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Abstract
Logic programming and its variations are widely used for formal reasoning in various areas of
Computer Science, most notably Artificial Intelligence. In this paper we develop a systematic
and unifying perspective for (ground) classical, probabilistic, weighted logic programs, based on
categorical algebra. Our departure point is a formal distinction between the syntax and the semantics
of programs, now regarded as separate categories. Then, we are able to characterise the various
variants of logic program as different models for the same syntax category, i.e. structure-preserving
functors in the spirit of Lawvere’s functorial semantics.

As a first consequence of our approach, we showcase a series of semantic constructs for logic
programming pictorially as certain string diagrams in the syntax category. Secondly, we describe
the correspondence between probabilistic logic programs and Bayesian networks in terms of the
associated models. Our analysis reveals that the correspondence can be phrased in purely syntactical
terms, without resorting to the probabilistic domain of interpretation.
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1 Introduction

Logic programming is a programming paradigm widely used for knowledge representation
in Artificial Intelligence and related fields. In “classical” logic programming, at the basis
of formalisms such as Prolog [8] and Datalog [9], programs are sets of Horn clauses, of the
form A← B1, B2, . . . , Bn. However, in the last two decades, various extensions and variants
of logic programming emerged in order to handle non-classical reasoning, in which clauses
may be associated with a probability or a weight, resulting in a different semantics. These
approaches include probabilistic logic programming ([35], Problog [13], PRISM [36], CP-logic
[31], PASP [12]) and weighted logic programming [15]. Seemingly different formalisms, such
as Bayesian networks, also turn out to be closely related [31].

The main goal of this work is to develop a systematic, unifying framework for the different
families of logic programming languages, in which their similarities and differences can be
analysed algebraically using the abstract perspective of category theory.

Our approach is based on a simple, yet fruitful insight: a formal distinction between
the syntax and the semantics of logic programs. This “separation of concerns” has the
benefit of clearly isolating the purely inferential structure underlying a program (syntax) from
its “type” (classical, probabilistic, or weighted, expressed by the semantics). Our guiding
principle is the perspective of functorial semantics, as pioneered by Lawvere [29], in which
one encodes an algebraic theory as a category Syn of “syntactic” morphisms (tuples of terms),
and then studies models of the theory as functors from Syn – the requirement that such
functors preserve finite products makes them adhere to the usual notion of model in universal
algebra. In analogy, from a logic program P we will freely generate a category SynLP of
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17:2 Functorial Semantics as a Unifying Perspective on Logic Programming

string diagrams [37], capturing the inferential structure of P as (graphical) syntax. Then, we
consider models of SynLP, i.e. structure-preserving functors into other categories, acting as
semantic domains of interpretation.

Our main conceptual contribution is the realisation that the different flavours of logic
program (classical, probabilistic and weighted) amount to different classes of models of the
same syntax category.

This perspective has various consequences. As the syntax is expressed as a freely generated
category of string diagrams, not only it includes the clauses of the program as morphisms,
but it allows to combine them into more elaborated representations. This provides much
flexibility in expressing various kinds of semantic constructs, which may be observed in the
image of the models/functors. We use this observation to provide a string diagrammatic
description of semantics commonly found in the logic programming literature, such as the
immediate consequence operator, the Herbrand semantics, and the stratified semantics, see
e.g. [17, 3, 18, 38], as well as the distribution semantics of probabilistic programs, and the
standard semantics of weighted programs.

Another payoff of our approach is providing an original perspective on the correspondence
between probabilistic logic programs and Bayesian networks. It is a folklore result (cf. [31])
that the two formalisms can be translated one into another, modulo some caveats. In the
context of our framework, we take advantage of the fact that Bayesian networks are also
susceptible of a description in terms of functorial semantics, see [16, 22], and study their
correspondence with probabilistic programs in terms of the associated models. Again, the
distinction between syntax and semantics provides a valuable insight: it turns out that the
correspondence can be entirely expressed at the level of the syntax categories – in contrast
with traditional approaches, where it involves a mixture of transformations between graphs,
programs, and conditional probabilities. Furthermore, thanks to the use of string diagrams,
both the combinatorial structure of Bayesian networks (directed acyclic graphs) and the
syntax of probabilistic programs can be expressed uniformly as entities of the same kind.

Synopsis. Section 2 is for preliminaries. We introduce the syntax category and present the
functorial semantics of classical logic programming in Section 3. We then consider probabilistic
logic programming in Section 4, and study the correspondence with Bayesian networks at a
functorial level. Section 5 briefly illustrates the case of weighted logic programming. Section 6
is devoted to future work. Missing proofs may be found in Appendix B.

2 Preliminaries

Logic programming. We briefly recall the basics of logic programming, and refer to [33] for
more details. Throughout this paper we focus on ground logic programming, i.e. in which
programs have no variables. A logic program (LP) P based on a set of atoms At is a finite set
of clauses φ of the form A← L1, . . . , Lm., where A is an atom and each Li is a literal (an
atom B or a negated atom ¬B). The atom A and the set of literals {L1, . . . , Lm} are called
the head (denoted as head(φ)) and the body (denoted as body(φ)) of the clause, respectively.
A clause is definite if all the literals in its body are positive (namely atoms), and P is definite
if all its clauses are definite. We write P′ ⊆ P to mean that P′ is a sub-program of P, and
P(P) for the set of all sub-programs of P.

An interpretation I is a subset of At, and it is a model of P if for all φ ∈ P, body(φ) ⊆ I
implies head(φ) ∈ I. A literal L is true in I, denoted as I ⊨ L, if either L=B and B ∈ I,
or L=¬B and B ̸∈ I, for some B ∈ At. Suppose X is a set of literals, we define I ⊨ X
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if I ⊨ L for all L ∈ X. There is an inclusion ordering on models, and every definite logic
program P has a least model (referred to as its least Herbrand semantics), denoted as H(P).
Least models of definite logic programs can also be characterised as the least fixed points
of immediate consequence operators. The immediate consequence operator TP associated
to a logic program P with atom set At is a function P(At) → P(At) such that for any
interpretation I, TP(I) := {A | ∃ψ ∈ P such that head(ψ) = A and I ⊨ body(ψ)}.

Note that arbitrary, non-definite logic programs may not have a least model. There
are various alternative denotational semantics, including stratified semantics [3, 30], stable
semantics [18], well-founded semantics [38]. We recall the stratified semantics from [3]. Given
a LP P, the definition of an atom A is the sub-program def (A) := {φ ∈ P | head(φ) = A}. P
is stratified if there exists a partition At1, . . . ,Atk (called a stratification) of At such that,

If there exists Pi-clause φ such that ¬B ∈ body(φ), then def (B) only contains atoms in⋃
j<i Atj .

If there exists Pi-clause φ such that B ∈ body(φ), then def (B) only contains atoms in⋃
j≤i Atj .

where P1, . . . ,Pk is the partition of P induced by the stratification: each Pi is {φ ∈ P |
head(φ) ∈ Ati}. Then the stratified model S(P) of P is defined as S(P) = ∪k

i=1Mi, where
Mi := H(Qi), and each Qi is obtained by (1) deleting all the Pi clauses whose bodies contain
some literals false in ∪j<iMj , and (2) in the remaining clauses, delete all the literals not
in Ati and the negated literals. Importantly, the stratified semantics is independent of the
choice of a specific stratification.

Probabilistic logic programming. A probabilistic logic program (PLP) P is a set of probab-
ilistic clauses ψ of the form p :: φ, where p ∈ (0, 1] is a real number, and φ is a clause. p is
called the (probabilistic) label of clause ψ, denoted as Lab(ψ). By forgetting the labels in P,
we obtain the pure logic program |P| of P.

We will use the “bra-ket” (or Dirac) notation for probability distributions, e.g. 0.7|a⟩+
0.3|b⟩ is the distribution on {a, b} assigning probability 0.7 to a and 0.3 to b. We recall the dis-
tribution semantics. A PLP P determines a probability distribution µP over the sub-programs
of |P|: for any L ⊆ |P|, µP(L) :=

(∏
φ∈L Lab(φ)

)
·
(∏

φ∈|P|\L (1− Lab(φ))
)

. If P is acyclic, µP

allows to compute the probability that a given goal is proved. The success probability πP(L̄)
(or simply probability) of a goal L̄ = L1∧· · ·∧Lm is

∑
{µP(L) | L ⊆ |P|,S(L) ⊨ L1, . . . , Lm}.

The distribution δP(Ā) of a set of atoms Ā = {A1, . . . , Am} over its interpretations is thus
defined as

∑
Li∈{Ai,¬Ai} πP(L1 ∧ · · · ∧ Lm)|L1, . . . , Lm⟩.

