
6: for 𝑗 = 1 to 𝑑 do
7: (𝑚𝑗 , 𝑡𝑗)refs=GetBestSplit4Feature.remote(
8: 𝑋ref, 𝑌ref, , 𝑗)
9: [(𝑚𝑗 , 𝑡𝑗)]=ray.get((𝑚𝑗 , 𝑡𝑗)refs)

10: 𝑗∗ ← argmax𝑗=1,…,𝑑 𝑚𝑗
11: 𝑡𝑗∗ , value of the split
12: return (𝑗∗, 𝑡𝑗∗)
13: @ray.remote
14: procedure GetBestSplit4Feature(𝑋, 𝑌 , , 𝑗)
15: sort [𝑋, 𝑌 ,] according to feature 𝑗
16: 𝐵(𝑗) ← CumulativeScoreProcess
17: 𝑚𝑗 ← max𝑖=1,…,𝑁

‖

‖

‖

𝐵(𝑗)(𝑖)‖‖
‖1

18: 𝑡𝑗 ← argmax𝑖=1,…,𝑁
‖

‖

‖

𝐵(𝑗)(𝑖)‖‖
‖1

19: return 𝑚𝑗 , 𝑡𝑗

4.2.2. Parallelization of the tree’s structure
An alternative solution is the task parallel approach, where the

domain decomposition follows the structure of the decision tree by
assigning different tree nodes (or sub-trees) to different parallel pro-
cesses as shown in Fig. 4. We refer to this solution as T-GLEAMS.
Using the Ray paradigm, we annotate the function RecTree (responsible

Future Generation Computer Systems 158 (2024) 308–322D. Loreti and G. Visani
Algorithm 5 Task parallel computation of the global surrogate model
used by GLEAMS: T-GLEAMS.
Input: 𝑓 : black-box model ; : boundaries of the input space
Output: 𝑇 : decision tree explanation for 𝑓
1: procedure GlobalSurrogate(𝑓,)
2: generate 𝑋 = {𝑥1,… , 𝑥𝑁} Sobol points in
3: 𝑦𝑖 ← 𝑓 (𝑥𝑖) ∀𝑖 ∈ {1,… , 𝑁}
4: 𝑌 ← {𝑦1,… , 𝑦𝑁}
5: 𝑇ref ← RecTree.remote(𝑋, 𝑌)
6: loop=asyncio.get_event_loop()
7: 𝑇 ←loop.run_until_complete(

8: resolve_tree(await 𝑇ref))
9: return 𝑇

10: @ray.remote
11: procedure RecTree(𝑋, 𝑌)
12: if |𝑋| < 2𝑛𝑚𝑖𝑛 then
13: ← boundaries of the input space of 𝑋
14: return GlobalSurrogate𝑓,
15: 𝑓 ← LinReg𝑋, 𝑌
16: if 𝑅2(𝑋, 𝑓) > 𝜌 then return 𝑇 as leaf
17: (𝑗, 𝑡𝑗) ← GetBestSplit𝑋, 𝑌 , 𝑓
18: 𝑇 ← Node𝑋, 𝑌 , 𝑗, 𝑡𝑗
19: (𝑋𝓁 , 𝑌 𝓁 , 𝑋𝑟, 𝑌 𝑟) ← SplitData𝑋, 𝑌 , 𝑗, 𝑡𝑗
20: 𝑇 .𝓁ref ← RecTree.remote(𝑋𝓁 , 𝑌 𝓁)
21: 𝑇 .𝑟ref ← RecTree.remote(𝑋𝑟, 𝑌 𝑟)
22: return 𝑇
23: async def resolve_tree(𝑇)
24: if 𝑇.terminal then
25: return 𝑇
26: else
27: 𝑇 .𝓁,𝑇 .𝑟 = await asyncio.gather(𝑇 .𝓁ref, 𝑇 .𝑟ref)
28: ⊳ Remove references to remote objects to allow their

cleanup:
29: 𝑇𝓁ref = None
30: 𝑇 .𝑟ref = None

31: 𝑇 .𝓁,𝑇 .𝑟 = await asyncio.gather(

32: resolve_tree(𝑇 .𝓁),resolve_tree(𝑇 .𝑟))
33: return 𝑇

for recursively generating the tree from the root to leaves) with the
@ray.remote decorator as shown in line 10 of Algorithm 5, and we
turn its invocation into an asynchronous ray.remote() call (line 5).
Also, inside the RecTree procedure all the recursive calls need to be
turned into asynchronous ones (lines 20 and 21).

In this way, for each node of the tree, a remote task is invoked.
Given the recursive nature of the RecTree each node might then have
to invoke further child remote functions. The use of ray.get() needs
to be avoided in this case, because it causes each node to wait for the
completion of its child’s asynchronous call. Indeed, as mentioned in the
previous subsection, each remote task, once scheduled, is assigned to
a Ray worker process. The total number of workers is supposed to be
limited and in the same number as the number of logical cores present
in the Ray cluster. Nonetheless, a task that is blocked waiting on the
ray.get() call is also keeping the worker blocked. In these situations,
Ray avoids deadlocks by instantiating new workers, so that they may
handle the still-pending tasks. This is a good choice in general, but
in our case, as the depth of the tree might be significant, it may
overwhelm the cluster with the spawning of several workers, each one
just waiting for the node’s children to complete.

To avoid this issue, in our solution, each task submits the asyn-
chronous children’s remote tasks but does not wait on them with
ray.get(). Instead, the task returns immediately with a node contain-
ing unresolved remote references. Then, to resolve the generated tree of
315
Fig. 4. Architecture of T-GLEAMS.

references a recursive asynchronous function is implemented through
the asyncio Python standard library6 (line 7 of Algorithm 5) which is
integrated into Ray.

While the underlying operating system keeps seeing only one pro-
cess, asyncio spawns numerous concurrent library-level ‘‘pseudo-
threads’’, called coroutines. Coroutines are supervised by a master
scheduler, called event loop. It schedules a coroutine from a pool of tasks
that needs to be executed, and then, whenever the coroutine blocks
waiting for a certain operation to be executed (in our case, waiting
for the resolution of a node reference), it is suspended and the loop is
freed to start a new coroutine from the pool. In this way, even if one
of the tree’s branches is still stuck in computation, the asynchronous
function can still resolve other parts of the tree while it waits. In other
words, each RecTree task generates two child tasks (except in the case
of a leaf node) and concludes avoiding the overcrowding of workers;
then an asynchronous recursive function (resolve_tree() called in
line 7) is used to resolve the tree of remote references efficiently and
concurrently.

Like any task parallel approach to decision tree building, the max-
imum amount of parallelism obtainable with this solution depends on
the structure of the tree.

