
17 August 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Grandi, F., Mandreoli, F., Martoglia, R., Penzo, W. (2022). Unleashing the power of querying streaming
data in a temporal database world: A relational algebra approach. INFORMATION SYSTEMS, 103, 1-25
[10.1016/j.is.2021.101872].

Published Version:

Unleashing the power of querying streaming data in a temporal database world: A relational algebra approach

Published:
DOI: http://doi.org/10.1016/j.is.2021.101872

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/856762 since: 2024-01-23

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1016/j.is.2021.101872
https://hdl.handle.net/11585/856762


Journal Pre-proof

Unleashing the power of querying streaming data in a temporal database
world: A relational algebra approach

Fabio Grandi, Federica Mandreoli, Riccardo Martoglia, Wilma Penzo

PII: S0306-4379(21)00098-3
DOI: https://doi.org/10.1016/j.is.2021.101872
Reference: IS 101872

To appear in: Information Systems

Received date : 2 March 2020
Revised date : 18 July 2021
Accepted date : 28 July 2021

Please cite this article as: F. Grandi, F. Mandreoli, R. Martoglia et al., Unleashing the power of
querying streaming data in a temporal database world: A relational algebra approach, Information
Systems (2021), doi: https://doi.org/10.1016/j.is.2021.101872.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the
addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive
version of record. This version will undergo additional copyediting, typesetting and review before it
is published in its final form, but we are providing this version to give early visibility of the article.
Please note that, during the production process, errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

© 2021 Published by Elsevier Ltd.

https://doi.org/10.1016/j.is.2021.101872
https://doi.org/10.1016/j.is.2021.101872


Click here to view linked ReferencesJournal Pre-proof
Unleashing the Power of Querying Streaming Data
in a Temporal Database World:
A Relational Algebra Approach

Fabio Grandia, Federica Mandreolib, Riccardo Martogliab,∗, Wilma Penzoa

aDISI, University of Bologna, viale Risorgimento, 2, I-40136 Bologna, Italy
bFIM, University of Modena and Reggio Emilia, via Campi, 213/b, I-41125 Modena, Italy

Abstract

Modern data-intensive applications have to manage huge quantities of stream-
ing/relational data and need advanced query capabilities involving combinations
of continuous queries (CQs) and one-time queries (OTQs) also requiring the
verification of complex temporal conditions.

In this paper, we go beyond the disjointed panorama of current approaches
and adopt a new holistic approach to the integration of stream processing
capabilities into the temporal database world based on the streaming table
concept. To this end, we propose a full-fledged query interface composed of
a TSQL2-like query language with an underlying algebraic framework. The
algebraic framework, which is aimed at implementing the query interface on
top of a working DBMS, is made up of: (a) the extended temporal algebra
T A? supporting OTQs with an hybrid temporal semantics (sequenced and non-
sequenced); (b) the continuous temporal algebra CT A that extends T A? with
window expressions for CQ specification; (c) the translation of CT A expressions
into T A? ones that can be executed by a traditional DBMS with an extended
kernel.

Key words: Continuous queries, Data streams, Relational algebra, Temporal
DB

1. Introduction

Modern data-intensive applications, including advanced surveillance (e.g.,
financial market enforcement), monitoring applications in smart cities and health-
care, network applications (e.g., intrusion detection), require an increasingly
wider range of data management capabilities in order to be fully supported. On
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Journal Pre-proof
the one hand, such applications need to manage very large quantities of continu-
ously streaming data in combination with standard relational data. This kind
of management goes beyond real-time processing as the incoming data streams
need to be persistently stored as historical data in order to make them available
to future retrospective analysis. On the other hand, applications must rely on
advanced query capabilities that involve the combination of continuous queries
(CQs) and one-time queries (OTQs) to satisfy complex analytics requirements,
including temporal conditions and data versioning specifications.

For instance, in the context of database forensics, we can consider applications
used to review on-line activities and to ex-post assess user responsibility. To
this purpose, one application could verify that a financial broker did not sell
the stocks of a client, although the bearish indicators and the stop-loss signal
triggered on his/her computer screen suggested to do it. The analysis of the
broker’s past behavior following or not the real-time recommendations given by
a stream processing system could be effected by means of a continuous query
reconstructing the context of his/her actions whose history is recorded in a
temporal database.

The fulfillment of such requirements necessitates advanced query support
mixing stream processing with the evaluation of complex temporal conditions
involving the different kinds of data. Existing applications cope with this issue by
implementing ad-hoc solutions based on the bridge-building between stream data
management and traditional database querying [1, 2]. However, they have to rely
on currently available systems that usually provide a very limited support for
temporal querying, with respect to the potentialities evidenced by the temporal
database research. Query interfaces that are made available by most big data
processing engines supporting data streams (e.g., [3]) and by stream processing
frameworks (e.g., [4–7]), as well as by streaming extensions to traditional DBMSs
(e.g., [8–10]), are not based on a temporal data model and do not support a
temporal query language [11]. An exception is Flink [12] that acknowledges
the importance of managing temporal data and provides specific constructs to
support them. However, it does not provide a real temporal query language
and users have to improvise on querying data with a temporal semantics by
explicitly expressing conditions on time attributes, often giving rise to complex
and inefficient queries. Moreover, queries dealing with temporal data have often
to be flanked with application-specific procedures, resulting in this way in an
overall mixed declarative-procedural query approach that is far from the uniform,
transparent and user-friendly declarative query style that characterizes the query
language of a real temporal database.

In order to overcome the highlighted difficulties, we embarked in a new holistic
approach to the integration of stream processing into the temporal database
world. By acknowledging the inherently temporal nature of streaming data,
we started this project by introducing in [13] a new kind of temporal table,
named streaming table, as the essential abstraction for representing streaming
data into a temporal DBMS in a native way. In a streaming table, a stream of
data entering the system is kept historical for a user-defined period. Streaming
tables can be straightforwardly involved in OTQs and CQs, possibly together
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with standard relational tables.
The next step, started in the preliminary work [14], is to equip such a data

model with a powerful query interface that can satisfy all application needs
and that is made up of two complementary components. The first component,
which is the external layer of the interface, consists in a friendly SQL-based
declarative language, like the reference temporal query language TSQL2 [15],
that allows users to write expressive temporal queries and that can seamlessy
treat streaming tables as if their were temporal tables. Moreover, since TSQL2
[15] and its evolutions have not been designed to deal with streaming data,
the proposed language must be a TSQL2 extension with constructs to specify
continuous queries and manage window expressions over data streams. The
second component, which is the internal layer of the interface, is the definition
of a temporal algebra with the twofold aim to provide a precise semantics to
such a TSQL2-like query language and to pave the way for its implementation
on a DBMS. In fact, the availability of an algebra has been the main foundation
on which a solid relational technology could be built. Efficient query answering
in a DBMS is typically implemented by mapping the query into an algebraic
expression, being the evaluation of algebraic operators natively supported by the
query execution engine. In fact, manipulation of equivalent algebraic expressions
provides the basis for cost-based query optimization.