▶ Example 1. The PLP program Pwet below describes how the season affects the probability
of raining and a sprinkler to leak, which cause the grass to be wet and the road to be slippery.

0.25 :: Winter ← . (ψ1) 0.9 :: WetGrass ← Sprinkler. (ψ5)
0.2 :: Sprinkler ← Winter. (ψ2) 0.8 :: WetGrass ← Rain. (ψ6)
0.6 :: Rain ← Winter. (ψ3) 0.7 :: SlipperyRoad ← Rain. (ψ7)
0.1 :: Rain ← ¬Winter. (ψ4) 0.1 :: SlipperyRoad ← ¬Rain. (ψ8)

If we forget about all the probabilistic labels, then we get a logic program |Pwet|. For instance,
we can calculate the success probability πPwet(Winter ∧ WetGrass) = 0.1434.

Weighted Logic Programming. A weighted logic program (WLP) P based on an ω-complete
commutative semiring K = ⟨K,+, · ,0,1⟩ is a finite set of weighted clauses φ of the form
w :: A ← B1, · · · , Bk., where w ∈ K is the weight label of the clause (denoted as lab(φ)).

CALCO 2021



17:4 Functorial Semantics as a Unifying Perspective on Logic Programming

We also assume that K is a complete lattice under the ordering “x ⪯ y if ∃u ∈ K such that
x+ u = y”. Given atoms At = {A1, . . . , An}, for each Ai, let KAi

be a copy of K standing
for the values of atom Ai, and we write KAi

as {wAi
| w ∈ K}. A weight state is a tuple

u ∈ KA1 × · · · × KAn , and its i-th component is referred to as u(Ai).
The semantics of WLP assigns weights to atoms that are defined as the least fixed

point of a weighted variant Tw of the immediate consequence operator for classical logic
programs [15]. Given a WLP program P with atom set {A1, . . . , An}, Tw

P is a function
KA1 × · · · × KAn

→ KA1 × · · · × KAk
such that for each weight state u, the i-th component

of Tw
P (u) is

∑
{lab(φ) ·u(B1) · · · · ·u(Bk) | φ ∈ P, head(φ) = Ai, body(φ) = {B1, . . . , Bk}}.

The weight weightP(Ai) of Ai is then the i-th component of the least fixed point of Tw
P ,

which exists because Tw
P is a monotonic function on an ω-complete lattice KA1 × · · · × KAn

.

▶ Example 2. The semiring Ksp = ⟨N∪{+∞},min,+,+∞, 0⟩ is a fragment of the “min-plus”
tropical semiring, used for shortest path problems. Consider the WLP program Psp consisting
of all the grounding of the clauses below left in (1), which describes the reachability condition
of the weighted directed graph D below right in (1). Then the answer to the shortest path
from the initial state to a state x can be calculated by the weight of reachable(x) in Psp.
For instance, weightPsp

(reachable(b)) = 9, which is the least path weight from a to b in D.

0 :: initial(a) ← . 10 :: edge(a, b) ← .

4 :: edge(a, c) ← . 3 :: edge(b, c) ← .

5 :: edge(c, b) ← . 2 :: edge(c, c) ← .

0 :: reachable(x) ← initial(x).
0 :: reachable(x) ← reachable(y), edge(y, x).

a

10
��

4

��
b

3
66 c

5ww
2

zz (1)

Bayesian networks. We will explore the relationship between PLP and Bayesian networks
(BN), which we briefly recall. A Bayesian network B on a set A1, A2, . . . Ak of variables (finite
sets) is a pair (G,Pr). Here G is a directed acyclic graph (DAG) (VG, EG), where VG =
A1, A2, . . . Ak. The second component Pr is a family {Pr(A | pa(A))}A∈VG of conditional
probability distributions, where pa(A) is the set of predecessors of A according to EG, and
the distribution Pr(A | pa(A)) assigns a probability to each element in the set A. We say
that BN is boolean-valued when each variable A is a two-element set, which we write {A,¬A}
with slight abuse of notation (meaning “A is true”, “A is false”).

CDMU and CD categories. We will formulate both the syntax and the semantics of logic
program in terms of categories, equipped with the structure of a CDMU category. A CDMU
category (for copy, discard, multiplication, unit) is a symmetric monoidal category ⟨C,⊗, I⟩
where each object C has a copier C : C → C ⊗C, a discarder C : C → I, a multiplication

C : C ⊗C → C, and a unit C : I → C – which we will often write omitting C, when clear
from the context. These operations are required to satisfy the following set of equations:

= = = =

= = = =
(2)

In words, there are a commutative comonoid ( , ) and a commutative monoid ( , ).
Moreover, the four operations are required to be compatible with the tensor structure on C,
in the expected way. A CDMU functor between two CDMU categories is a strong symmetric
monoidal functor that also preserves the commutative comonoid and monoid structures. We
will often use the construction of the free CDMU category freeCDMU(X,Σ) over a generating
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set X of objects and a generating set Σ of morphisms: the objects are finite lists [x1, . . . , xn]
over X (including the empty list [ ]), and the morphisms are string diagrams [37] freely
obtained by composing morphisms in Σ together with , , , , modulo the equations
in (2).

When describing Bayesian networks, we will also need to refer to CD categories. These are
defined in the same way as CDMU categories, but without the multiplications C : C⊗C → C

and units C : I → C. We write freeCD(X,Σ) for the free CD category over objects X and
morphisms Σ. See [22] and Appendix A for background on how CD categories relate to BNs.

3 Classical Logic Programming

In this section we introduce a functorial semantics of classical logic programs, which culmin-
ates in Proposition 5 below. Our starting point is a conceptual distinction between the syntax
and the semantics of a logic program. In Subsection 3.1 we introduce the syntax category
of string diagrams for a given logic program P, which will also be used in Sections 4 and 5
for the probabilistic and the weighted case. Next, in Subsection 3.2 we provide a semantics
category, and identifies logic programs with certain models – structure-preserving functors
from the syntax category to the semantics category. Finally, in Subsection 3.3 we describe
some well-known semantics (immediate consequence operator, least Herbrand semantics,
stratified semantics) of logic programs as images of specific string diagrams in the syntax,
under the functorial interpretation. This perspective will provide an original, diagrammatic
representation for such semantic constructs.

3.1 Syntax Category
Every logic program P has an underlying definite logic program [P] describing the purely
inferential structure of P – where, intuitively, we disregard information about probabilities,
weights, and negated clauses. [P] is what is commonly used in the definition of the dependency
graph of P [3], which describes the dependency relation between atoms in P, and plays a
key role in the definition of stratified logic programs [3]. To incorporate this step in our
approach, first we define a “forgetful” function τgen (resp. τpr, τwt) from arbitrary (classical,
probabilistic, or weighted) clauses to definite clauses as follows:

τgen : A ← B1, ..., Bk,¬C1, ...,¬Cℓ. 7→ A← B1, ..., Bk, C1, ..., Cℓ.

τpr : p :: A ← B1, ..., Bk,¬C1, ...,¬Cℓ. 7→ A← B1, ..., Bk, C1, ..., Cℓ.

τwt : w :: A ← B1, ..., Bk. 7→ A← B1, ..., Bk.

In words, τ forgets the quantitative labels and the negation. The definite logic program [P] is
defined as the image of P under the appropriate τ , namely [P] := {τ(φ) | φ ∈ P}. We say P is
based on [P], or [P] is the underlying program of P. Note that, if we read A← B1, . . . , Bk. as
“nodes B1, . . . , Bk are parents of A”, [P] defines exactly (the components of) the dependency
graph of P – cf. [3]. Observe that there may exist distinct clauses in P that have the same
image under τ , so the size of [P] is less or equal to that of P.

▶ Example 3. Recall Pwet from Example 1. The underlying definite logic program [Pwet] is

Winter ← . (φ1) WetGrass ← Sprinkler. (φ4)
Sprinkler ← Winter. (φ2) WetGrass ← Rain. (φ5)
Rain ← Winter. (φ3) SlipperyRoad ← Rain. (φ6)

For instance, τpr(ψ3) = τpr(ψ4) = (Rain← Winter.) = φ3.