4.2.3. Combining the two parallelization strategies
In order to increase the maximum level of parallelism, the two

solutions illustrated above can be merged together. The idea is to
generate a new worker process to handle the computation of each
child tree node, each of which would then spawn further worker
processes to compute the best-split point in parallel. In practice, this
can be easily realized by changing line 17 of Algorithm 5 so as to
call the ParallelGetBestSplit of Algorithm 4 instead of the original the
GetBestSplit. We call this solution Mixed Vertical Data and Task parallel
GLEAMS (VDT-GLEAMS). Its structure is exemplified in Fig. 5 where
different colours are used for different algorithm parts to highlight that
they are executed on different Ray processes.

In principle, this approach could obtain a higher level of parallelism
than the previously presented ones because it combines the benefits
of both task and data domain decompositions. Nonetheless, the nested
nature of the resulting parallelism is problematic. Indeed, any worker
process executing a RecTree operation needs the result of the parallel
split-point computation to compare them and select the best one (and
then divide the remaining domain into the two child domains). This
means that each worker process executing RecTree will block during
the parallel computation of the split-points (on line 7 of Algorithm 4).

6 https://docs.python.org/3/library/asyncio.html

https://docs.python.org/3/library/asyncio.html

Future Generation Computer Systems 158 (2024) 308–322D. Loreti and G. Visani
Fig. 5. Architecture of VDT-GLEAMS.

Fig. 6. Architecture of VDTa-GLEAMS.

The problem could be observed better using the Ray timeline com-
mand.7 Fig. 7(a) shows the simple timeline of a 4-core Ray cluster
executing on an 8-core machine with hyperthreading. It is easy to see
how the system spawns far more than four processes to run, each of
which shows long inactivity periods. This behaviour is precisely due to
the RecTree processes waiting for the parallel computation of the split
points conducted by other worker processes.

An alternative solution to combine the benefits of both the task-
parallel and vertical data-parallel approaches is illustrated in Algorithm
6. Here, task parallelism is not realized through multiple calls to
separate Ray workers, but rather through an asyncio event loop
implemented on Ray’s driver process. As a result, the distributed en-
gine will spawn multiple workers for the parallel computation of the
best-split point whereas the tree’s structure computation is realized
with asyncio coroutines, which concurrently take care of the tree’s
different nodes on the driver process. We will refer to this solution as
VDTa-GLEAMS. Black elements in Fig. 6 represent the algorithm parts
executing on the driver, while the research of the best-split point is
carried out on different Ray workers.

Traditionally asyncio computation is more suited to handle IO-
bound operations, while the computation of the tree’s structure is
certainly ascribable to a CPU-bound task. Nonetheless, the idea of
Algorithm 6 originates from the observation that, comparatively, the
execution time of the Ray remote tasks computing the best-split points
was much longer than the execution time of all the other operations.
Therefore, we speculated that the computation of the tree’s structure
could be conducted by a single process, concurrently handling multiple
calls to remote best-split points computations, and efficiently waiting
on the results thanks to the asyncio mechanism. Fig. 7(b) shows the
timeline of this alternative solution executing on a 4-core Ray cluster

7 Ray timeline generates a JSON file containing the execution information
of the job, that can be examined, for example, by using the chrome://tracing
utility.
316
Algorithm 6 Computation of the global surrogate model used by
GLEAMS with asyncio: VDTa-GLEAMS.
Input: 𝑓 : black-box model ; : boundaries of the input space Output:
𝑇 : decision tree explanation for 𝑓
1: procedure GlobalSurrogate(𝑓,)
2: generate 𝑋 = {𝑥1,… , 𝑥𝑁} Sobol points in
3: 𝑦𝑖 ← 𝑓 (𝑥𝑖) ∀𝑖 ∈ {1,… , 𝑁}
4: 𝑌 ← {𝑦1,… , 𝑦𝑁}
5: loop=asyncio.get_event_loop()
6: 𝑇 ←loop.run_until_complete(RecTree𝑋, 𝑌)
7: return 𝑇
8: procedure async RecTree(𝑋, 𝑌)
9: if |𝑋| < 2𝑛𝑚𝑖𝑛 then

10: ← boundaries of the input space of 𝑋
11: return GlobalSurrogate𝑓,
12: 𝑓 ← LinReg𝑋, 𝑌
13: if 𝑅2(𝑋, 𝑓) > 𝜌 then return 𝑇 as leaf
14: (𝑗, 𝑡𝑗) ← ParallelGetBestSplit𝑋, 𝑌 , 𝑓
15: 𝑇 ← Node𝑋, 𝑌 , 𝑗, 𝑡𝑗
16: (𝑋𝓁 , 𝑌 𝓁 , 𝑋𝑟, 𝑌 𝑟) ← SplitData𝑋, 𝑌 , 𝑗, 𝑡𝑗
17: 𝑇 .𝓁, 𝑇 .𝑟 ←await asyncio.gather(

18: RecTree𝑋𝓁 , 𝑌 𝓁 , RecTree𝑋𝑟, 𝑌 𝑟)

19: return 𝑇

deployed on an 8-core machine with hyperthreading. Compared to
Fig. 7(a) it is easy to see that the number of launched workers remains
limited to 4. Furthermore, each line appears as completely filled, thus
providing a preliminary confirmation to the initial assumption of a
more efficient resource usage of VDTa-GLEAMS w.r.t. to VDT-GLEAMS.

To confirm these intuitions and to further investigate the perfor-
mance of the proposed approaches, we conduct a set of experiments on
all the described parallel variants, as reported in the following section.

5. Performance evaluation

The objective of the analysis we are going to discuss in this section is
to gain a quantitative understanding of the performance improvements
that can be obtained by parallelizing GLEAMS according to different
strategies. We remark that we are not interested here in evaluating
the accuracy of the explainability method, which has been already
studied in [6]. Indeed, since none of the parallel solutions proposed
alter GLEAMS’s computing steps, the measure of the algorithm’s ability
to provide an explanation to a ML model would be independent of the
solution being parallel or otherwise.

5.1. Experimental setup

We test the approaches on a single-computer setup and a cluster
of several interconnected machines. The considered single computer is
equipped with an AMD Ryzen 7 3700x 8-core physical machine with
hyperthreading (i.e., up to 16 logical cores) working at 3.6 GHz with
32 GB RAM.

The cluster is composed of 98 identical machines. Each one is
equipped with a 3.8 GHz Intel(R) Core(TM) i3-10305 CPU with 4
cores, hyperthreading (i.e., up to 8 logical cores) and 16 GB RAM. The
machines are interconnected by a 1 Gbps Ethernet network.

5.2. Evaluation approach

GLEAMS starts by taking a ML model as input and synthetically
generating the Sobol points useful to provide an explanation.