Moreover, the temporal algebra we want to define as main objective should
also be implementable with minimal impact in a working DBMS. In this perspec-
tive, an extremely interesting approach is presented in [16], where it is shown
how to implement a temporal algebra T A on top of an off-the-shelf non-temporal
DBMS by means of suitable kernel extensions. However, the temporal algebra
T A has by design an almost pure sequenced semantics, which allows to only
combine data having the same validity. On the other hand, most interesting
temporal queries in the targeted advanced applications have a non-sequenced
semantics, that is they need to combine data belonging to different temporal
snapshots (e.g., find the stocks that shot up almost five points this morning; in
order to evaluate the price increase, the two versions valid at the beginning and
at the end of the morning must be compared).

Therefore, we define a more expressive algebra, denoted as T A?, that extends
T A to also support non-sequenced operations. Notice that, at query language
level, the coexistence of sequenced and non-sequenced parts was actually part of
the original TSQL2 design, although a precise semantics for their interaction
could not be formulated. Nevertheless, the hybrid nature of TSQL2 was highly
underrated as a strength so far and even considered a defect, such that offsprings
like ATSQL [17] with separated sequenced and non-sequenced statements were
proposed. The syntax of T A? is further extended to cover the continuous part
of the TSQL2-like query language giving rise to a continuous algebra CT A.

We can summarize the contributions of this work, which is an evolution and
completion of the framework laid out in [14], as follows:

• We introduce in Sec. 3 a collection of queries demonstrating the expres-
siveness of the proposed TSQL2-like query language extensions and their
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use as motivating example of a financial market surveillance application.
The examples illustrate a wide range of requirements that we want to meet
with our approach: use of streaming data as temporal data, joint use of
streaming and temporal data in continuous queries, offline (retrospective)
execution of continuous queries, hybrid sequenced/non-sequenced query
semantics in OTQs and CQs. One of the qualifying features of the proposed
language extension is that, differently from other CQs languages previously
defined, window expressions are allowed in the WHERE clause in order to
produce window-based data selection.

• We extend in Sec. 4 the standard (sequenced) temporal algebra T A by
also allowing a controlled use of non-temporal operators, which are native
in every traditional DBMS. The resulting extended temporal algebra T A?
intrinsically has a hybrid (sequenced and non-sequenced) semantics and is
shown to be strictly more expressive than T A. OTQs semantics funds on
T A? expressions over standard, temporal and streaming tables.

• We present in Sec. 5 the continuous temporal algebra CT A. CQs can be
formulated as CT A expressions that are T A? expressions over standard
and temporal tables and windowing expressions on streaming tables. A
wide range of windowing operators are available to this end, including
partitioned versions that mimic the SQL group-by mechanism. We provide
a formal definition of legal sliding window expression and we present a
detailed discussion on composition rules of CT A operators. For a better
understanding of the compositional definitions of windowing operators,
we introduce some synthetic datatypes and we discuss how they could be
useful for implementing windowing operators natively.

• We formally define in Sec. 6 the semantics of CQs. It relies on the adoption
of a sampling operator that evaluates CT A expressions at the time points
specified through a set of evaluation parameters. In this way, we introduce
a sort of on-demand semantics, by means of which CQs can be executed
when query results are needed and required data are available.

• We provide in Sec. 7 a solid hybrid semantics for the proposed TSQL2-
like query language in terms of CT A. In particular, we show how SPJ
queries with window expressions can be translated into CT A expressions.
Translation examples for the sample queries presented in Sec. 3 are also
given in a motivating example reprise.

• We present in Sec. 8 the translation of CT A expressions into T A? ex-
pressions. Such equivalence guarantees the preservation of the semantics
of CQs in the corresponding OTQs obtained as result of the translation
process and is therefore the basis for the optimization and execution of
the proposed query language on top of a traditional DBMS with a kernel
extended as shown in [16]. With regard to implementation issues, we rely
on a concrete temporal model [16] that supports an extended sequenced
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semantics that is able to enforce snapshot equivalence also in the presence
of subexpressions involving a non-sequenced semantics.

The paper is completed by Sec. 2 where we recall the necessary notions
concerning temporal databases and review the definition of streaming table, by
Sec. 9 where related works are discussed and compared with our approach, and
by Sec. 10 where we draw our conclusions and outline future research directions.

2. Preliminaries

The continuous temporal data model we propose relies on a multi-temporal
relational model [18], where temporal and non-temporal standard tables coexist,
extended with streaming tables. In this section we provide some preliminaries
for its specification by reviewing the notion of streaming table, first introduced
in [13].

First of all, we assume a discrete, ordered and unbounded time domain
T = {0, 1, 2, . . . , now, . . . ,∞} composed of chronons [19], where 0 stands for
the earliest time and now the current time. A chronon, as defined in [19], is a
non-decomposable time interval of fixed unit duration used to represent time
instants in the discrete model. We further assume that T has the semantics
of valid time [19]. In order to represent a duration of time, we assume time
spans [19] belong to a domain I composed of all possible multiples of a chronon
duration.

As far as the temporal model is concerned, a temporal relation R with explicit
schema R(A1, . . . , An), with Ai ∈ A (1 ≤ i ≤ n) where A is the set of attribute
names, is represented as R(A1, . . . , An|T ) where T is the implicit timestamp
attribute with domain T . If (r, t) is a tuple from R then r.Ai denotes the value of
Ai in r and T (r) denotes the tuple timestamp t. Moreover, given any time instant
t ∈ T , we denote with Rt the content of R at time t, also called the snapshot
of R valid at time t. Notice that we assume here an abstract temporal database,
according to the terminology introduced in [20], to be used as a representation-
independent data model. In its representation as a concrete temporal database,
we assume we can distinguish two kinds of temporal relations: state tables, whose
tuples are timestamped with time intervals [tB , tE) and represent persistent facts
that are true for each time in the interval, and event tables, whose tuples are
timestamped with instants and represent facts that occur at a single instant
of time [15, Ch. 16]. For a state table, we can pass from the abstract to
its concrete representation by coalescing maximal sets value-equivalent tuples
with consecutive timestamps {(r, t), (r, t + 1), (r, t + 2), . . . , (r, t + n)} into a
single interval-timestamped tuple (r, [t, t+ n+ 1)) (so that there cannot exist
value-equivalent tuples whose timestamps are adjacent intervals). The concrete
representation of an event table coincides with its abstract representation. A
concrete temporal database is composed of relations that can be stored using a
finite number of tuples and, thus, can be implemented on a computer system.