CALCO 2021



17:6 Functorial Semantics as a Unifying Perspective on Logic Programming

Given a definite logic program L on At, we construct a CDMU category SynLPL which
encodes the inferential structure represented by L. We define SynLPL as the free CDMU
category freeCDMU(At,ΣL) (cf. Section 2), where the set ΣL of generating morphisms
consists of one string diagram for each clause in L:

ΣL :=
{

... φ
B1

Bm
A

∣∣∣ φ ≡ A← B1, . . . , Bm. is a clause in L
}

(3)

With some abuse of notation, we use φ to refer to both a clause and its corresponding
string diagram in ΣL. We choose to work with CDMU categories because their equations
subsume structure that is always present in logic programs. For example, = and

= reflect the intuition that there is no ordering on the (possibly multiple) clauses
in which an atom may appear; = = says that generating two occurrences of the
same atom and then disregarding one is the same as just working with a single occurrence.

SynLPL will act as the syntax category for all P such that [P] = L. We will identify logic
programs based on L with functors from SynLPL to some appropriate “semantics categories”,
which will vary depending on whether the program is classical, probabilistic, or weighted.

3.2 Functorial Semantics of LP
In this subsection we introduce a categorical semantics for classical logic programming, and
characterise logic programs as functors to this semantics.

For the classical case, the semantics domain will be the category Set(2) defined as follows.
Objects of Set(2) are finite products 2A1 × · · · × 2An , where each 2Ai is a two-element
Boolean algebra, which we write {Ai,¬Ai}, with Ai > ¬Ai, to emphasise that the two
elements will be treated as an atom and its negation. In particular, the singleton set 1 = {∗}
is the 0-ary product. Morphisms in Set(2) are simply functions between the underlying sets.

We write ∨, ∧, (·)− for the standard Boolean algebra operations. Note every Set(2)-object
is itself a finite Boolean algebra, with the operations defined pointwise.

Given a classical logic program P with underlying definite program L := [P], we may
associate P with a functor J−KP : SynLPL → Set(2) defined as follows. On objects, J−KP
maps A ∈ At to 2A = {A,¬A}. On morphisms, the CDMU structure is interpreted as

J AKP : 2A→ 2A × 2A

x 7→ (x, x)
J AKP : 2A→ 1

x 7→ ∗
J AKP : 2A × 2A→ 2A

(x, y) 7→ x ∨ y
J AKP : 1→ 2A

∗ 7→ ¬A.

For each L-clause φ ≡ A ← B1, . . . , Bm., JφKP maps u ∈ 2B1 × · · · × 2Bm to A if u as an
interpretation (cf. Sec. 2) satisfies u ⊨ body(ψ) for some ψ ∈ P with τgen(ψ) = φ, and to ¬A
otherwise.

Note that, in order for J−KP to be well-defined, the semantic domain Set(2) should also
satisfy the CDMU equations – see Lemma 27 in Appendix B for a proof.

▶ Example 4. The clause ψ ≡ A← B1,¬B2. is associated with the definite clause φ ≡ A←
B1,¬B2., and it gets interpreted as a function JφK : 2B1 × 2B2 → 2A mapping (B1,¬B2)
to A and (B1, B2) to ¬A. Incidentally, note this is not a boolean function, as for instance
(B1,¬B2) ∨ (B1, B2) = (B1, B2) but JφK (B1,¬B2) ∨ JφK (B1, B2) ̸= JφK (B1, B2).

The next proposition formally states the correspondence characterising the functorial
semantics of LP. In there, we call generator-preserving a functor C→ D that maps generating
objects of C to generating objects of D (assuming objects of the two categories are freely
obtained from a set of generators). In our case, C = SynLPL, D = Set(2) and the requirement
ensures that a functor maps each atom A ∈ At, seen as object of SynLPL, to a two-element
Boolean algebra 2, which we write 2A = {A,¬A} to emphasise this correspondence.
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▶ Proposition 5. There is a 1-1 correspondence between logic programs based on L and
generator-preserving CDMU functors of type SynLPL → Set(2).

Echoing the terminology of Lawvere’s functorial semantics [29], we will refer to the functors
as in Proposition 5 simply as models in Set(2) of the syntactic theory SynLPL.

3.3 A Gallery of diagrammatic representations of semantic constructs
A pleasant outcome of the functorial semantics is the possibility of capturing some well-known
semantic approaches to logic programs using the diagrammatic language. More precisely,
we will study string diagrams in the syntax category whose images under the model are the
semantics we are interested in. We shall discuss three of them: the immediate consequence
operator, the least Herbrand semantics, and the stratified semantics.

Immediate consequence operator
We begin with the immediate consequence operator T (cf. Section 2), a basic yet fundamental
concept beneath many denotational semantics of logic programs [17, 3, 18, 38]. Let us fix
a logic program P with atoms At = {A1, . . . , An} and L := [P]. Intuitively, given an
interpretation I, TP(I) is the set of atoms derivable from the set I of “assumptions” using
each P-clause exactly once, in parallel. Note that TP is not extensive, in the sense that A ∈ I
does not imply A ∈ TP(I). Also, note there is a canonical isomorphism between P(At) and
2A1 × · · · × 2An , which we will exploit to formulate the operator as a morphism in Set(2).

▶ Example 6. We consider an example from [18]. The atom set Atpq consists of p(1, 1),
p(1, 2), p(2, 1), p(2, 2), q(1), q(2), and the program Ppq contains the following six clauses:

ψ1 ≡ p(1, 2)← . ψ3 ≡ q(1)← p(1, 1),¬q(1). ψ5 ≡ q(2)← p(2, 1),¬q(1).
ψ2 ≡ p(2, 1)← . ψ4 ≡ q(1)← p(1, 2),¬q(2). ψ6 ≡ q(2)← p(2, 2),¬q(2).

Then TPpq
is a function P(Atpq) → P(Atpq) which, for instance, maps both ∅ and

{p(1, 2), q(2)} to {p(1, 2), p(2, 1)}, and maps {p(1, 2)} to {p(1, 2), p(2, 1), q(1)}.

We can express TP via our diagrammatic language by putting side-by-side all the generating
morphisms in ΣL, one for each clause.

▶ Proposition 7. The following string diagram t[P] (in SynLP[P]) satisfies
q
t[P]

y
P = TP.

...

An
An

...A1 A1φ1

...

φN

... ...
...σ1 σ2

...

(4)

The left and the right ports both consist of all the atoms A1, . . . , An in At. For each Ai,
suppose there are ki-many clauses whose bodies include Ai and ℓi-many clauses whose heads
are Ai. We make ki copies (via in the left-most box) and ℓi cocopies (via in the
right-most box) of Ai. The middle box contains the parallel composition of all L-clauses
φ1, . . . , φN . In the two σi-boxes, we have suitably many swapping morphisms to match
each copy/cocopy of Ai with an input/output wire Ai in the middle box.

CALCO 2021



17:8 Functorial Semantics as a Unifying Perspective on Logic Programming

▶ Example 8. The underlying definite program of Ppq in Example 6 consists of six definite
clauses:

φ1 ≡ p(1, 2)← . φ3 ≡ q(1)← p(1, 1), q(1). φ5 ≡ q(2)← p(2, 1), q(1).
φ2 ≡ p(2, 1)← . φ4 ≡ q(1)← p(1, 2), q(2). φ6 ≡ q(2)← p(2, 2), q(2).

These clauses also constitute the set of generating morphisms ΣPpq of SynLPPpq
. Then the

corresponding string diagram t[Ppq ] for TPpq
is:

p(2, 2)
p(2, 1)

q(1)

q(2)

φ3

φ5

p(1, 1)
p(1, 2)

φ4

φ6

p(2, 2)

p(2, 1)

q(1)

q(2)

p(1, 1)
p(1, 2)φ1

φ2

Interlude: traced extension
The last two semantic constructs we will consider are fixed point-style semantics: to provide
the same kind of analysis as for the immediate consequence operator, we need to mildly
extend our string diagrammatic language to include ‘feedback wires’ (called traces), and also
extend the semantic category accordingly. The full picture of this extension is in (5) below.
▶ Remark 9. We purposefully choose not to include traces in the “basic” syntax category
(Sec. 3.1), as we consider fixed points a feature specific to certain semantic constructs, rather
than a primitive construction of logic program syntax. Also, note that traces are not required
for our next developments in case one restricts attention to acyclic programs. This is mostly
evident in the probabilistic case, where the distribution semantics is only defined for acyclic
programs, and indeed the modelisation only uses the basic syntax, without traces.

We briefly recall traced categories, referring to [2] for full details. Recall that a symmetric
monoidal category ⟨C,⊗, I⟩ is traced if it is equipped with a natural family of functions
TrX

A,B(f) : C(X ⊗ A,X ⊗ B) → C(A,B) satisfying certain compatibility conditions [2].