We employ the regression benchmark problem Friedman#1, de-
scribed in [69,70], as the ML model over which GLEAMS needs to fit the

Future Generation Computer Systems 158 (2024) 308–322D. Loreti and G. Visani
Fig. 7. Ray timeline of VDT-GLEAMS in Fig. 7(a) and VDTa-GLEAMS in Fig. 7(b) executing the same workload on a 4-cores-limited machine [68].
binary tree. In order to test the scalability of our parallel approaches,
we evaluate their performance on synthetic input datasets of increasing
size by varying two variables: (i) the dimension 𝑑 of the domain
(i.e., the number of features of each of the points in the input dataset);
and (ii) the number of generated Sobol points |𝑋| = 2𝑚 (by increasing
the value of the exponent 𝑚). Obviously, different sizes of the input
array (𝑚) and different numbers of features (𝑑) have a great impact
on the execution profile of the algorithm, thus multiple configurations
were tested. 𝑑 is a factor that depends on the problem that the user
is trying to analyse. Most problems that are of interest for GLEAMS
algorithm will not have a very high number of features, most likely
between 5 and 30. Nonetheless, higher values of 𝑑 are included in these
tests to observe the behaviour of the system in extreme conditions.
The parameter 𝑚, on the other hand, can be changed by the user:
high values of 𝑚 offer increasing granularity and accuracy of GLEAMS’
results, at the cost of a higher resource utilization and execution time.
Realistic usage values for 𝑚 are between 14 and 20 [10].

For each dataset, the generation process operates by sequentially
computing 2𝑚 points. We choose 9 different integer values for 𝑚,
i.e., 12 ≤ 𝑚 ≤ 20. Each of these points has 𝑑 dimensions, and
we vary 𝑑 in {5, 10, 20, 50, 100}. For each dimension, the generating
procedure chooses a floating-point value between 0 and 1 following the
prescriptions of Sobol [23]. Therefore, we generated 9×5 = 45 different
datasets for testing.

To make the benchmark run computationally more complex, a
random Gaussian noise of fixed seed and standard deviation of 1 was
included in the generation of the Sobol points. Indeed, in our setup,
Friedman#1 would be the black box model that GLEAMS must explain.
317
The added noise makes Friedman#1 more complex, challenging the
GLEAMS procedure on an arguably computationally intensive problem.

The resulting dataset is given as input to the original sequential
implementation of GLEAMS and the four parallel approaches pre-
sented in this work (i.e., VD-GLEAMS, T-GLEAMS, VDT-GLEAMS and
VDTa-GLEAMS).

The code of all GLEAMS’ versions as well as the code to reproduce
these tests is hosted on GitHub.8

The tests are grouped into the following three sets.

• Group 1 - We investigate the speedup obtained thanks to paral-
lelization on a single multi-core machine and a cluster of several
nodes. Furthermore, we deepen the scalability feature of the
various solutions for increasing input sizes, by varying both 𝑑
and 𝑚 of the examples dataset. In this regard, two possibilities
exist: strong scalability highlights how the execution time varies
with the number of available processors, while weak scalability
evaluates the computation time when the load on each processor
is kept constant and we increase both the number of processors
and the problem size [71]. The nature of GLEAMS’ workload does
not allow a consistent way to increase the size of the problem
together with the number of processors, thus preventing a reliable
weak scalability test. Therefore, our evaluation focuses on strong
scalability only.

• Group 2 - Albeit none of the proposed implementations improve
GLEAMS’ ability to explain ML models, it is interesting to study

8 https://github.com/giorgiovisani/Glob_Lime

https://github.com/giorgiovisani/Glob_Lime

Future Generation Computer Systems 158 (2024) 308–322D. Loreti and G. Visani
Fig. 8. Example (taken from [6]) of a synthetic surface model (with just two input
features to allow visualization) like the one provided in input to Group 2 tests.

how the reduction of the execution time due to parallelization
relates to the accuracy of GLEAMS in reconstructing a ML model.
To this end, instead of a black-box model, we provide a known,
synthetic ML model as input 𝑓 , and we test the accuracy (of
reconstructing such a model) reached in a certain time by the
sequential and the parallel implementations. The synthetic input
model is a discontinuous piecewise-linear model with 10 input
features and arbitrary coefficients, which is a generalization of
the surface produced by a Random Forest regressor. Fig. 8 (taken
from [6]) shows a simplified example of the synthetic input model
we consider. To estimate the accuracy of the reconstruction, we
employ 𝑅2 as a measure of how close the surrogate model 𝑓
is to the true input model 𝑓 . Since 𝑓 is composed of several
hypervolumes with different sizes, the 𝑅2 distance between 𝑓 and
𝑓 is actually computed as an average of the 𝑅2 values in each
hypervolume, weighted based on the hypervolumes’ size.

• Group 3 - We briefly investigate the gains that can be obtained in
terms of reducing energy consumption when a parallel approach
is employed for GLEAMS. Indeed, the adoption of a parallel
approach implies the utilization of multiple cores during the
execution, which may translate into an increase in the consumed
power unless the technique is able to counterbalance this by
significantly reducing the computation time. As energy saving
is becoming a major concern in many fields, it becomes crucial
to investigate if the proposed parallel technique is actually able
to reduce the time to compute the solution so much that it can
also bring benefits from the point of view of power consumption.
To this end, we enrich the implementations with CodeCarbon9

directives, which allow us to provide an estimation of the total
energy consumed during the computation for increasing input
datasets.

• Group 4 - We compare the execution times of parallel GLEAMS
against other explainability approaches, namely SHAP [3] and
LIME [4]. These methods are the closer competitors to GLEAMS
and are considered the state-of-the-art explainability techniques
in the context of tabular data. However, LIME is a local technique:
to obtain a global explanation, we need to apply it to each point of
the dataset. SHAP behaves similarly, with the additional benefit
that local explanations can be aggregated in order to obtain
a global one. Nonetheless, both techniques have proven to be
rather fast. It is therefore important to compare their computation
time with GLEAMS, which is able to achieve a local and global
explanation at the same time.

9 https://codecarbon.io
318
5.3. Results

Concerning the tests of Group 1, Fig. 9 focuses on the execution
on a single machine and shows the speedup of each parallel solution
(VD-GLEAMS, T-GLEAMS, VDT-GLEAMS and VDTa-GLEAMS) over the
sequential one (GLEAMS), for different input dataset sizes generated by
different combinations of 𝑚 and 𝑑.

The solution offering the best improvement overall appears to be
the asynchronous one VDTa-GLEAMS. Some of the other solutions, in
particular VD-GLEAMS and VDT-GLEAMS, are also competitive in some
cases. As expected, VD-GLEAMS (which parallelizes only the split-point
computation) offers lower performance than VDTa-GLEAMS because
it cannot start the computation of multiple tree nodes at once. The
combined parallel split-point and recursive tree solution VDT-GLEAMS
is perhaps the best runner-up, as it is also able to compute multiple
tree nodes at the same time like the async solution VDTa-GLEAMS, but
it shows some losses in the case of small 𝑚 values, i.e., when the input
dataset is smaller (remember that the number of Sobol points is given
by 2𝑚). This behaviour is most probably caused by the worker’s initial-
ization overhead. VDT-GLEAMS uses ray.get() blocking operations,
which require the creation of new workers to avoid deadlocking. As
the number of Sobol points increases, the computational load assigned
to each worker increases and the whole execution is less influenced
by the initialization overhead. It is also relevant to point out that
all the solutions except for T-GLEAMS show better speedups with a
higher number of domain dimensions 𝑑. This is consistent with the
fact that, for VD-GLEAMS, VDT-GLEAMS and VDTa-GLEAMS, 𝑑 directly
defines the amount of parallelism available to the solution, whereas
the degree of parallelization of T-GLEAMS is only influenced by the
tree’s structure. Therefore, for VD-GLEAMS, VDT-GLEAMS and VDTa-
GLEAMS, higher values of 𝑑 imply a higher number of parallel tasks,
hence better utilization of the multi-core system.