As far as non-temporal tables are concerned, we assume they are virtually
converted to temporal tables when they have to be interoperated with temporal
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tables and streaming tables by using a suitable temporal conversion map [21].
In particular, we assume a non-temporal table R can be virtually converted
to a temporal table as follows (R)T = {(r, τ) | r ∈ R, τ ∈ T } (in its concrete
representation, (R)T = {(r, [0,∞)) | r ∈ R}). The fact that a “valid always”
timestamping is added to non-temporal data could look as an arbitrary choice.
For example, a more conservative choice of assigning timestamps τ ∈ [now,∞)
timestamp, where now is the execution time of a temporal query referencing that
data, was made in [21]. On the other hand, an assumption universally made in
the temporal database field (e.g., which is at the base of interval-timestamping)
is the step function continuity assumption [22], stating that temporal data after
insertion keep their constant value until they are changed or deleted. Considering
data found now in a non-temporal relation, we can assume its validity starts
from a time t in the past corresponding to its insertion time. Since we have
no information about the insertion time t, we make an unrestricted choice by
setting t = 0. In this way, constant values stored in a non-temporal table can be
interoperated with any data contained in (each snapshot of) a temporal table
via a temporal algebra operator.

As far as streams are concerned, we adopt the definition of continuous data
stream (or simply stream) provided in [23], that is a potentially infinite sequence
of timestamped relational tuples having a fixed schema.

A streaming table is a special kind of relational table, first introduced in [13],
that, unlike a standard relational table, is subject to continuous insertions of
streaming data. In a streaming table, streaming data enter and turn historical by
remaining stored for a user-defined long period, ideally forever. Any streaming
table inherits the temporal nature of the data it stores. Specifically, it is modelled
as an event table, where data are kept for a user-defined limited time span named
historical period. As time goes by, we assume the oldest data exiting the historical
period are subject to vacuuming [15, Ch. 23].

Definition 1 (Streaming Table). A streaming table S with explicit schema
S(A1, . . . , An) and historical period hp ∈ I is an event table, denoted as Shp,
with schema S(A1, . . . , An|T ), where T is the implicit timestamp attribute. For
each tuple u ∈ S, the expression u.ν denotes the tuple insertion number in S
(i.e., u.ν = n iff u is the nth inserted tuple). The content of Shp at any time
instant t, that is Sthp, is a set of tuples such that:

• for each tuple u = (s, τ) the timestamp T (u) = τ satisfies max(t−hp, 0) ≤
τ ≤ t; if positive, t− hp represents the chronon preceding t by a time span
of hp chronons.

• for any u1 and u2 in Sthp, T (u1) < T (u2) implies u1.ν < u2.ν, that is u1
was inserted before u2.

In practice, in order to implement this insertion semantics, systems cope with
out-of-order and skewed inputs. Interested readers can refer to [24] for an in-
depth discussion of this aspect. In this paper we assume an input manager
that guarantees in-order tuple arrival. Notice that, in order not to burden the
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OPTION_TRADES 

OPTION STOCK CLASS STRIKE EXPIR CONTRACTS T 

Opt245 Tesla Put 300 Jan 2022 480 45 

Opt237 Apple Put 180 Jan 2022 360 44 

Opt245 Tesla Put 300 Jan 2022 350 42 

Opt127 Google Call 1100 Dec 2021 150 36 

Opt666 Apple Put 120 Nov 2021 15000 35 

Opt127 Google Call 1100 Dec 2021 200 33 

LATEST_NEWS 

ID STOCK TYPE SOURCE T 

N1 Tesla Merger and Acquisition Wall Street Journal [29, 43) 

N8 Tesla Dividend Wall Street Journal [43, �) 

N5 Google Fitch Rating Financial Times [32, �) 

N2 Tesla Dividend Tesla Investor Relations [27, �) 

N3 Apple Product Launch Financial Times [26, 34) 

N4 Apple Q4 Financial Results Financial Times [34, 38) 

N7 Apple Q4 Financial Results Financial Times [38, �) 

N6 Google Capital Increase Wall Street Journal [35, �) 

Figure 1: Running example tables: The OPTION TRADES streaming table (top) and the
LATEST NEWS temporal table (bottom)

notation, we neither represent ν as an explicit nor an implicit attribute in tuples,
but we assume that its values can always be determined for each tuple stored in
a streaming table (e.g., via a system-managed ROW NUMBER function). Still for
ease of notation, whenever possible in the following, we will use S in place of
Shp.

In the following, let R be the set of all temporal tables (also including the
non-temporal ones) and S be the set of all streaming tables. Notice that S ⊆ R,
as streaming tables are a special kind of temporal tables. Indeed, one effect
of the insertion semantics is that timestamps in a streaming table are always
bounded by the current time now, whereas temporal tables may also contain
timestamps greater than now to represent proactively inserted future data.

3. Motivating Example and Proposed SQL Extensions

As an application example in the context of financial market surveillance,
we consider tracking of insider trading activities and, more in general, market
behavior analysis in response to available information. According to the US
Securities and Exchange Commission (SEC), insider trading consists of the buying
or selling of a security while in possession of nonpublic material information
[25]. Examples of such material information include, for instance, a company
being up/downgraded by a rating agency, unexpected revisions to earning
results or projections, mergers and acquisitions news. Since insider trading
undermines investor confidence in the fairness and integrity of the financial
markets, control bodies like the SEC have the detection and prosecution of
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insider trading violations as one of their market surveillance and enforcement
priorities. Whereas early (i.e., when the material information is not yet publicly
available) detection of insider trading patterns could allow to prevent frauds
[26], their a posteriori (i.e., when the material information is of public domain)
verification is most important for triggering and pursuing prosecution of illegal
activities.