In string diagrams, TrX
A,B(f) is depicted as f

A B
. We will use the free construction

freeTrCDMU(X,Σ) of a traced CDMU category: the objects are finite lists over X, the
morphisms are obtained as string diagrams in freeCDMU(X,Σ) plus the possibility of adding
feedback loops, modulo the axioms for traced categories (cf. [1] for a detailed definition).
The syntax category for P is defined as freeTrCDMU(At,ΣL), where L = [P]. As for the
semantics categories, we move to the category Rel(2) whose objects are the same as Set(2)
and morphisms A→ B are relations R ⊆ A×B. The CDMU structure on Rel(2) consists
of the graphs of that on Set(2). In fact, Rel(2) is a compact closed category – where we let
the cartesian product act as the monoidal product – and thus equipped with a canonical
traced structure (inherited from the category of relations).

Each logic program P uniquely determines a traced CDMU functor J−KTr
P , inductively

defined on the generating morphisms as follows: for every trace-free string diagram f , JfKTr
P

is the relation describing the graph of the function JfKP; for traced diagrams, given fA B
X X ,

s
f

A B

{Tr

P
is {(a, b) ∈ JAKTr

P × JBKTr
P | ∃x ∈ JXKTr

P : ((x, a), (x, b)) ∈ JfKTr
P }.
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The relationship between J−KP and J−KTr
P can be summarised as the commutative square

(5), where i identifies SynLPL as a subcategory of SynLPTr
L , and ι maps a function to its

graph.

SynLPTr
L J−KTr

P
++

SynLPL
J−KP

++

i 33

Rel(2)
Set(2) ι

33 (5)

Herbrand semantics
The importance of the immediate consequence operator TP lies in that it performs the
single “iteration step” in various denotational semantics of logic programs. For definite logic
programs, the least models are precisely the least fixed points of the immediate consequence
operator, which exist because the operators are monotonic on the complete lattice P(At).
This suggests that one can express the least Herbrand model H (cf. Section 2) simply as
immediate consequence operator plus “feedback wires”.

▶ Proposition 10. Suppose P is definite. The string diagram h[P] in Syncb
[P] defined in (6)

expresses the least Herbrand model of P, in the sense that H(P) = min
q
h[P]

yTr
P , where the

box is (4).

An

A1
...

...t[P] (6)

Observe that, even though the least Herbrand model is just one element of
q
h[P]

yTr
P in

(6), as a whole
q
h[P]

yTr
P still expresses a well-known semantic concept, namely the set of

supported models of the logic program P. An interpretation I is a model of P if for each
P-clause ψ, I ⊨ body(ψ) implies head(ψ) ∈ I; it is supported if for each A ∈ I, there exists
some P-clause ψ such that head(ψ) = A and I ⊨ body(ψ). Note that supported models are
exactly the fixed points of TP [33]. It then follows immediately that the string diagram h[P]

(6) expresses the supported models of P:
q
h[P]

yTr
P = {I | I is a supported model of P}.

Stratified semantics
We move on to the case of stratified semantics of stratified logic programs (cf. Section 2).
Suppose program P is stratified, where At1, · · · ,Atk is a stratification of At, and P1, . . . ,Pk

is the associated partition of P. The idea of stratification is to turn P1, . . . ,Pk into definite
logic programs whose least models together form a model of the original program P. As
recalled in Section 2, this is achieved by observing that P1 is always definite by definition,
and Pi for i > 1 can be turned into a definite program using the least models for the definite
programs of {Pj}j<i. This idea suggest the construction of a string diagram representing
stratified semantics in a layer-by-layer style: the output wires of all {h[Pj ]}j<i (defined in
Proposition 10) will serve as inputs of h[Pi]. For the sake of clarity, rather than detailing the
fully general case of this construction, we believe it is best illustrated via an example.

▶ Example 11. Consider the program O consisting of clauses ψ1 ≡ p← p, ψ2 ≡ q ← ¬p and
ψ3 ≡ r ← r,¬q. One stratification is P1 = {p}, P2 = {q}, P3 = {r}, whose corresponding
partition of O is O1 = {p ← p.}, O2 = {q ← ¬p.}, O3 = {r ← r,¬q.}. Let φi be τgen(ψi),
for i = 1, 2, 3.
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17:10 Functorial Semantics as a Unifying Perspective on Logic Programming

The string diagram s[O] below expresses the stratified model {q} of O, in the sense that
the stratified model is the least element under the lexicographical order in

q
s[O]

y
O: for any

(ip, iq, ir) ∈
q
s[O]

y
O, there are three possibilities, either ¬p ≤ ip, or ¬p = ip and q ≤ iq, or

¬p = ip, q = iq and ¬r ≤ ir.

p
qφ1

p

φ2 r
φ3

q

r

4 Probabilistic Logic Programming

In this section we turn to probabilistic logic programming (PLP). We first give the functorial
semantics of PLP in Section 4.1. Next we discuss a pictorial representation of distribution
semantics, in Section 4.2. A benefit of the diagrammatic representation of PLP syntax as
string diagrams is that the correspondence with a closely related formalism, namely Bayesian
networks (BNs), become more apparent: we explore this in Section 4.3, where we show the
equivalence between boolean-valued BNs and acyclic PLP and illustrate their relationship
with functors between the corresponding categories.

For PLP, the separation of syntax and semantics into different categories provides two
main insights: first, we are able to define PLP programs as models of the same syntax
category as LP programs, thus formalising the intuition that the difference between the two
formalisms is only at the semantics level. Second, in order to formalise the correspondence
between PLP programs and boolean-valued BNs, we only need to act on the syntactic
categories for the two formalisms, thus showing that the two rely on the same semantic layer,
and differ in how this is described by syntactic/combinatorial structures.

4.1 Functorial Semantics of PLP
Throughout this section we fix an acyclic definite logic program L. To be precise, by “L
being acyclic” we mean that there is no finite sequence of L-clauses φ0, . . . , φm such that
head(φi+1) ∈ body(φi) for all i = 0, . . . ,m − 1, and head(φ0) ∈ body(φm). Our goal is to
provide for PLP a functorial semantics characterisation analogous to the one of Proposition 5.
As mentioned above, we will use the same syntax category as for LP, introduced in Section
3.1. What differs is the semantics category, which we now introduce. Intuitively, it amounts
to switching from boolean-valued functions to their probabilistic counterpart.

▶ Definition 12. The category Stoch(2) is defined as having the same objects as Set(2),
and morphisms the functions of the form f : 2A1 × · · · × 2Ak

→ D(2B1 × · · · × 2Bm
), where

D(2B1×· · ·×2Bm) is the set of probability distributions on 2B1×· · ·×2Bm . Given morphisms
f : X → D(Y ) and g : Y → D(Z), their composition g◦f assigns to each x ∈ X a distribution∑

z∈Z

(∑
y∈Y f(x)(y) · g(y)(z)

)
|z⟩.

Equivalently, Stoch(2) is the full subcategory of Stoch (the category of stochastic matrices)
whose objects are those of Set(2). Also, Stoch is the same as the Kleisli category for the
distribution monad, so we may regard composition in Stoch(2) simply as Kleisli composition.

Given a PLP P with [P] = L, we define a functor J−KP : SynLPL → Stoch(2) as follows.
On objects, J−KP maps A ∈ At to 2A. On morphisms, for the CDMU structure we define

J AKP : 2A→2A × 2A

x 7→ 1|(x, x)⟩
J AKP : 2A→1

x 7→1|∗⟩
J AKP : 2A × 2A→2A

(x, y) 7→1|x ∨ y⟩
J AKP : 1→2A

∗ 7→1|¬A⟩
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For each generating morphism ... φ
B1

Bm
A in SynLPL, JφKP maps a state u ∈ 2B1 × · · · × 2Bm

to p|A⟩ + (1 − p)|¬A⟩ if there exists a P-clause ψ such that u ⊨ body(ψ), τpr(ψ) = φ and
lab(ψ) = p, and to 1|¬A⟩ otherwise. As in the classical case, for J−KP to be well-defined,
we need the semantics category Stoch(2) to satisfy the CDMU equations as shown in
Appendix B, Lemma 28. We also refer to Appendix B for the proof of our characterisation
result, which essentially follows the same steps as the proof of Proposition 5.

▶ Proposition 13. There is a 1-1 correspondence between PLP programs based on L and
generator-preserving CDMU functors SynLPL → Stoch(2).

4.2 Distribution Semantics in String Diagrams
As for LP, we now study diagrammatic representations of PLP semantics. As a preliminary,
we record the notion of ‘A-component’. Intuitively the A-component collects all the clauses
with heads A, and “bundle” them into a string diagram with a single output A.