Fig. 10 shows the speedup of the parallel solutions w.r.t. the se-
quential version of GLEAMS when executing on a cluster of 98 inter-
connected machines. For most of the conducted tests, the total number
of computation units (784 cores) is much larger than the maximum
achievable parallelism, thus allowing us to observe the behaviour of
the solutions in case of unbounded computation resources available.
Analogously to what happens in the single-node setup, the speedup of
T-GLEAMS remains almost constant for all input sizes while all three
other solutions increase in speedup as 𝑑 increases.

As expected, VD-GLEAMS usually shows a limited speedup w.r.t.
VDT-GLEAMS and VDTa-GLEAMS but there are some outliers in which,
on the contrary, VD-GLEAMS performs better than VDT-GLEAMS. This
contradicts the logic by which, being based on the parallelization of
both the tree and the split-point computation, VDT-GLEAMS should
always perform better than VD-GLEAMS (which parallelizes only the
split-point). Nonetheless, as we have already observed in the case of a
single-machine execution, VDT-GLEAMS causes Ray’s spawning of mul-
tiple workers to resolve the potential deadlocks caused by the blocking
ray.get() calls. The overhead of initialization of all spawned workers
is therefore most probably the cause of these performance degradations.

On the other hand, we can also observe that, for low values of
𝑑, there are some cases in which the speedup of the async-based
solution VDTa-GLEAMS performs slightly worse than VDT-GLEAMS.
This could be attributed to VDT-GLEAMS having the advantage of an
actually parallel execution of the functions handling each tree node.
The advantage is then lost when 𝑑 increases as this implies a higher-
than-necessary number of workers to be spawned and machines to be
involved for VDT-GLEAMS. However, from the unbounded-resources
tests overall, we could conclude that the async-based solution VDTa-
GLEAMS is the one with best scalability performance, probably due to
higher resource efficiency.

In order to confirm this conclusion, we also perform a strong scala-
bility evaluation on the cluster. The results are illustrated in Fig. 11 for
three different input sizes (𝑚, 𝑑) = {(16, 20), (18, 20), (18, 50)}. The choice

https://codecarbon.io

Future Generation Computer Systems 158 (2024) 308–322D. Loreti and G. Visani
Fig. 9. Speedup of the parallel solutions w.r.t. the sequential implementation of GLEAMS on a single multi-core machine.
Fig. 10. Speedup of the parallel solutions w.r.t. the sequential implementation of GLEAMS on a cluster of interconnected machines.
Fig. 11. Strong scalability evaluation of all four proposed parallel solutions.
of values for 𝑚 is motivated by the will to evaluate GLEAMS in the best
conditions under the point of view of the explanations’ accuracy. On the
other hand, 𝑑 = 20 is the average number of features that the algorithm
is expected to handle in real-life usecases. The additional (𝑚, 𝑑) =
(18, 50) combination is included to stress the system’s capabilities.

As prescribed by strong scalability, for each chosen (𝑚, 𝑑) combi-
nation we increase the number of computing units involved in the
computation. In all tests, Ray daemon is limited to using only 4 CPUs
per machine. For the sake of the graphs’ readability, we exclude T-
GLEAMS from these tests because, as expected, its execution time is
by far the most relevant one for all three input dimensions. For all the
proposed parallel solutions, it is also possible to appreciate a graceful
decrease in the computation times as more CPUs are available, thus
confirming their good scalability performance. However, the graphs
remark how VDTa-GLEAMS is always the best solution in terms of
computation time.

For this reason, in Group 2 tests, we focus on VDTa-GLEAMS and we
compare the quality of the solution provided in a certain time with the
one obtained by Seq-GLEAMS in the same amount of time. To this end,
we run 6 tests for both implementations with an increasing number
319
(2𝑚) of input Sobol points. Intuitively, the higher is the value of 𝑚, the
more accurate is GLEAMS’ solution, and the higher is also the execution
time.

Table 3 reports the considered values of 𝑚, and the corresponding
number of leaves and depth of the tree computed by (any implemen-
tation of) GLEAMS. Fig. 12 shows instead the trends of the 𝑅2 metric
provided by VDTa-GLEAMS and Seq-GLEAMS for increasing execution
time. The graph highlights how, if we consider the same amount of
time, the adoption of the parallel solution VDTa-GLEAMS comes with
sensibly higher accuracy. For example, in 20 s Seq-GLEAMS reaches
𝑅2 = 0.4, whereas VDTa-GLEAMS provides 𝑅2 = 0.6.

In Group 3 tests, we focus again on VDTa-GLEAMS execution and
we investigate the gains it can bring from an energy consumption
standpoint—a matter of growing importance nowadays.

Fig. 13 shows the comparison of the energy consumed by the
original sequential implementation of GLEAMS (Seq-GLEAMS) and the
parallel asynchronous version VDTa-GLEAMS for increasing values of
𝑚. The trends clearly show that, as we augment the number of gen-
erated Sobol points, the increase of power utilization of the parallel
solution remains contained w.r.t. that of Seq-GLEAMS. This highlights a

Future Generation Computer Systems 158 (2024) 308–322D. Loreti and G. Visani
Fig. 12. Accuracy (measured in terms of 𝑅2) w.r.t. execution time of Seq-GLEAMS and
VDTa-GLEAMS.

Table 3
Values of 𝑚 considered for the tests of Group 2 and
the corresponding number of leaves and levels of the
generated tree.
𝑚 Leaves Depth

12 146 16
13 269 18
14 478 18
15 853 20
16 1229 23
17 1753 24

Fig. 13. Energy consumed by the standard sequential implementation of GLEAMS
compared to the parallel VDTa-GLEAMS.

desirable feature of VDTa-GLEAMS: despite the employment of multiple
cores, which in principle could increase the power utilization, the
reduction of the execution time is substantial enough to translate into
a significant decrease of the energy consumption.

Regarding Group 4, we choose VDTa-GLEAMS as our reference par-
allel implementation of GLEAMS and we compare it with Seq-GLEAMS
and other existing explainability methods in terms of computation time
when we increase the number of points to be explained. We remark
that, in this group of tests, we do not evaluate the accuracy of the
methods involved, as it has already been studied in [6]. The results
320
Fig. 14. Execution time of parallel and serial GLEAMS compared to that of different
explainability techniques.

shown in Fig. 14 rather focus on the time to compute the explana-
tions and highlight the superiority of our solution w.r.t. state-of-the-art
approaches.