Sample tables for the application example are shown in Fig. 1. In particular,
we assume that stock option trading data are available (cf., owing to their
financial leverage, options are usually the elective way to capitalize on insider
information) through the streaming table OPTION TRADES, automatically fed
by the stock market information system. The streaming table contains data
concerning the negotiated option, the underlying stock, the trade timestamp
(i.e., the implicit attribute T ), the option class (call or put), strike price and
expiration, and the number of contracts traded. For example, the top tuple
of OPTION TRADES in Fig. 1 represents the fact that, at time 45, a trade of 480
contracts was concluded on option Opt245, which is a put option on the Tesla
stock with strike 300 and expiration January 2022. Such an option, bought to
bet against the Tesla stock, will pay off if the stock at the end of January 2022
is below the strike price of $300. Moreover, we assume that relevant news are
gathered from several publication sources (e.g., press releases and financial news
stories) and stored in a temporal table LATEST NEWS. Notice that such a table
is a traditional temporal table that cannot be defined as an automatically fed
stream indeed, as news information are manually inserted into the table by a
panel of human experts after a press review activity. For each news, the stored
information concerns the publication source, the involved stock and the news
type. The pair SOURCE-STOCK is a key of the table, representing the narration
of a stock behavior made by a news source. It is a state table, with tuples
timestamped with a time interval, representing the period in which the tuple
contents represent the latest available news within the narration, ranging from
the publication time of the news itself to the publication time of a subsequent
news, if any. For instance, according to the data in the first two tuples of
LATEST NEWS in Fig. 1, the behavior of the Tesla stock has been described by the
Wall Street Journal through two news: the former, with ID N1 and concerning a
merge and acquisition operation involving the stock, has been the latest available
from time 29 to time 43; the latter, with ID N8 and concerning the payment
of a stock dividend has become the latest from time 43 (the right timestamp
boundary equal to ∞ means that the news is currently the latest available one).
We assume the granularity of time in Fig. 1 is one second, so that the option
trade data and news publication data in the sample table actually represent a
20-second timespan (from 26 to 45) of the application lifetime.

In the following, we propose to use a TSQL2-like temporal query language
[15] and illustrate its use to express example queries on the database in Fig. 1.
The first type of use of such data we want to exemplify in queries (Q1)–(Q3)
concerns the use of a streaming table as it was a standard temporal table. The
second type is indeed aimed at exemplifying in queries (Q4)–(Q6) the use of a
temporal table in continuous queries.
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(Q1) The first query retrieves the identifiers of the news and options involving
the Apple stock traded during the period in which the news was the latest
available one about Apple, and can be expressed as follows:

SELECT ID, OPTION (Q1)
FROM LATEST NEWS AS LN, OPTION TRADES AS OT

WHERE LN.STOCK = OT.STOCK

AND LN.STOCK = ’Apple’

In practice, this is a temporal join between the two tables (restricted to data
involving the Apple stock). As in TSQL2, an overlap condition between the
timestamps of the matching tuples is implicit and their intersection is assigned
as timestamp to the joined tuples in the result. With the data in Fig. 1, the
outcome of (Q1) is composed of the temporal tuples “(N4, Opt666 , 35)” and
“(N7, Opt237 , 44)”. This is a typical example of a sequenced query, as only data
valid at the same time are retrieved together.

(Q2) The second query we consider retrieves the identifiers of the news
superseded by another news with the same type within a narration (i.e., the
superseded and the superseding news must be represented by tuples with con-
secutive timestamps, must have the same values of the source-stock pair to be
part of the same narration and must also have the same value of the type as
requested). The desired query can be expressed in a TSQL2-like language as
follows:

SELECT SNAPSHOT LN1.ID (Q2)
FROM LATEST NEWS AS LN1 LN2

WHERE LN1.SOURCE = LN2.SOURCE AND LN1.STOCK = LN2.STOCK

AND LN1.TYPE = LN2.TYPE AND LN1 MEETS LN2

The temporal predicate LN1 MEETS LN2 is verified if the interval timestamps
of LN1 and LN2 are consecutive (i.e., END(LN1.T)=BEGIN(LN2.T)) [15, Ch. 13].
With the data in Fig. 1, the outcome of (Q2) is composed of the snapshot
(i.e., non-temporal) tuple “(N4)” as the only qualifying pair of news with the
same type is N4-N7 in the narration of Apple by the Financial Time. This is
an example of a non-sequenced query, as data belonging to different temporal
snapshots have to be matched via the temporal selection predicate MEETS.

(Q3) In our TSQL2-like language proposal, hybrid sequenced/non-sequenced
queries can also easily be expressed. In practice, the example which follows
combines parts of (Q1) and (Q2) in a single SELECT statement, which retrieves
the identifiers of the news and options concerning the same stock traded during
the period in which the news was considered the latest, but which was then
superseded by another news with the same type within the same narration. The
resulting query is as follows:

SELECT LN1.ID, OPTION (Q3)
FROM LATEST NEWS AS LN1 LN2, OPTION TRADES AS OT

WHERE LN1.SOURCE = LN2.SOURCE AND LN1.STOCK = LN2.STOCK

AND LN1.TYPE = LN2.TYPE AND LN1 MEETS LN2

AND LN1.STOCK = OT.STOCK

9
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In practice, bindings of tuple pairs to variables LN1-LN2 are determined with
a non-sequenced semantics as in (Q2) but then a temporal join is performed
between tuples bound to variables LN1 and OT with a sequenced semantics as in
(Q1). With the data in Fig. 1, the outcome is the temporal tuple “(N4, Opt666,
35)”. Notice that we assume an implicit temporal join condition (overlap of
timestamps) is always implied between all the relation names/variables whose
attributes appear in the SELECT clause (i.e., LN1 and OT in (Q3)), while the
intersection of their timestamps is assigned to the joined tuples in the result 1.
The ability to mix in the same query sequenced and non-sequenced execution
semantics is a quality of the so-called history-oriented query languages, like
TSQL2 and HoT-SQL [27]. Histories in a relation are sets of tuples with the same
key representing versions of the same real-world objects [19]. History-oriented
languages provide a friendly syntax that allows users, with a single SELECT

statement, to combine different histories using a sequenced semantics and to
select histories by means of conditions involving their component versions using
a non-sequenced semantics.

Now we come back to the market surveillance application problems and
consider examples where the proper nature of a streaming table is exploited by
means of continuous queries. The TSQL2-like query syntax adopted so far will
be extended to support continuous queries by means of constructs similar to the
window functions previously proposed for streaming data query languages like
Flink, SparkSQL or SQLStream [4, 12, 28].

(Q4) As a preliminary step, we consider a query that can be used to evaluate
the impact of financial news on the option market behavior. To this purpose,
for each news concerning a stock, we want to appreciate whether there is a
significant difference between the trade volumes, of the options on that stock,
recorded one week before and one week after the publication of the news. The
higher the variation of the after volume with respect to the before volume is,
the more impactful we can consider the news publication.