▶ Definition 14. The A-component of P (based on L) is a string diagram
compA : [B1, . . . , Bk]→ [A] in SynLPL constructed as below, where:

(I) in the first block, for each atom Bi appearing in the body of some φ with head(φ) = A,
there are ki-many copies of Bi (via ), where ki is the number of L-clauses φ satisfying
head(φ) = A and B ∈ body(φ).

(II) In the third block, we have parallel string diagrams for each L-clause φ1, . . . , φn with
head A.

(III) The fourth block hosts n-many cocopies of A (via ), where n is the number of
L-clauses with head A.

(IV) The σ-block contains suitably many swapping morphisms to match each copy of Bi

in the first block to an input wire Bi in the third block.
φ1B1

Bk

A

φn

...
...

...

...

... σ

Note that, if n = 0 (namely there is no L-clause with head A), then compA simplifies to .

Now the goal is to diagrammatically express the probability distribution δ(Ā) of a set of
atoms Ā := {A1, · · · , Ak}. The idea is to construct a string diagram fĀ : [ ]→ [A1, . . . , Ak]
which exhausts all possible derivations of Ā in P. To do so, we will first define fAt and then
obtain fĀ by discarding all the atoms not appearing in Ā. Note that the termination of the
following construction relies on P being acyclic, and compA is defined in Definition 14.

▶ Construction 15. Suppose At = {A1, . . . , An}. The string diagram fAt : [ ]→ [A1, . . . , An]
is defined via a step-by-step construction of morphisms gi for i ∈ N:
1. g0 = id [ ] : [ ]→ [ ].
2. If gi is of type [ ]→ [A1, . . . , An], then let fAt = gi.
3. Otherwise, gi is of type [ ] → [A1, . . . , Ak], and we define gi+1 as the string diagram

below. We pick any A ∈ At \ {A1, . . . , Ak} such that all atoms in the domain of compA

already appear in A1, . . . , Ak, say compA : [B1, . . . , Bm] → [A] with {B1, . . . , Bm} ⊆
{A1, . . . , Ak}. Then in block (b) we make 2 copies for each Bj ∈ {B1, . . . , Bm} from the
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17:12 Functorial Semantics as a Unifying Perspective on Logic Programming

codomain of gi in block (a), compose them with suitably many swapping morphisms in
block (c), and match one copy of each Bj to exactly one Bj from the domain of compA

in block (d).

gi

compA

...
A1

Ak

...
...

B1

Bm

B1

Bm

A

(d)

...

...

(a) (b)

(c)

B1

Bm

We are now ready to construct the diagram fĀ. First, for each atom B ∈ At\{A1, . . . , Ak},
discard B in fAt by post-composing B . Next, simplify the diagram by the rewriting rules

⇝ , ⇝ , and f ⇝ . Note that while the first two rewriting rules
are CDMU axioms, the third rewriting rule is not valid in SynBNL. However, all of them are
valid in the semantics category Stoch(2) [22], which justifies our procedure.

▶ Example 16. Recall the program Pwet from Example 1. The string diagram below left is
fAtwet with atoms Sprinkler, Rain and SlipperyRoad discarded.

ψ2

ψ3

ψ4

ψ5ψ1

Winter

Rain

Sprinkler

ψ6 SlipperyRoad

WetGrass
⇝∗

ψ2

ψ3

ψ4

ψ5
ψ1

Winter

WetGrass

Sprinkler

Rain

In particular, the subdiagram in the grey block is the WetGrass-component of type
[Sprinkler, Rain]→ [WetGrass]. The string diagram fĀ below right is the result of apply-
ing the three rewriting rules. One can verify that JfĀKPwet

is the probability distribution
δ(Winter, WetGrass).

▶ Proposition 17. fĀ calculates the success probability: JfĀKP = δ(Ā).

4.3 Correspondence of PLP and BNs via Functorial Semantics

We now turn attention to the relationship between PLP and Bayesian networks. Our goal
is formulating the translation between the two formalisms at the functorial level, taking
advantage on the one side of the functorial semantics of PLP just established, and on the
other side of the functorial semantics of Bayesian networks, as described in [22].

It is known in the LP literature that every acyclic PLP can be transformed into an
equivalent boolean-valued BN, and vice versa [31]. Intuitively, starting from a BN B = (G,Pr)
(cf. Section 2), one constructs a PLP program with a clause for each conditional probability
in Pr. Conversely, given a PLP program P, one constructs a DAG in which B is a parent
of A precisely when there exists ψ ∈ P such that A = head(ψ) and B appears in body(ψ).
Each conditional probability Pr(A = 1 | pa(A) = u) is calculated by “summing up” the
probabilities of all P clauses ψ such that head(ψ) = A and u ⊨ body(ψ) as independent
random events.
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▶ Example 18. Consider the PLP Pwet from Example 1. On the left below we show the
DAG of the corresponding Bayesian network, and on the right the conditional probability
associated with variable WetGrass.

Winter

SprinklerRain

SlipperyRoad WetGrass

Pr(WetGrass)
¬Sprinkler ¬Rain 0
¬Sprinkler Rain 0.8
Sprinkler ¬Rain 0.9
Sprinkler Rain 0.98

(7)

Conversely, we may construct a PLP P′
wet corresponding to Bwet, following the recipe

given above. It differs with Pwet only on the clauses with heads WetGrass. Instead of ψ5
and ψ6 in Example 1, P′

wet has the following clauses which together specify the conditional
probability in Figure (7):

0.8 :: WetGrass ← ¬Sprinkler, Rain. 0.9 :: WetGrass ← Sprinkler,¬Rain.
0.98 :: WetGrass ← Sprinkler, Rain.

We now wish to study this two-way translation at the functorial level. To do so, we
exploit the functorial semantics for BNs, as established in [22] (see also [16]), and reported in
Appendix A. In a nutshell, this characterisation associates Bayesian networks based on a DAG
G = (VG,ΣG) with models of a freely generated syntax category SynBNG := freeCD(VG,ΣG),
where intuitively the edges of G act as the generators of the diagrammatic syntax. For
comparing it to PLP, we need a restriction of this characterisation result to boolean-valued
Bayesian networks (cf. Section 2), which we report below.

▶ Proposition 19 ([22]). There is 1-1 correspondence between boolean-valued Bayesian
networks based on a DAG G and generator-preserving CD functors SynBNG → Stoch(2).

We now describe the two-way translation between PLP and BNs, exploiting their view as
models as provided by Propositions 13 and 19.

BN to PLP. Given a boolean-valued BN B = (G,Pr) and its corresponding BN model
J−KB : SynBNG → Stoch(2), we let the syntax category SynLPL′ of the corresponding logic
program be freeCDMU(VG,ΣG). Intuitively, this means that every node A in G yields
exactly one clause A← pa(A) in L′. Then we can define a PLP program P′ via Proposition
13 as the CDMU functor J−Kb

B : SynLPL′ → Stoch(2) obtained by canonically lifting the
CD functor J−KB : SynBNG → Stoch(2) along the inclusion functor ι : SynBNG → SynLPL′

which embeds the CD structure of SynBNG = freeCD(VG,ΣG) into the CDMU structure
of SynLPL′ = freeCDMU(VG,ΣG). In concrete, J−Kb

B maps , to the monoid structure
in Stoch(2) and just behaves the same as J−KB on the rest. The construction of J−Kb

B is
summarised by the commutative square 2⃝ in (9) below. We can verify that this lifting J−Kb

B
indeed coincides with the model J−KP′ : SynLPL′ → Stoch(2) associated with P′, the PLP
program that one could obtain from B in the traditional way (e.g. in [31]).

▶ Proposition 20. Let P′ be the PLP program encoding B. Then Σ[P′] = ΣL′ and J−KP′ =J−Kb
B.

PLP to BN. We turn to the converse direction: starting from a PLP model J−KP : SynLPL →
Stoch(2), we construct a BN model J−KB. The main insight is that this construction is
purely syntactical: the hurdle to take is figuring out the correct syntax category ΣH , and a
“syntax translation” functor F : SynBNH → SynLPL (note the direction!). Then the BN will
be the model defined by the composite functor J−KP ◦ F : SynBNH → Stoch(2).
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First, we define generating objects VH and generating morphisms ΣH yielding our syntax
category SynBNH := freeCD(VH ,ΣH ). We let VH = At, and ΣH be{

... e
B1

Bm
A

∣∣∣ {B1, . . . , Bm} = {B | ∃φ ∈ L such that A = head(φ), B ∈ body(φ)}
}

Intuitively, inputs of e are obtained by combining all L-clauses with the same head A. We now
define the “translation” F : SynBNH → SynLPL. The idea is that F “decomposes” children
and their parents into L-clauses. Formally, it is the identity on objects and on morphisms it
is freely defined by the following mapping on the generating morphisms of SynBNH :

For d ∈ { , }, F(d) := d.
For each generating morphism ... e

B1

Bm
A in ΣH , F(e) := compA (see Definition 14).