As mentioned before, GLEAMS yields a local and global explanation
out-of-the-box, which translates into limited sensitivity to the number
of points to explain, computationally wise. Nonetheless, Seq-GLEAMS,
like LIME and SHAP, display a supposedly linear increase in computa-
tion time, w.r.t. the number of instances. The parallel implementation
sensibly contributes to increasing the gap between GLEAMS and the
other techniques.

6. Conclusion and future work

The explainability research field stems from the observation that
ML algorithms have achieved impressive prediction accuracy, but their
intrinsical structure often hinders the possibility of providing an ex-
planation for the output. Various explainability algorithms have been
proposed in the literature, each one with its own advantages and lim-
itations. In this work, we focus on GLEAMS algorithm for its desirable
feature of being able to provide both global and local explanations, and
we deepen the various possibilities to parallelize its decision tree-based
structure in order to reduce the computation time and environmental
footprint. We chose Ray distributed framework to easily support the
parallel execution and we propose four different approaches stemming
from a detailed literature review of the state of the art for decision
tree algorithms parallelization. An extensive evaluation of the proposed
methods from the points of view of scalability, energy consumption
and comparison with other explainability algorithms, which reveals the
advantages and limitations of each version, also helps to highlight the
best parallelization approach for GLEAMS.

The analysis of GLEAMS’ code highlighted how the most compu-
tationally intensive part of the algorithm, i.e., the calculation of the
best-split point, is inherently sequential. In the future, we plan to fur-
ther investigate GLEAMS’ parallelization opportunities, by deepening,
for example, the possibility of changing the mathematical formula of
the best-split point, so that also its computation can be distributed
on various processors, allowing to reach a higher degree of maximum
parallelism.

To the best of our knowledge, Ray has never been used to parallelize
LIME or SHAP algorithms. Some recent practical attempts10 involving

10 https://www.databricks.com/blog/2022/02/02/scaling-shap-
calculations-with-pyspark-and-pandas-udf.html; https://github.com/Affirm/
shparkley; https://github.com/tinluu/LIME-on-Spark

https://www.databricks.com/blog/2022/02/02/scaling-shap-calculations-with-pyspark-and-pandas-udf.html
https://www.databricks.com/blog/2022/02/02/scaling-shap-calculations-with-pyspark-and-pandas-udf.html
https://github.com/Affirm/shparkley
https://github.com/Affirm/shparkley
https://github.com/tinluu/LIME-on-Spark

Future Generation Computer Systems 158 (2024) 308–322D. Loreti and G. Visani

w

Apache Spark exist instead. Also, a GPU-based parallelization has been
proposed for TreeSHAP [72]. In the future, it would be interesting
to compare the performance of our GLEAMS-Ray solution with these
approaches.

Concerning our Ray implementation, in the future, the structure
of the most promising solution VDTa-GLEAMS could be changed to
parallelize the async loop itself. So, instead of having a single process
handling events, a pool of executors would handle the incoming events
in parallel. Currently, this solution is not possible because of Ray’s
limitations, and the use of Python multiprocessing is advised against
in conjunction with Ray.11 Once this restriction is overcome in Ray,
VDTa-GLEAMS can be modified accordingly.

Another technical improvement could involve the employment of
Ray’s chained remote functions. Being able to accept both normal
objects and object references as inputs, this kind of functions could,
in principle, boost the performance of the VDT-GLEAMS parallel ap-
proach, by avoiding the use of any blocking ray.get() call.

Finally, various attempts to implement decision tree algorithms
on GPUs have been proposed in literature [73–75]. In particular, we
believe that taking inspiration from the general ideas exposed in [75],
the use of GPU computing for the acceleration of the task-parallel part
of GLEAMS’ computation can represent a feasible matter of future work.

CRediT authorship contribution statement

Daniela Loreti: Writing – review & editing, Writing – original draft,
Software, Methodology, Conceptualization. Giorgio Visani: Writing
– review & editing, Writing – original draft, Software, Investigation,
Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The link to the open source code of our implementation is included
in the Manuscript.

Acknowledgments

We thank Alessio Ferretti and Luca Ghedini (CCIB, CESIA, Univer-
sity of Bologna) for the precious assistance in the setup of the cluster
evaluation environment; Gabriel Cortesi and Vincenzo Stanzione (M.Sc.
in Computer Engineering at the University of Bologna) for the help in
developing parts of the sequential and parallel versions of GLEAMS.
This work has been realized by Daniela Loreti with a research contract
co-financed by the European Union - PON Ricerca e Innovazione 2014–
2020 ai sensi dell’art. 24, comma 3, lett. a), della Legge 30 dicembre
2010, n. 240 e s.m.i. e del D.M. 10 agosto 2021 n. 1062.

Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.future.2024.04.044.

11 https://discuss.ray.io/t/is-it-possible-to-use-ray-in-a-subprocess-created-
ith-multiprocessing-process/7966.
321
References

[1] J. Kingston, Using artificial intelligence to support compliance with the general
data protection regulation, Artif. Intell. Law 25 (4) (2017) 429–443, http:
//dx.doi.org/10.1007/s10506-017-9206-9.

[2] R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, D. Pedreschi, A
survey of methods for explaining black box models, ACM Comput. Surv. 51 (5)
(2018) 93.

[3] S.M. Lundberg, S.-I. Lee, A unified approach to interpreting model predictions,
Adv. Neural Inf. Process. Syst. 30 (2017).

[4] M.T. Ribeiro, S. Singh, C. Guestrin, Why should I trust you?: Explaining
the predictions of any classifier, in: Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, ACM, 2016,
pp. 1135–1144.

[5] M. Craven, J.W. Shavlik, Extracting tree-structured representations of trained
networks, Adv. Neural Inf. Process. Syst. (1996) 24–30.

[6] G. Visani, Meaningful Insights: Explainability Techniques for Black-Box Models
on Tabular Data (Ph.D. thesis), University of Bologna, Italy, 2023, URL: http:
//amsdottorato.unibo.it/10934/1/PhD_Thesis.pdf.

[7] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang, M. Elibol, Z.
Yang, W. Paul, M.I. Jordan, I. Stoica, Ray: A distributed framework for emerging
AI applications, in: OSDI, USENIX Association, 2018, pp. 561–577.

[8] G. Visani, E. Bagli, F. Chesani, A. Poluzzi, D. Capuzzo, Statistical stability
indices for LIME: Obtaining reliable explanations for machine learning models,
J. Oper. Res. Soc. 73 (1) (2022) 91–101, http://dx.doi.org/10.1080/01605682.
2020.1865846.

[9] G. Visani, E. Bagli, F. Chesani, Optilime: Optimized LIME explanations for
diagnostic computer algorithms, in: S. Conrad, I. Tiddi (Eds.), Proceedings of the
CIKM 2020 Workshops Co-Located with 29th ACM International Conference on
Information and Knowledge Management, CIKM 2020, Galway, Ireland, October
19–23, 2020, in: CEUR Workshop Proceedings, vol. 2699, CEUR-WS.org, 2020,
URL: https://ceur-ws.org/Vol-2699/paper03.pdf.