Using a continuous query, the weekly trade volumes can be computed
as the sum of contracts traded in a one-week time window sliding over the
OPTION TRADES streaming table. To this purpose, two time-based sliding win-
dow expressions must be defined partitioned by stock (a partitioned window
implies that a separate sliding window is actually constructed for each stock).
For each sampling time point t, the first window W1A is defined to include all
the stream tuples inserted in the week that follows t, whereas the second win-

1In TSQL2, the default option is an implicit temporal join condition between all the
“argument relations” [15, Ch. 13], which could be interpreted as all the relations appearing
either in the SELECT or in the FROM clause. As both interpretations were sometimes followed in
exemplifying the use of the language [15, Ch. 3–4], the definition is actually ambiguous. If the
second interpretation is chosen, in order to override the default and specify a hybrid semantics,
an explicit VALID INTERSECT(LN1, OT) clause would be required in (Q3) to exclude LN2 from
the intersection of timestamps to be assigned to the result. We prefer to adhere to the first
interpretation and simplify the query syntax by considering as default the intersection of the
timestamps of the relations involved in the SELECT clause only.
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dow W1B is defined to include all the stream tuples inserted in the week that
precedes t. Such tuples are then used to compute the aggregate function SUM

over their CONTRACTS values; hence W1A.SUM(CONTRACTS) represents the option
trade volume in the week after and W1B.SUM(CONTRACTS) represents the option
trade volume in the week before. The expression 100*(W1A.SUM(CONTRACTS)/

W1B.SUM(CONTRACTS)-1) can then be used in the query target list to compute
the percentage variation of the volume after with respect to the volume before.
The desired continuous query can be specified as follows:

SELECT SOURCE, LN.STOCK, (Q4)
100*(W1A.SUM(CONTRACTS)/W1B.SUM(CONTRACTS)-1),

VALID BEGIN(LN)

FROM OPTION TRADES OVER

(PARTITION BY STOCK RANGE 1 WEEK FOLLOWING) AS W1A,

OPTION TRADES OVER

(PARTITION BY STOCK RANGE 1 WEEK PRECEDING) AS W1B,

LATEST NEWS AS LN

WHERE LN.STOCK = W1A.STOCK AND LN.STOCK = W1B.STOCK

SAMPLE INTERVAL 1 SECOND DELAY 1 WEEK

The sequenced semantics of the query requires a temporal join, which synchronizes
the evaluation of the sliding window expressions with the news publication time.
In fact, the timestamp assigned to the results is determined by the clause VALID

BEGIN(LN), which extracts the publication time of the news, and must intersect it
with the valid time of the sliding windows used in the SELECT clause. Considering
the data in Fig. 1, for instance, for the news N8 concerning Tesla and published
at time 43, the query (Q4) would have returned the temporal tuple “(Wall Street
Journal, Tesla, 37.14 , 43)”, as the before volume is 350 (given only by the trade
on option Opt245 at time 42) and the after volume is 480 (given only by the
trade on option Opt245 at time 45).

The SAMPLE clause is used to specify the sampling pattern which is used
to execute the continuous query. In this way, the query is evaluated at every
second: in practice, if there is some news published at that time, the sliding
windows are evaluated to compute some result. The DELAY parameter forces the
evaluation of the continuous query to occur one week after the time at which
it should have been executed. Notice that such a query could not produce any
results in real time, that is joining with the temporal relation LATEST NEWS the
data inserted into OPTION TRADES at the time they enter the stream, because the
news information is inserted by human experts retroactively, after an accurate
press review job. For instance, the N4 news published at time 34 could have
been inserted by the experts 4 days after its publication. Therefore, if the join
was executed in real time, no results would be produced, as no news could be
found in the relation LATEST NEWS at the time of their publication. This is the
reason for which standard approaches for joining a data stream with a temporal
table (e.g., as considered for the Flink query language [12]) would probably fail.
In order to wait for the news data to be eventually inserted, the trading data
stream has to be persistently stored in a streaming table, from which it can then
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be used retrospectively. In our example, we assume a safety delay of 7 days
with respect to their publication time is sufficient to have all relevant news data
correctly stored. Evaluating the continuous query (Q4) with such a sampling
delay can thus produce the desired results.

For continuous queries, we also allow a syntactic variant already proposed for
other streaming SQL extensions (e.g., SQLStream [4]), providing for a separate
WINDOW clause where window expressions can be declared. Using this alternate
syntax, query (Q4) becomes as follows:

SELECT SOURCE, LN.STOCK, (Q4′)
100*(W1A.SUM(CONTRACTS)/W1B.SUM(CONTRACTS)-1),

VALID BEGIN(LN)

FROM OPTION TRADES OVER W1A WIN AS W1A,

OPTION TRADES OVER W1B WIN AS W1B,

LATEST NEWS AS LN

WHERE LN.STOCK = W1A.STOCK AND LN.STOCK = W1B.STOCK

WINDOW W1A WIN AS (PARTITION BY STOCK RANGE 1 WEEK FOLLOWING),

W1B WIN AS (PARTITION BY STOCK RANGE 1 WEEK PRECEDING)

SAMPLE INTERVAL 1 SECOND DELAY 1 WEEK

Moreover, there is a main difference between our SQL streaming extension and
previous proposals. In previously defined streaming query languages (e.g., Flink,
Spark or SQLStream) window expressions can only be used in the SELECT clause
to produce query results by means of aggregate functions. In our proposed SQL
extension, we move their declaration to the FROM clause as in (Q4) (or to the
combination of FROM and WINDOW clauses as in (Q4′)). Then, we allow their use
with aggregate functions in the SELECT but also in the WHERE clause, in order to
enable window-based data selection. Although allowing aggregates in the WHERE

clause could look like a “stretch” of the SQL standard syntax, once window
expressions have been constructed, aggregates computed over them can play
the role of flat table attributes and, thus, used for selection as plain attributes
in the WHERE clause. Obviously, aggregates in the WHERE clause can only be
used as attributes of window expressions. The theoretical underpinning of this
syntax proposal is the straightforward translation of such a SQL query into the
continuous algebra that will be introduced in Sec. 5.