▶ Example 21. Recall Pwet from Example 1. Applying Fwet : SynBNGwet → SynLPPwet to
the string diagram below left (cf. the DAG of Example 18) yields the string diagram below
right, where the φis are as in Example 3.

e2

e3

e4e1
Winter

Rain

Sprinkler

e5
SlipperyRoad

WetGrass
φ2

φ3

φ4

φ5

φ1
Winter

Rain

Sprinkler

φ6
SlipperyRoad

WetGrass
(8)

Moreover, the J−KP ◦ Fwet-image of the string diagram in the grey block yields precisely the
conditional probability distribution 2Sprinkler × 2Rain → D(2WetGrass) in Bwet represented by
the conditional probability distribution in (7).

▶ Remark 22. Thanks to the separation of syntax and semantics, our construction is able
to simplify and divide in two steps what in the literature (cf. [31]) is performed in a single
step. In the traditional approach, from P a DAG is constructed with “AND” nodes and
“noisy-OR” nodes [31], from which one derives the conditional probability distributions.
Instead, we construct a simpler DAG H = (VH ,ΣH) – in fact, a syntax category SynBNH
encoding H – and only as a next step we introduce a richer structure (modelled with

, see (8)) via Fwet. Moreover, all these steps are performed at a purely syntactic level:
obtaining the conditional probabilities is “delegated” to composition with the given functor
J−KP : SynLPL → Stoch(2).

As with the converse direction, we may verify (see Appendix B) that the BN derived from
P in the traditional way (cf. [31]) coincides with the one obtained via our construction.

▶ Proposition 23. Let B = (G,Pr) be the Bayesian network constructed from P, then
ΣG = ΣH , and J−KB = J−KP ◦ F .

▶ Remark 24. Note that, unlike Proposition 23, in Proposition 20 we cannot obtain the
PLP model J−KP as the composition of the BN model J−KB and a functor between syntax
categories. This is because we lack a functor SynLPL → SynBNB: SynLPL has a richer
structure than SynBNB, and there is no canonical way to map the monoid structure , .
The two constructions of this section are summarised by the following commutative diagram:

SynLPL SynBNG SynLPL′

Stoch(2) Stoch(2)

J−KP

G

F

J−KB

ι

1⃝

3⃝

J−KP′2⃝ (9)
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Given the definition of SynBNG and SynLPL′ , we may let G be F plus the clause that G(d) = d

for d ∈ { , }. Proposition 23 amounts to commutativity of 1⃝, and 2⃝ states that J−KB
factors through its CDMU-lifting J−KP′ via the inclusion functor ι. 3⃝ connects the program
P′ obtained from B with the original program P (where L = [P] and L′ = [P′]).

5 Weighted Logic Programming

We conclude by extending our approach to encompass weighted logic programming (WLP),
a generalisation of logic programming for specifying dynamic programming algorithms
[14, 10, 15]. We will provide a functorial semantics for WLP, based on which one can express
the standard semantics of WLP diagrammatically.

The syntax category is the same as for LP and PLP, reflecting the intuition that the
extension provided by WLP only affects the semantics layer. The semantics category for
WLP should reflect the fact that atoms are now interpreted no longer as boolean values but
as values in a given semiring K. Interestingly, at the intuitive level, the variation required
does not change the morphisms of the “basic” semantics category Set(2), as in the PLP
case, but the objects. Whereas the semantics category Stoch(2) for PLP can be thought as
a “Kleisli” variation of Set(2), the semantics category Set(K) for WLP simply changes the
generating objects of Set(2) from copies of the Boolean algebra 2 to copies of the semiring K.

More precisely, we define Set(K) as the category whose objects are finite products of the
form KA1 ×· · ·×KAk

(cf. Section 2 ). In particular, the singleton set 1 is the empty product.
The Set(K)-morphisms are functions between the underlying sets. Now, every WLP program
P with atom set At and L := [P] uniquely determines a functor J−KP : SynLPL → Set(K).
On objects, JAKP := KA for each A ∈ At. On morphisms, for the CDMU structure we define

J AKP : KA→KA ×KA

x 7→ (x, x)
J AKP : KA ×KA→ KA

(x, y) 7→ x+ y

J AKP : KA→ 1
x 7→ ∗

J AKP : 1→KA

∗ 7→ 0A

For each generating morphism ... φ
B1

Bm
A in ΣL, JφKP maps u = (u1, . . . , um) ∈ KB1×· · ·×KBm

to lab(ψ) ·u1 · · · · ·um, where ψ is the (unique) P-clause satisfying τwt(ψ) = φ. Set(K)
being a CDMU category (Lemma 29, Appendix B) guarantees that J−KP is well-defined.

▶ Proposition 25. There is a 1-1 correspondence between weighted logic programs based on
L and generator-preserving CDMU functors SynLPL → Set(K).

Analogously to what we did with LP and PLP, we conclude the section by describing how the
semantics of WLP (see Sec. 2) can be expressed with string diagrams of the syntax category.

Let us fix a WLP P, whose atom set is At = {A1, . . . , An}. First, the string diagram tw[P]
expressing the weighted immediate consequence operator Tw

P (cf. Section 2) is defined as in
(4), where φ1, . . . , φN are the generating morphisms in Σ[P]. As expected,

r
tw[P]

z

P
= Tw

P .
As a second step, we want to express the semantics of WLP, as defined in Section 2. As this

is a least fixed point semantics, we use the extended syntax SynLPTr
[P] = freeTrCDMU(At,Σ[P])

from Section 3.3, and interpret it in the category Rel(K), whose objects are that of Set(K)
and morphisms A→ B are relations R ⊆ A× B. Again, the CDMU structure on Rel(K)
consists of the relations derived from that on Set(K). The program P uniquely determines
a traced CDMU functor J−KTr

P : SynLPTr
[P] → Rel(K) inductively defined on the generating

morphisms, in a similar manner as that for classical logic program (cf. Section 3.3). In
particular, the inductive step includes that, for each string diagram fA B

X X in SynLPTr
[P] ,

s
f

A B

{Tr

P
= {(a, b) ∈ JAKTr

P × JBKTr
P | ∃x ∈ JXKTr

P : ((x, a), (x, b)) ∈ JfKTr
P }.
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Since atom weights (weightP(A1), . . . ,weightP(An)) are the least fixed point of Tw
P (cf.

Section 2), we can express them as tw[P] with “feedback” wires, resulting in the string diagram
W[P] defined as on the right. Formally, this means that (min

q
W[P]

yTr
P )(i) = weightP(Ai), for

i = 1, . . . , n.

An

A1
...

...tw[P]

6 Conclusions

In this paper we established a functorial perspective on logic programming, encompassing clas-
sical, probabilistic, and weighted programs. This allowed us to propose an original viewpoint
on some well-known semantic constructs for these formalisms, and on the correspondence
between probabilistic programs and Bayesian networks.
This work paves the way for several future developments:

The functorial view on the equivalence between probabilistic programs and Bayesian
networks provides a basis for a comparative analysis of various inference tasks in logic
programming with inference in Bayesian reasoning, for which we may rely on several recent
categorical approaches [11, 23, 24, 22, 21]. In particular, the maximum a posteriori (MAP)
task [5], most probable explanation (MPE) task [5], and inductive logic programming
(ILP) [32] seem mostly promising.
We would like to extend the equivalence between probabilistic programs and Bayesian
networks to richer classes. On the side of logic programming, this includes CP-logic [39]
and logic programs with annotated disjunctions (LPAD) [40]. On the side of Bayesian
networks, we may study causal diagrams for structural equation models (SEM) [34].
For simplicity, this paper only deals with the ground case: all the logic programs we
consider are propositional, without variables. We leave a functorial semantics of arbitrary
logic programs (with variables) as future work, potentially using more sophisticated
formalisms of string diagrams, such as nominal diagrams [4].
Classical, probabilistic and weighted logic programming already attracted a categorical
modelling, in terms of coalgebras [27, 26, 7, 6, 19]. A natural research direction is exploring
possible synergies between these works and ours. In particular, a string diagrammatic
analysis of coinductive logic programming [28, 20] seems particularly intriguing.
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▶ Proposition 26 ([22], Proposition 3.1). There is 1-1 correspondence between Bayesian
networks based on a DAG G and CD functors SynBNG → Stoch.