[10] V.M. Stanzione, Developing a New Approach for Machine Learning Explain-
ability combining Local and Global Model-Agnostic Approaches (Master thesis),
University of Bologna, Informatics and Engineering Department, 2022, URL:
https://amslaurea.unibo.it/25480/1/msc_thesis.pdf.

[11] J.R. Quinlan, C4.5: Programs for Machine Learning, Elsevier, 1993.
[12] R.D. Gibbons, G. Hooker, M.D. Finkelman, D.J. Weiss, P.A. Pilkonis, E. Frank,

T. Moore, D.J. Kupfer, The CAD-MDD: A computerized adaptive diagnostic
screening tool for depression, J. Clin. Psychiatry 74 (7) (2013) 669.

[13] Y. Zhou, G. Hooker, Interpreting Models via Single Tree Approximation, 2016,
arXiv: Methodology, URL: https://api.semanticscholar.org/CorpusID:88515329.

[14] J. Lei, M. G’Sell, A. Rinaldo, R.J. Tibshirani, L. Wasserman, Distribution-free
predictive inference for regression, J. Amer. Statist. Assoc. 113 (523) (2018)
1094–1111.

[15] J.H. Friedman, Greedy function approximation: a gradient boosting machine,
Ann. Statist. (2001) 1189–1232.

[16] G.J. Katuwal, R. Chen, Machine learning model interpretability for precision
medicine, 2016, arXiv preprint arXiv:1610.09045.

[17] A.Y. Zhang, S.S.W. Lam, N. Liu, Y. Pang, L.L. Chan, P.H. Tang, Development of
a radiology decision support system for the classification of MRI brain scans, in:
5th IEEE/ACM International Conference on Big Data Computing Applications and
Technologies, BDCAT 2018, Zurich, Switzerland, December 17–20, 2018, IEEE
Computer Society, 2018, pp. 107–115, http://dx.doi.org/10.1109/BDCAT.2018.
00021.

[18] C. Moreira, R. Sindhgatta, C. Ouyang, P. Bruza, A. Wichert, An investigation
of interpretability techniques for deep learning in predictive process analytics,
2022, arXiv preprint arXiv:2002.09192.

[19] D. Alvarez-Melis, T.S. Jaakkola, On the robustness of interpretability methods,
2018, arXiv preprint arXiv:1806.08049.

[20] M.T. Ribeiro, S. Singh, C. Guestrin, Anchors: High-precision model-agnostic
explanations, in: AAAI, AAAI Press, 2018, pp. 1527–1535.

[21] M. Setzu, R. Guidotti, A. Monreale, F. Turini, D. Pedreschi, F. Giannotti, Glocalx-
from local to global explanations of black box AI models, Artificial Intelligence
294 (2021) 103457.

[22] F. Harder, M. Bauer, M. Park, Interpretable and differentially private predictions,
in: AAAI, AAAI Press, 2020, pp. 4083–4090.

[23] I. Sobol, Points which uniformly fill a multidimensional cube, Math. Cybern. Ser.
(1985) 32.

[24] A. Zeileis, T. Hothorn, K. Hornik, Model-based recursive partitioning, J. Comput.
Graph. Statist. 17 (2) (2008) 492–514.

[25] T. Chen, C. Guestrin, XGBoost: A scalable tree boosting system, in: B. Krishnapu-
ram, M. Shah, A.J. Smola, C.C. Aggarwal, D. Shen, R. Rastogi (Eds.), Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, San Francisco, CA, USA, August 13–17, 2016, ACM, 2016, pp.
785–794.

[26] S.R. Upadhyaya, Parallel approaches to machine learning - A comprehensive
survey, J. Parallel Distrib. Comput. 73 (3) (2013) 284–292.

[27] N. Amado, J. Gama, F.M.A. Silva, Parallel implementation of decision tree
learning algorithms, in: EPIA, in: Lecture Notes in Computer Science, vol. 2258,
Springer, 2001, pp. 6–13.

https://doi.org/10.1016/j.future.2024.04.044
https://discuss.ray.io/t/is-it-possible-to-use-ray-in-a-subprocess-created-with-multip rocessing-process/7966.
https://discuss.ray.io/t/is-it-possible-to-use-ray-in-a-subprocess-created-with-multip rocessing-process/7966.
http://dx.doi.org/10.1007/s10506-017-9206-9
http://dx.doi.org/10.1007/s10506-017-9206-9
http://dx.doi.org/10.1007/s10506-017-9206-9
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb2
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb2
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb2
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb2
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb2
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb3
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb3
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb3
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb4
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb4
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb4
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb4
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb4
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb4
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb4
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb5
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb5
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb5
http://amsdottorato.unibo.it/10934/1/PhD_Thesis.pdf
http://amsdottorato.unibo.it/10934/1/PhD_Thesis.pdf
http://amsdottorato.unibo.it/10934/1/PhD_Thesis.pdf
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb7
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb7
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb7
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb7
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb7
http://dx.doi.org/10.1080/01605682.2020.1865846
http://dx.doi.org/10.1080/01605682.2020.1865846
http://dx.doi.org/10.1080/01605682.2020.1865846
https://ceur-ws.org/Vol-2699/paper03.pdf
https://amslaurea.unibo.it/25480/1/msc_thesis.pdf
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb11
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb12
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb12
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb12
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb12
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb12
https://api.semanticscholar.org/CorpusID:88515329
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb14
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb14
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb14
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb14
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb14
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb15
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb15
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb15
http://arxiv.org/abs/1610.09045
http://dx.doi.org/10.1109/BDCAT.2018.00021
http://dx.doi.org/10.1109/BDCAT.2018.00021
http://dx.doi.org/10.1109/BDCAT.2018.00021
http://arxiv.org/abs/2002.09192
http://arxiv.org/abs/1806.08049
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb20
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb20
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb20
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb21
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb21
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb21
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb21
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb21
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb22
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb22
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb22
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb23
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb23
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb23
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb24
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb24
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb24
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb25
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb25
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb25
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb25
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb25
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb25
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb25
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb25
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb25
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb26
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb26
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb26
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb27
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb27
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb27
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb27
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb27

Future Generation Computer Systems 158 (2024) 308–322D. Loreti and G. Visani
[28] J. Chattratichat, J. Darlington, M. Ghanem, Y. Guo, H.F. Hüning, M. Köhler,
J. Sutiwaraphun, H.W. To, D. Yang, Large scale data mining: Challenges and
responses, in: KDD, AAAI Press, 1997, pp. 143–146.

[29] J.R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann, 1993.
[30] R.A. Pearson, Chapter 17 - A coarse grained parallel induction heuristic, in:

H. Kitano, V. Kumar, C.B. Suttner (Eds.), Parallel Processing for Artificial
Intelligence, in: Machine Intelligence and Pattern Recognition, vol. 15, North-
Holland, 1994, pp. 207–226, http://dx.doi.org/10.1016/B978-0-444-81837-9.
50021-X.

[31] R. Kufrin, Decision trees on parallel processors, in: Parallel Processing for
Artificial Intelligence 3, in: Machine Intelligence and Pattern Recognition, vol.
20, Elsevier, 1997, pp. 279–306.