Furthermore, query (Q4) (or (Q4′)) can also be used as the definition query
of a (continuous) temporal view NEWS IMPACT(SOURCE, STOCK, VOL VAR |T ),
which plays the role of a materialized collection of the results incrementally
produced by the underlying continuous query. For each source-stock pair,
the NEWS IMPACT view collects the percentage variations after/before the news
publication in the weekly trade volumes of the stock, as computed by the
continuous query (Q4) (or (Q4′)). For instance, such a view could then be
exploited in the query that follows:

SELECT SOURCE, AVG(VOL VAR), COUNT(DISTINCT STOCK) (Q4′′)
FROM NEWS IMPACT

WHERE VOL VAR > 50
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GROUP BY SOURCE

ORDER BY 2 DESC, 3 DESC

In (Q4′′), first of all, only the tuples representing a significative impact for which
the after/before weekly variation is above 50% are selected by the WHERE clause.
Then the surviving NEWS IMPACT tuples are grouped by publication source and
aggregate functions are computed to measure the average after/before weekly
variation and the number of stocks whose option trades have been significantly
influenced by that source. The ORDER BY clause makes the query results to be
displayed in the form of a ranking of the sources. Obviously, the returned data
are biased by highly impactful news concurrently published by different sources,
but could provide anyway a useful first-sight indication of how the publication
sources could have been influential on the stock option market behavior.

As in traditional databases, the query (Q4′′) can be answered by the SQL
language processor by combining its specification with the definition query (Q4)
(or (Q4′)) of the NEWS IMPACT view, resulting in a continuous query (in Sec. 7,
we will show its full algebra translation).

(Q5) Now we consider a continuous query that returns the days in which
at least 10,000 options were traded in the afternoon trading session before, on
the same day, the news of an Apple product launch was published. To this
purpose, first of all we need a SAMPLE clause that specifies that the sampling
points are spaced by one day and centered on noon (i.e., aligned to the start
of the day plus 12 hours) and, as in (Q4), the continuous execution requires
an evaluation delay of 1 week in order to have the news regularly stored. In
order to determine the instant at which 10,000 options have possibly been traded
in the afternoon, we can use a count-based sliding window N10KA defined to
contain the 10,000 tuples inserted in the streaming table OPTION TRADES after
the beginning of the window. The time at which the insertion of the 10,000-th
tuple occur, that is the timestamp of the last tuple belonging to the window,
can be extracted from N10KA via the aggregate function LAST. The news of
interest are selected if their type is product launch and they concern the Apple
stock. The temporal join conditions N10KA.LAST < BEGIN(LN) AND BEGIN(LN)

< N10KA.T + INTERVAL 12 HOUR ensure that the 10,000-trade target has been
reached before the publication of the news and that the two events occurred
on the same day. Finally, a function DAY() is assumed to be available to be
used in the SELECT clause to extract the day component from the timestamp
of N10KA (in TSQL2, an expression SCALE(N10KA.T AS DAY) should be used
instead). The resulting continuous query can be specified as follows:

SELECT SNAPSHOT DAY(N10KA.T) (Q5)
FROM OPTION TRADES OVER (ROWS 10000 FOLLOWING) AS N10KA,

LATEST NEWS AS LN

WHERE LN.TYPE = ’Product Launch’ AND LN.STOCK = ’Apple’

AND N10KA.LAST < BEGIN(LN)

AND BEGIN(LN) < N10KA.T + INTERVAL 12 HOUR

SAMPLE INTERVAL 1 DAY ALIGN TO START + 12 HOUR DELAY 1 WEEK
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Query (Q5) requires a non-sequenced semantics to evaluate the temporal join
conditions. Considering the data in Fig. 1, the news N3 published at time 26
announcing an Apple product launch can be found in the LATEST NEWS table.
Even assuming time 26 was in the afternoon, the corresponding day is not
selected, as the total number of options traded after time 26 is 6 (i.e., all the
tuples in the streaming table OPTION TRADES), well below 10,000. Obviously, the
“toy database” in the Figure only cover a few seconds of the application lifetime
and the results of query (Q5) would be quite different with real data.

(Q6) Finally, we consider the insider trading detection problem. We assume
that, in order to trigger an investigation procedure, an anomalous trading volume
of an option, preceding the public release of some relevant news concerning the
underlying stock, published in the 6 days following, needs to be identified. The
investigation has to performed over the last six months of option trading data.
As anomalous volume, we consider a daily trading volume ten times higher than
the average daily volume over the past month. For instance, considering the
data in Fig. 1, this could be the case of the Apple stock option Opt666 recorded
in table OPTION TRADES, which shows a seemingly very high volume with respect
to the other traded options. Anyway, the data in Fig. 1 only cover about 20
seconds of the application lifetime and, thus, do not allow to test the functioning
of the query, which would require at least data collected over a couple of months.

Following this specification, the suspect stock-day pairs deserving further
investigations could be easily retrieved via a continuous query running at the
beginning of each trading day and performing a non-sequenced temporal join
between the relevant time window(s) of the streaming table OPTION TRADES and
the standard temporal table LATEST NEWS. Notice that also such a detection
query could not be executed in a “classical” stream management system, because,
when the windows used for computing volumes are evaluated, the relevant news
have not been published yet. Hence, stream data must be stored in a streaming
table for our purpose, and time windows evaluated in a delayed mode, when all
relevant news will be available. After the 1-week publication deadline, as in (Q4)
and (Q5), one more delay week is added to let human experts to insert the news
after their publication.

The required trade volumes per stock can be computed as the sum of con-
tracts concluded on sliding windows defined over the OPTION TRADES stream-
ing table. To this purpose, two time-based sliding window expressions par-
titioned by stock and with different width are needed. For each sampling
time point t, the first window D1A is defined to include all the stream tu-
ples inserted in the day that follows t, whereas the second window M1B is
defined to include all the stream tuples inserted in the month that precedes
t. Such tuples are then used to compute the aggregate function SUM over their
CONTRACTS values; hence D1A.SUM(CONTRACTS) represents the option trade vol-
ume in the day following t and W1B.SUM(CONTRACTS) represents the option trade
volume in the month preceding t. Hence, the condition D1A.SUM(CONTRACTS)

> 10*M1B.SUM(CONTRACTS)/30 can be used in the WHERE clause to select the
stocks for which the daily trade volume after is greater than 10 times the average
daily trade volume in the month before (computed as 1/30th of the total monthly
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volume).
The desired query can be expressed in the proposed TSQL2-like language as

follows:

SELECT D1A.STOCK VALID D1A.T (Q6)
FROM OPTION TRADES OVER

(PARTITION BY STOCK RANGE 1 DAY FOLLOWING) AS D1A,

OPTION TRADES OVER

(PARTITION BY STOCK RANGE 1 MONTH PRECEDING) AS M1B,

LATEST NEWS AS LN

WHERE D1A.STOCK = M1B.STOCK

AND D1A.SUM(CONTRACTS) > 10*M1B.SUM(CONTRACTS)/30

AND D1A.STOCK = LN.STOCK

AND BEGIN(LN) >= D1A.T + INTERVAL 1 DAY

AND END(LN) < D1A.T + INTERVAL 1 WEEK

SAMPLE INTERVAL 1 DAY ALIGN TO START DELAY 15 DAYS

HISTORICAL PERIOD 6 MONTH

The evaluation of the temporal selection condition BEGIN(LN) >= D1A.T +

INTERVAL 1 DAY AND END(LN) < D1A.T + INTERVAL 1 WEEK, which ensures
that the news has been published from the next day to 1 week following the
anomalous daily volume, requires a non-sequenced semantics. The management
of the validity of the two time windows and the production of temporal tuples
as result (timestamped by D1A.T) require instead a sequenced semantics.

Notice that in the SAMPLE clause of (Q6) all the available options for defining
the sampling pattern have been used. In particular, sampling times are defined
as occurring one per day at 00:00 AM (i.e., aligned at the start of the day) and
evaluation is delayed by 15 days. Notice that ALIGN TO START is the default
option and, thus, could be omitted as done in query (Q3). The analysis is not
performed using all the streaming data stored in OPTION TRADES but only on
the option trade data valid in the last six months, according to the HISTORICAL

PERIOD specification.
Summing up, we can point out the following properties of the presented query

examples concerning a market surveillance application:

• (Q1) requires the use of a streaming table in a temporal query (so that
streaming data can be used off-line as belonging to a standard temporal
table); the temporal query execution requires a sequenced semantics.

• (Q2) the temporal query execution requires a non-sequenced semantics.

• (Q3) requires the use of a streaming table in a temporal query; the temporal
query execution requires a hybrid sequenced/non-sequenced semantics.

• (Q4) requires the use of a temporal table in a continuous query; the
continuous query execution requires the use of a streaming table for delayed
execution; the temporal query execution requires a sequenced semantics.
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• (Q5) requires the use of a temporal table in a continuous query; the
continuous query execution requires the use of a streaming table for de-
layed execution; the temporal query execution requires a non-sequenced
semantics.

• (Q6) requires the use of a temporal table in a continuous query; the
continuous query execution requires the use of a streaming table for delayed
execution; the temporal query execution requires a hybrid sequenced/non-
sequenced semantics.

The approach presented in this work is aimed at fulfilling all these requirements.

4. Querying Streaming Tables with OTQs: The Temporal Algebra
T A?

T A? is the temporal algebra we propose to specify queries over streaming,
temporal, and standard tables. It extends the temporal algebra T A with the
controlled use of standard relational operators and supports an hybrid semantics
that is necessary to specify expressive queries like those shown in Sec. 3. T A?
is used to specify OTQs where streaming tables are dealt with as event table
and is the basis for the continuous temporal algebra CT A.

4.1. The Temporal Algebra T A
The starting point of our proposal is the temporal algebra T A presented in

[16], equipped with the following primitive temporal operators: selection σT ,
projection πT , Cartesian product ×T , union ∪T , difference −T , and grouping
ϑT . Each of these temporal operators is a generalization of a standard relational
operator where the T -superscript does not appear (derived operators, like the
join ./T , can also be considered as usual).

The semantics of the T A operators is shown in Table 1, where, if (r, τ) is
a tuple of a temporal relation with explicit schema R(X), we consider r (with
schema X) its explicit part and τ the tuple timestamp; P is the set of all
well-defined predicates p over the explicit attributes X of R; B ⊂ X is a subset
of schema attributes; F = {f1, . . . , fk} is a set of aggregation functions (e.g.,
COUNT, SUM, AVG, . . . ); ◦ is a tuple concatenation operator.

Notice that the result of the Cartesian product applied to at least one
streaming table returns a streaming table, the union operator returns a streaming
table when both operands are streaming tables and the difference operator returns
a streaming table when the first operand is a streaming table. The grouping
operator performs aggregation by groups. More precisely, it partitions the tuples
of a temporal table into groups according to their common values on attributes
in B, and it applies the aggregate functions in F ⊆ F to each group. Finally,
notice that, differently form the one defined in [16], τt is an “extended” timeslice
operator that maintains the timestamps, such that its outcome is still a temporal
relation representing the snapshot valid at time t.
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Operator Signature

Operator semantics

Selection σT : R×P → R
σTp (R) := {(r, τ) | (r, τ) ∈ R ∧ p(r)}
Projection πT : R× 2A → R
πTB(R) := {(r.B, τ) | (r, τ) ∈ R}
Cartesian product ×T : R×R → R
R1 ×T R2 := {(r1 ◦ r2, τ) | (r1, τ) ∈ R1 ∧ (r2, τ) ∈ R2}
Union ∪T : R×R → R
R1 ∪T R2 := {(r, τ) | (r, τ) ∈ R1 ∨ (r, τ) ∈ R2}
Difference −T : R×R → R
R1 −T R2 := {(r, τ) | (r, τ) ∈ R1 ∧ (r, τ) /∈ R2}
Grouping ϑT : R× 2A × 2F → R
Bϑ

T
F (R) := {(r.B ◦ Z, τ) | (r, τ) ∈ R ∧ rg = {(r′, τ) ∈ R | r′.B = r.B}

∧Z = (f1(rg), . . . , fh(rg))}
Extend ε : R×A → R
εU (R) := {(r ◦ U, τ) | (r, τ) ∈ R ∧ U = τ}
Timeslice τ : R× T → R
τt(R) := {(r, τ) | (r, τ) ∈ R ∧ τ = t}

Table 1: T A operator semantics

The definition of these operators is borrowed from [16, Sec. 2 and Appendix
A] and, thus, T A supports a sequenced semantics in terms of extended snapshot
reducibility. In particular, an extend operator εU is available, which can be used
to copy the timestamp T to the additional explicit attribute U . As defined in
[16], extended snapshot reducibility refers precisely to the support of queries
that reference in such a way the original timestamps.

4.2. Overcoming the Limitations of a Sequenced Temporal Algebra

The work [16] has made a breakthrough contribution to the development of
the temporal database technology, by showing how an interval-based temporal
database can be implemented on top of an existing traditional relational database,
by enabling its query engine (with all its optimization machinery) to execute
sequenced queries by means of simple kernel extensions.