Proposition 19, the functorial semantics of boolean-valued Bayesian networks, follows
immediately from Proposition 26 by restriction to boolean-valued Bayesian networks.

B Omitted proofs

▶ Lemma 27. Set(2) is a CDMU category.

Proof. The category ⟨Set(2),×,1⟩ is a SMC category, where × is the cartesian product in
Set, and 1 is the singleton set {∗} (which is the 0-ary product of copies of 2). We define the
CDMU structure on the two-element boolean algebra 2 = {0, 1}, and that for a copy 2A

follows by replacing 0 and 1 with ¬A and A, respectively:

2 : 2 → 2 × 2
x 7→ (x, x)

2 : 2 × 2 → 2
(x, y) 7→ x ∨ y

2 : 2 → 1
x 7→ ∗

2 : 1 → 2
∗ 7→ 0

We only verify the equations for the monoid structure. Given arbitrary x, y, z ∈ 2,
((id ⊗ ); )(x) = (x, 0) = x ∨ 0 = x. Similarly ( ⊗ id); = id.
(( ⊗ id); )(x, y, z) = (x ∨ y, z) = x ∨ y ∨ z = ((id ⊗ ); )(x, y, z).
( ; )(x, y) = (y, x) = x ∨ y = (x, y).

The CDMU structure on arbitrary objects of the form 2A1 × · · · × 2Ak
are defined pointwise,

and it follows immediately that they satisfy the CDMU equations. ◀

Proof of Proposition 5. The construction of a CDMU functor J−KP from a program P is
already discussion in Subsection 4.1.

For the other direction, given a generator-preserving CDMU functor G : SynLPL → Set(2),
we know G(A) is some copy of 2, say 2A, for each A ∈ At. For each generating morph-
ism ... φ

B1

Bm
A in ΣL, G(φ) is a function f : 2B1 × · · · × 2Bm → 2A. Suppose that the

support of G(φ) – the inverse image of A ∈ 2A under f – is {v1, . . . , vd}. Then we
construct d-many clauses φ1, . . . , φd such that τgen(φj) = A ← B1, . . . , Bm., one for
each vi. vi(Bp1) = Bp1 , · · · = vi(Bpk

) = Bpk
, vi(Bq1) = ¬Bq1 , . . . , vi(Bqℓ

) = ¬Bqℓ

(with k + ℓ = m and {p1, . . . , pk, q1, . . . , qℓ} = {1, . . . ,m}), then let clause φi be A ←
Bp1 , . . . , Bpk

,¬Bq1 , . . . ,¬Bqℓ
.. The program ⟨G⟩ is then the collection of all the clauses

constructed from each generating morphism in ΣL.
We show that the aforementioned two constructions are inverse to each other.
We start from a logic program P based on SynLPL. For an arbitrary φ ≡ A← B1, . . . , Bm.

in L, suppose {φ1, . . . , φd} are all the clauses φj such that τgen(φj) = φ, then JφKP is
defined as a function 2B1×· · ·×2Bm

→ 2A whose support (namely G(φ)−1(A)) has size d.
Then from JφKP we retrieve d clauses, which are exactly φ1, . . . , φd: if v ∈ 2B1×· · ·×2Bm

satisfies JφKP (v) = A, then there exists some φj such that for all i = 1, . . . ,m, v(Bi) = Bi

if and only if Bi appears positively (namely as B) in body(φj), and the clause induced
by v is exactly φj itself.
We start from a functor G : SynLPL → Set(2). Fix some L-clause φ, and suppose
G(φ)−1(A) = {v1, . . . , vd}. Then G determines d-many clauses φ1, . . . , φd whose image
under τgen is φ. Then the action of the functor J−K⟨G⟩ : SynLPL → Set(2) on φ ∈ L
is totally determined by {φ1, . . . , φd}: JφK⟨G⟩ (v) = A if and only if v is compatible
with body(φj) for some φj ∈ {φ1, . . . , φd}; but φj is exactly represented by vj , so
JφK⟨G⟩ (v) = A if and only if v = vj , for some vj ∈ {v1, . . . , vd}. This means that
JφK⟨G⟩ = G(φ), for arbitrary L-clause φ.

CALCO 2021



17:20 Functorial Semantics as a Unifying Perspective on Logic Programming

Therefore there is a bijection between logic programs based on L and generator-preserving
CDMU functors SynLPL → Set(2). ◀

Proof of Proposition 7. We are given a logic program P based on L with atom set At =
{A1, . . . , An}. For arbitrary u ∈ 2A1 × · · · × 2An

and A ∈ At, we know TP(u)(A) = A if and
only if there exists ψ ∈ P such that head(ψ) = A and u ⊨ body(ψ). Let φ = τgen(ψ), then
u ⊨ body(ψ) if and only if JφKP : u|φ 7→ A, where u|φ is the projection of u (as a tuple of
values) to the set of atoms in body(φ). So TP(u)(A) = A if and only if there exists φ ∈ [P]
such that head(φ) = A and JφKP : u|φ 7→ A. By the interpretation of and under J−KP,
this again is equivalent to that

q
t[P]

y
P (u)(A) = A. ◀

Proof of Proposition 10 . It suffices to show that
q
h[P]

yTr
P is exactly the set of all fixed

points of TP. On one hand, suppose u is a fixed point of TP, then by Proposition 7q
t[P]

yTr
P (u) = TP(u) = u. It follows from the definition of J−KTr

P on traced morphisms that u
is an element in

q
h[P]

yTr
P . On the other hand, let v be a state in

q
h[P]

yTr
P , then by definition

of J−KTr
P on traced morphisms,

q
t[P]

yTr
P (v) = v, so TP(v) = v. ◀

Proof of Proposition 13. The direction from a PLP P to a generator-preserving CDMU
functor J−KP is already discussed in Subsection 4.1.

For the other direction, given a generator-preserving CDMU functor G : SynLPL →
Stoch(2), it maps each A ∈ At to a copy of 2, say 2A. We define a PLP program ⟨G⟩. For an
arbitrary ... φ

B1

Bm
A in ΣL, G(φ) is a function 2B1×· · ·×2Bm

→ D(2A). Let {v1, . . . , vd} be the
set of all v ∈ 2B1 ×· · ·×2Bm such that G(φ)(v) ̸= 1|¬A⟩. Then we construct one PLP clause
for every such v: suppose v(Bi1) = Bi1 , . . . , v(Bik

) = Bik
, v(Bj1) = ¬Bj1 , . . . , v(Bjℓ

) = ¬Bjℓ

be an enumeration of all the components of the m-tuple v, and G(φ)(v) = p|A⟩+ (1− p)|¬A⟩,
then we define a clause φv ≡ p :: A← Bi1 , . . . , Bik

,¬Bj1 , . . . ,¬Bjℓ
. The PLP program ⟨G⟩

consists of all the clauses {φv1 , . . . , φvd
} defined as above for each φ in ΣL.

The above two procedures J−K(·) and ⟨·⟩ are inverse to each other. Starting from a P-clause
ψ ≡ p :: A→ Bi1 , . . . , Bik

,¬Bj1 , . . . ,¬Bjℓ
. with τpr(ψ) = φ, ψ determines the behaviour of

the functor JφKP at the unique input v with v ⊨ body(ψ) as JφKP (v) = p|A⟩+ (1− p)|¬A⟩.
This defines a unique clause in ⟨J−KP⟩, which is exactly ψ. Starting from a functor G, it
generates 2m clauses in ⟨G⟩ from each ... φ

B1

Bm
A in ΣL, all of whose τpr-images are ... φ

B1

Bm
A .

This behaviour of J−K⟨G⟩ on ... φ
B1

Bm
A is determined by these 2m clauses, which is exactly

G( ... φ
B1

Bm
A ). ◀

Proof of Proposition 17. It suffices to show JfAtKP = δP(At), and that for subsets of At
follows by observing that using string diagrams, marginal distributions can be obtained from
the joint distributions by applying discarders [25]. We prove JfAtKP = δP(At) by induction
on the size of At. If |At| = 1, then P can only contain one clause of the form ψ ≡ p :: A← .,
so JfAtKP = p|A⟩+ (1− p)|¬A⟩, which corresponds to that πP(A) = p, πP(¬A) = 1− p.