[32] J.C. Shafer, R. Agrawal, M. Mehta, SPRINT: A scalable parallel classifier for data
mining, in: VLDB, Morgan Kaufmann, 1996, pp. 544–555.

[33] M. Mehta, R. Agrawal, J. Rissanen, SLIQ: A fast scalable classifier for data
mining, in: EDBT, in: Lecture Notes in Computer Science, vol. 1057, Springer,
1996, pp. 18–32.

[34] M.V. Joshi, G. Karypis, V. Kumar, ScalParC: A new scalable and efficient parallel
classification algorithm for mining large datasets, in: IPPS/SPDP, IEEE Computer
Society, 1998, pp. 573–579.

[35] R. Jin, G. Agrawal, Communication and memory efficient parallel decision tree
construction, in: SDM, SIAM, 2003, pp. 119–129.

[36] Y. Ben-Haim, E. Tom-Tov, A streaming parallel decision tree algorithm, J. Mach.
Learn. Res. 11 (2010) 849–872.

[37] K.W. Bowyer, L.O. Hall, T. Moore, N.V. Chawla, W.P. Kegelmeyer, A parallel
decision tree builder for mining very large visualization datasets, in: SMC, IEEE,
2000, pp. 1888–1893.

[38] E. Bauer, R. Kohavi, An empirical comparison of voting classification algorithms:
Bagging, boosting, and variants, Mach. Learn. 36 (1–2) (1999) 105–139.

[39] L. Breiman, Bagging predictors, Mach. Learn. 24 (2) (1996) 123–140.
[40] Q. Meng, G. Ke, T. Wang, W. Chen, Q. Ye, Z. Ma, T. Liu, A

communication-efficient parallel algorithm for decision tree, in: NIPS, 2016, pp.
1271–1279.

[41] C. Fan, P. Li, Classification acceleration via merging decision trees, in: FODS,
ACM, 2020, pp. 13–22.

[42] A.I. Weinberg, M. Last, Selecting a representative decision tree from an ensemble
of decision-tree models for fast big data classification, J. Big Data 6 (2019) 23.

[43] D. Loreti, M. Lippi, P. Torroni, Parallelizing machine learning as a service for
the end-user, Future Gener. Comput. Syst. 105 (2020) 275–286.

[44] W.M.P. van der Aalst, Distributed process discovery and conformance checking,
in: FASE, in: Lecture Notes in Computer Science, vol. 7212, Springer, 2012, pp.
1–25.

[45] D. Loreti, F. Chesani, A. Ciampolini, P. Mello, Distributed compliance monitoring
of business processes over MapReduce architectures, in: ICPE Companion, ACM,
2017, pp. 79–84.

[46] D. Loreti, F. Chesani, A. Ciampolini, P. Mello, A distributed approach to
compliance monitoring of business process event streams, Future Gener. Comput.
Syst. 82 (2018) 104–118.

[47] D. Loreti, A. Ciampolini, A distributed self-balancing policy for virtual machine
management in cloud datacenters, in: HPCS, IEEE, 2014, pp. 391–398.

[48] A. Srivastava, E. Han, V. Kumar, V. Singh, Parallel formulations of decision-tree
classification algorithms, Data Min. Knowl. Discov. 3 (3) (1999) 237–261.

[49] J. Dean, S. Ghemawat, MapReduce: simplified data processing on large clusters,
Commun. ACM 51 (1) (2008) 107–113.

[50] Y. Mu, X. Liu, Z. Yang, X. Liu, A parallel C4.5 decision tree algorithm based on
MapReduce, Concurr. Comput. Pract. Exp. 29 (8) (2017).

[51] Y. Mu, X. Liu, L. Wang, A Pearson’s correlation coefficient based decision tree
and its parallel implementation, Inform. Sci. 435 (2018) 40–58.

[52] W. Dai, W. Ji, A MapReduce implementation of C4.5 decision tree algorithm,
Int. J. Database Theory Appl. 7 (1) (2014) 49–60.

[53] B. Panda, J. Herbach, S. Basu, R.J. Bayardo, PLANET: Massively parallel learning
of tree ensembles with MapReduce, Proc. VLDB Endow. 2 (2) (2009) 1426–1437.

[54] S. Samsani, A comparative analysis on parallel implementations of decision tree
learning for large scale complex datasets in apache spark, Int. J. Creat. Res.
Thoughts 9 (5) (2021) 248–255.

[55] A. Segatori, F. Marcelloni, W. Pedrycz, On distributed fuzzy decision trees for
big data, IEEE Trans. Fuzzy Syst. 26 (1) (2018) 174–192.

[56] Y. Mu, X. Liu, L. Wang, J. Zhou, A parallel fuzzy rule-base based decision tree
in the framework of map-reduce, Pattern Recognit. 103 (2020) 107326.

[57] A. Nasridinov, Y. Lee, Y. Park, Decision tree construction on GPU: ubiquitous
parallel computing approach, Computing 96 (5) (2014) 403–413, http://dx.doi.
org/10.1007/S00607-013-0343-Z.

[58] D. Strnad, A. Nerat, Parallel construction of classification trees on a GPU,
Concurr. Comput. Pract. Exp. 28 (5) (2016) 1417–1436, http://dx.doi.org/10.
1002/CPE.3660.
322
[59] K. Jurczuk, M. Czajkowski, M. Kretowski, Evolutionary induction of a decision
tree for large-scale data: a GPU-based approach, Soft Comput. 21 (24) (2017)
7363–7379, http://dx.doi.org/10.1007/S00500-016-2280-1.

[60] K. Jurczuk, M. Czajkowski, M. Kretowski, GPU-accelerated evolutionary induc-
tion of regression trees, in: C. Martín-Vide, R. Neruda, M.A. Vega-Rodríguez
(Eds.), Theory and Practice of Natural Computing - 6th International Conference,
TPNC 2017, Prague, Czech Republic, December 18–20, 2017, Proceedings, in:
Lecture Notes in Computer Science, vol. 10687, Springer, 2017, pp. 87–99,
http://dx.doi.org/10.1007/978-3-319-71069-3_7.

[61] K. Jurczuk, M. Czajkowski, M. Kretowski, Fitness evaluation reuse for acceler-
ating GPU-based evolutionary induction of decision trees, Int. J. High Perform.
Comput. Appl. 35 (1) (2021) http://dx.doi.org/10.1177/1094342020957393.

[62] K. Jurczuk, M. Czajkowski, M. Kretowski, GPU-based acceleration of evolutionary
induction of model trees, Appl. Soft Comput. 119 (2022) 108503, http://dx.doi.
org/10.1016/J.ASOC.2022.108503.

[63] K. Jurczuk, M. Czajkowski, M. Kretowski, Adaptive in-memory representation of
decision trees for GPU-accelerated evolutionary induction, Future Gener. Comput.
Syst. 153 (2024) 419–430, http://dx.doi.org/10.1016/j.future.2023.12.003.