Now suppose |At| = n+ 1 and the proposition holds for all programs with atom size ≤ n.
Because P is acyclic, we can select an atom A ∈ At such that there is no P-clause φ with
A ∈ body(φ). Let PA be the program consisting of all P-clauses with head A, P− be P \ PA,
and At− be At \ {A}. If PA = ∅, then there is no P-clause with head A, fAt = fAt− ⊗ A.
Thus JfAtKP =

∑
u∈2At−

δP−(u)|u, 0A⟩ = δP

So we assume PA ̸= ∅. For each interpretation I of P, we observe that if A ∈ I, then
a sub-program L ⊆ |P| satisfies Ml(L) = I if and only if Ml(L−) = I− and there exists
φ ∈ LA such that I ⊨ body(φ); if A ̸∈ I, then a sub-program L ⊆ |P| satisfies Ml(L) = I
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if and only if Ml(L−) = I− and I ̸⊨ body(φ) for all φ ∈ LA. We assume that compA is
of the form [B1, . . . , Bk] → [A]. We can calculate δP(At) using the induction hypothesis
δP−(At−)(I−) = JfAt−KP (I−). For example,

δP(At)(I− ∪ {A})

=
∑
{µP(L) | L ⊆ |P|,Ml(L) = I− ∪ {A}}

=
∑
{µP−(L−) · µPA(LA) | L− ⊆ |P−|,LA ⊆ |PA|,Ml(L−) = I−,∃φ ∈ PA s.t. I− ⊨ body(φ)}

=
∑
{µP−(L−) · JcompAKP (I−|B1,...,Bk

)(A) | L− ⊆ |P−|,Ml(L−) = I−}

=δP−(At−)(I−) · JcompAKP (I−|B1,...,Bk
)(A)

IH= JfAt−KP (I−) · JcompAKP (I−|B1,...,Bk
)(A)

= JfAtKP (I− ∪ {A})

Similarly we can show δP(At)(I−) = JfAtKP (I−). Since every interpretation I for P can be
divided as an interpretation I− on P− and a subset of {A}, it follows that δP = JfAtKP. ◀

Proof of Proposition 20. For each node A, suppose pa(A) = {B1, . . . , Bm}, then there
are exactly 2m clauses ψi in P whose heads are A (possibly some ψi has prob-
ability label 0), each satisfying τnpr(ψi) = A ← B1, . . . , Bm.. By (3), Σ[P] ={

... φ
B1

Bm
A

∣∣∣ pa(A) = {B1, . . . , Bm}
}

= ΣL.

To show that J−KP = J−Kb
B, it suffices to show that they coincide on the generating

morphisms ΣL. Given arbitrary ... φ
B1

Bm
A ∈ ΣB and state u ∈ 2B1 × · · · × 2Bm

, we show
that JφKP (u) = JφKb

B (u). There is exactly one P-clause ψ satisfying both τpr(ψ) = φ

and u ⊨ body(ψ). Suppose the corresponding interpretation of u is {Bd1 , . . . , Bds
}, whose

complement regarding {B1, . . . , Bm} is {Be1 , . . . , Bet
}, then

JφKP (u) := lab(ψ) = Pr(A | Bd1 , . . . , Bds
,¬Be1 , . . . ,¬Bet

)

This coincides with the definition of JφKB, thus of JφKb
B, on u. ◀

▶ Lemma 28. Stoch(2) is a CDMU category.

Proof. First of all, ⟨Stoch(2),×,1⟩ forms a SMC [22]. We define the CDMU structure on
2, and that for each copy 2A follows by replacing 1 and 0 with A and ¬A, respectively.

2 : 2 → 2 × 2
x 7→ 1|(x, x)⟩

2 : 2 × 2 → 2
(x, y) 7→ 1|x ∨ y⟩

2 : 2 → 1
x 7→ 1|∗⟩

2 : 1 → 2
∗ 7→ 1|0⟩

We verify the CDMU equations for the monoid structure, and that for the comonoid structure
can be found in [22]. Given arbitrary x, y, z ∈ 2,

((id ⊗ ); )(x) = 1|x ∨ 0⟩ = 1|x⟩. Similarly ( ⊗ id); = id.
(( ⊗ id); )(x, y, z) = 1|x ∨ y ∨ z⟩ = ((id ⊗ ); )(x, y, z).
( ; )(x, y) = 1|x ∨ y⟩ = (x, y).

The CDMU structure on arbitrary objects of the form 2A1 × · · · × 2Ak
is defined pointwise,

and it follows immediately that the structure satisfies CDMU equations. ◀

Proof of Proposition 23. The equivalence of the set of generating morphisms follows imme-
diately from their definitions. To show that J−KB = J−KP ◦ F , it suffices to show that for
arbitrary generating morphism ... e

B1

Bm
A in ΣG and state u = (u1, . . . , um) of B1, . . . , Bm,

JF (e)KP (u) is equivalent to Pr(A = 1 | B1 = x1, . . . , Bm = xm).
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Suppose φ1, . . . , φk are all the [P]-clauses with heads A, so they exhaust all the components
of compA besides the CDMU structure. For each φi of the form A ← Bi1 , . . . , Bimi

,
JφiKP (u) = p|A⟩+ (1− p)|¬A⟩, where p is the probability label of the P-clause ψ satisfying
[ψ] = φ and u ⊨ body(ψ), and p is 0 if no such clause exists. Note that if such ψ exists, then
it is necessarily unique, so this is well-defined.

Now, suppose we have φ1, φ2 with disjoint bodies, and JφjKP (uj) = pj |A⟩+ (1− pj)|¬A⟩,
where uj = u|body(φj), j ∈ {1, 2}. We compute J(φi ⊗ φj); AKP (u′), where u′ =
u|body(φ1)∪body(φ2). By the definition of J KP and morphisms composition in Stoch(2),
J(φi ⊗ φj); AKP (u′) = (1−(1−p1)(1−p2))|A⟩+(1−p1)(1−p2)|¬A⟩. Then an induction on
the number k of components in compA shows that, if JφjKP (u|body(φj)) = pj |A⟩+(1−pj)|¬A⟩,
then JcompAKP (u) = (1−

∏k
j=1(1−pj))|A⟩+

∏k
j=1(1−pj)|¬A⟩. This is exactly the definition

of Pr(A | {Bi}k
i=1 = u) in B. ◀

▶ Lemma 29. The category Set(K) is a CDMU category.

Proof. Category Set(K) with cartesian product × and the singleton set 1 forms a SMC.
Again 1 is the 0-ary product of copies of K, thus already included in the definition of
Set(K)-objects. We define the CDMU on K, and that on each copy KA follows immediately.

K : K → K ×K
x 7→ (x, x)

K : K ×K → K
(x, y) 7→ x+ y

K : K → 1
x 7→ 1|∗⟩

K : 1 → K
∗ 7→ 0

We verify the CDMU equations for the monoid structure, and that for the comonoid structure
can be found in [22]. Given arbitrary x, y, z ∈ K,

((id ⊗ ); )(x) = (x,0) = x+ 0 = x. Similarly ( ⊗ id); = id.
(( ⊗ id); )(x, y, z) = (x+ y, z) = (x+ y) + z = ((id ⊗ ); )(x, y, z).
( ; )(x, y) = (y, x) = x+ y = y + x = (x, y).
( ; (id ⊗ ))(x) = (id ⊗ )(x, x) = x. Similarly ( ; ( ⊗ id)) = id.
( ; ( ⊗ id))(x) = (x, x, x) = ; (id ⊗ )(x).
( ; )(x) = (x, x) = (x, x) = (x).

The CDMU structure and verification of CDMU equations for general objects of the form
KA1 ×KAk

follows immediately from a pointwise definition. ◀

s Sprinkler

Rain

WetGrass
{

B
=

s
F

( Sprinkler

Rain

WetGrass
){

P
=

u

v
Sprinkler

Rain

WetGrass

}

~

P

=
(r Sprinkler WetGrass z

P
×

r WetGrassRain z

P

)
;
r

WetGrass

z

P

(0Sprinkler, 1Rain) 7→ 0.8|1WetGrass⟩+ 0.2|0WetGrass⟩


	1 Introduction
	2 Preliminaries
	3 Classical Logic Programming
	3.1 Syntax Category
	3.2 Functorial Semantics of LP
	3.3 A Gallery of diagrammatic representations of semantic constructs

	4 Probabilistic Logic Programming
	4.1 Functorial Semantics of PLP
	4.2 Distribution Semantics in String Diagrams
	4.3 Correspondence of PLP and BNs via Functorial Semantics

	5 Weighted Logic Programming
	6 Conclusions
	A Functorial semantics of Bayesian networks
	B Omitted proofs