[64] K. Jurczuk, M. Czajkowski, M. Kretowski, Multi-GPU approach to global induc-
tion of classification trees for large-scale data mining, Appl. Intell. 51 (8) (2021)
5683–5700, http://dx.doi.org/10.1007/S10489-020-01952-5.

[65] V.G. Costa, S. Salcedo-Sanz, C.E. Pedreira, Efficient evolution of decision trees
via fully matrix-based fitness evaluation, Appl. Soft Comput. 150 (2024) 111045,
http://dx.doi.org/10.1016/j.asoc.2023.111045, URL: https://www.sciencedirect.
com/science/article/pii/S1568494623010633.

[66] F.S. Luan, S. Wang, S. Yagati, S. Kim, K. Lien, I. Ong, T. Hong, S. Cho, E. Liang, I.
Stoica, Exoshuffle: An extensible shuffle architecture, in: SIGCOMM, ACM, 2023,
pp. 564–577.

[67] S. Zhuang, Z. Li, D. Zhuo, S. Wang, E. Liang, R. Nishihara, P. Moritz, I. Stoica,
Hoplite: efficient and fault-tolerant collective communication for task-based
distributed systems, in: SIGCOMM, ACM, 2021, pp. 641–656.

[68] G. Cortesi, Design, Implementation and Evaluation of Parallel Solutions for
a Nested Explainability Algorithm (Master thesis), University of Bologna,
Informatics and Engineering Department, 2023.

[69] J.H. Friedman, Multivariate adaptive regression splines, Ann. Statist. 19 (1)
(1991) 1–67.

[70] L. Breiman, Bagging predictors, Mach. Learn. 24 (1996) 123–140.
[71] M.D. Hill, What is scalability? SIGARCH Comput. Archit. News 18 (4) (1990)

18–21.
[72] R. Mitchell, E. Frank, G. Holmes, GPUTreeShap: massively parallel exact calcu-

lation of SHAP scores for tree ensembles, PeerJ Comput. Sci. 8 (2022) e880,
http://dx.doi.org/10.7717/PEERJ-CS.880.

[73] N. Pilkington, H. Zen, An implementation of decision tree-based context
clustering on graphics processing units, in: INTERSPEECH, ISCA, 2010, pp.
833–836.

[74] T. Sharp, Implementing decision trees and forests on a GPU, in: ECCV (4), in:
Lecture Notes in Computer Science, vol. 5305, Springer, 2008, pp. 595–608.

[75] B. Ren, S. Balakrishna, Y. Jo, S. Krishnamoorthy, K. Agrawal, M. Kulkarni,
Extracting SIMD parallelism from recursive task-parallel programs, ACM Trans.
Parallel Comput. 6 (4) (2019) 24:1–24:37.

Daniela Loreti is junior assistant professor of Operating Sys-
tems at Department of Computer Science and Engineering,
University of Bologna. She received her Ph.D. in Computer
Science in 2016. Her research focuses on distributed systems
for big data management and stream processing as well as
parallel paradigms for high performance computing. She is
also interested in the parallelization of artificial intelligence
techniques in the fields of machine learning, process mining
and expert systems.

Giorgio Visani currently works as a Researcher in the Arti-
ficial Intelligence group at University of Bologna. After B.Sc.
and M.Sc. in Statistics, he took on Ph.D. in Data Science in
the hometown university. He has been visiting researcher at
Universitè Libre de Bruxelles and University of Sydney, with
whom he has active collaborations. His research interests
lie in Explainable Machine Learning, Causal Inference and
blending together Causality with Machine Learning, Data
Generation and Assessment of their quality.

http://refhub.elsevier.com/S0167-739X(24)00185-7/sb28
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb28
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb28
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb28
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb28
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb29
http://dx.doi.org/10.1016/B978-0-444-81837-9.50021-X
http://dx.doi.org/10.1016/B978-0-444-81837-9.50021-X
http://dx.doi.org/10.1016/B978-0-444-81837-9.50021-X
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb31
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb31
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb31
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb31
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb31
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb32
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb32
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb32
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb33
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb33
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb33
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb33
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb33
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb34
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb34
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb34
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb34
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb34
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb35
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb35
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb35
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb36
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb36
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb36
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb37
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb37
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb37
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb37
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb37
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb38
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb38
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb38
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb39
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb40
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb40
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb40
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb40
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb40
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb41
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb41
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb41
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb42
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb42
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb42
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb43
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb43
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb43
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb44
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb44
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb44
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb44
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb44
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb45
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb45
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb45
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb45
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb45
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb46
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb46
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb46
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb46
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb46
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb47
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb47
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb47
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb48
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb48
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb48
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb49
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb49
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb49
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb50
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb50
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb50
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb51
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb51
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb51
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb52
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb52
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb52
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb53
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb53
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb53
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb54
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb54
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb54
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb54
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb54
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb55
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb55
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb55
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb56
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb56
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb56
http://dx.doi.org/10.1007/S00607-013-0343-Z
http://dx.doi.org/10.1007/S00607-013-0343-Z
http://dx.doi.org/10.1007/S00607-013-0343-Z
http://dx.doi.org/10.1002/CPE.3660
http://dx.doi.org/10.1002/CPE.3660
http://dx.doi.org/10.1002/CPE.3660
http://dx.doi.org/10.1007/S00500-016-2280-1
http://dx.doi.org/10.1007/978-3-319-71069-3_7
http://dx.doi.org/10.1177/1094342020957393
http://dx.doi.org/10.1016/J.ASOC.2022.108503
http://dx.doi.org/10.1016/J.ASOC.2022.108503
http://dx.doi.org/10.1016/J.ASOC.2022.108503
http://dx.doi.org/10.1016/j.future.2023.12.003
http://dx.doi.org/10.1007/S10489-020-01952-5
http://dx.doi.org/10.1016/j.asoc.2023.111045
https://www.sciencedirect.com/science/article/pii/S1568494623010633
https://www.sciencedirect.com/science/article/pii/S1568494623010633
https://www.sciencedirect.com/science/article/pii/S1568494623010633
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb66
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb66
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb66
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb66
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb66
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb67
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb67
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb67
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb67
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb67
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb68
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb68
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb68
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb68
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb68
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb69
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb69
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb69
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb70
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb71
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb71
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb71
http://dx.doi.org/10.7717/PEERJ-CS.880
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb73
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb73
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb73
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb73
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb73
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb74
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb74
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb74
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb75
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb75
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb75
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb75
http://refhub.elsevier.com/S0167-739X(24)00185-7/sb75

	Parallel approaches for a decision tree-based explainability algorithm
	Introduction
	Background on GLEAMS
	Related work on Explainability
	GLEAMS sequential implementation

	Literature review on parallel decision tree learning algorithms
	Parallelizing GLEAMS
	Ray programming paradigm
	GLEAMS on Ray
	Parallelization of the best-split point computation
	Parallelization of the tree's structure
	Combining the two parallelization strategies

	Performance Evaluation
	Experimental setup
	Evaluation approach
	Results

	Conclusion and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A. Supplementary data
	References