However, the execution of sequenced queries as it can be done with the T A
algebra is only a part of the duties required to a temporal database. In fact, the
provision of a query language with a strict snapshot-reducible semantics only is
almost useless for the development of temporal applications as it lacks support of
real temporal queries. Let us assume for simplicity a time granularity of one day
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and consider a temporal algebra expression QT built with the σT , πT ,×T ,∪T ,−T
base operators only. Let Q be a (non-temporal) relational algebra expression
obtained from QT by replacing each temporal operator with its non-temporal
counterpart. Being a temporal database a timestamped collection of snapshot
databases, the results of the execution of QT is, by definition, the timestamped
collection of the results that can be obtained, day by day, by executing Q on the
timeslice of the relations in the database valid at that day (i.e., the results only
depend on the database snapshot valid at that day). Hence, there is no need to
have a temporal database and a temporal query language to extract the data to
build such a result: it is sufficient to have a non-temporal database and execute
the same non-temporal query Q every day on the current database instance.
A temporal relation is only needed to collect in a persistent way the query
results obtained day by day, timestamping them with the current date. On the
contrary, a real temporal database with a real temporal query language is needed
to execute queries that involve, at the same time, data belonging to different
snapshots, like (Q2), (Q3), (Q5) and (Q6) in Sec.3. We call real temporal
queries such queries, which are typical non-sequenced queries. For instance,
a query like (Q2), which selects financial news that have been superseded or
rectified (i.e., news for which the next news, published on the same source and
concerning the same stock, has the same type), is a typical real temporal query
that needs a real temporal database to be answered. In fact, the answer requires
the comparison of the news belonging to two consecutive snapshots to be effected.
A snapshot-reducible temporal algebra is completely useless to this purpose, as
it is unable to mix data belonging to different snapshots.

Notice that the necessity of operators with a non-sequenced semantics to
express real temporal queries has been rather underestimated in the recent
literature regarding temporal algebras. For example, in the the concise survey
[29], temporal algebras are classified as based on snapshot evaluation (viz.,
sequenced semantics) or on traditional evaluation (viz., non-sequenced semantics).
Then, in the exemplification of algebras with a snapshot evaluation, the selection
operator is defined as σtF (R) = σF (Rt) for all t ∈ T , where Rt is the snapshot of
R at time t and the selection formula F is said to include traditional predicates
as well as temporal predicates like Before, After, Overlaps, etcetera. Allowing
for temporal predicates in F seems clearly aimed at supporting real temporal
queries, which is though incompatible with the sequenced semantics: evaluation
of temporal predicated in F by σF (Rt) is impossible as only one snapshot valid
at t is available! Hence, only temporal algebras based on traditional or hybrid
evaluation are able to express real temporal queries.

The authors of [16] partially acknowledged the limitations of a purely
snapshot-reducible algebra and introduced, to overcome them, an extend op-
erator ε and a careful definition of the temporal aggregate operator ϑT . The
extend operator does timestamp propagation, that is it copies the values of the
tuple timestamp into an explicit attribute in order to make the timestamp values
accessible to the manipulation by other operators. The temporal aggregate
operator is a snapshot-reducible operator that is able to produce a result by
aggregating data belonging to more than one snapshot (i.e., to all the snapshots
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spanned by interval timestamps). In particular, they showed in [16] how the
use of the extend operator is needed in order to correctly compute the values
of temporal aggregates from tuples adopting interval-based timestamping by
scaling attribute values (in a way depending on their semantics). Attribute
scaling is made necessary by the adjustment of intervals which is used to execute
snapshot-reducible temporal queries on a traditional database kernel.

However, the support of real temporal queries in [16] is just limited to the
evaluation of such temporal aggregates (and the use of the extend operator is
basically aimed at the correct computation of such aggregates via the scaling
mechanism). For instance, our example query (Q2) retrieving superseded news
cannot be expressed in the temporal algebra proposed in [16]. In fact, in order to
express such a query on data stored in the LATEST NEWS relation, pairs of tuples
with consecutive interval timestamps have to be found and the attributes STOCK,
TYPE, SOURCE in them compared (i.e., a non-sequenced temporal self-join has to
be actually executed). Assuming N1 and N2 are two aliases for the LATEST NEWS

relation, the desired result can be obtained by means of the following expression
written in the plain relational algebra (accessing timestamps as if they were
explicit attributes):

πN1.ID,N1.T(σN1.SOURCE=N2.SOURCE∧N1.STOCK=N2.STOCK
∧N1.TYPE=N2.TYPE∧N1.T MEETSN2.T

(N1 ×N2))

Using the T A temporal algebra, the timestamps of N1 and N2 can even be
propagated via the extend operator to become available as explicit attributes
as follows: M1 = εU (N1) and M2 = εU (N2). But there is no way to test the
temporal join condition M1.U MEETSM2.U with the snapshot-reducible operators
of the temporal algebra. For instance, the expression:

σTM1.SOURCE=M2.SOURCE∧M1.STOCK=M2.STOCK
∧M1.TYPE=M2.TYPE∧M1.U MEETSM2.U

(M1 ×T M2)

always produces an empty result, owing to the snapshot-reducible semantics
of the temporal Cartesian product operator, which only combines tuples having
an overlapping timestamp (if M1.T and M2.T overlap, also their copies M1.U
and M2.U overlap and, thus, M1.U MEETSM2.U is always false). A snapshot-
reducible temporal algebra, by definition, can only interoperate data belonging
to the same snapshots, whereas our sample query require data belonging to
different snapshots to be interoperated.

This deficiency of all the snapshot-reducible temporal algebras, including
that of [16], can be overcome in a simple way by allowing the use of non-temporal
algebra operators in temporal algebra expressions. The only requirement for their
use, in order to guarantee the closure of the resulting extended temporal algebra,
is that they are used, possibly in combination, to produce macro expressions that
produce anyway correct temporal relations (whereas their subexpressions may do
not). For instance, being M1 and M2 the temporal algebra expressions defined
above, σSTOCK6=’Tesla’(M1) and M2 × πSOURCE(M2) are correct uses of the non-
temporal operators, since their result are temporal relations, whereas πSTOCK(M1)
and M1 ×M2 are not (the former expression produces a relation without a
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ET A? → QT

QT → RT , opT1 (QT ), RT opT2 Q
T , QT ×Q, Q×QT

opT1 → πTX , σTF , Bϑ
T
F , εU , τt

opT2 → ×T , ∪T , −T
RT → temporal table, streaming table,

(Q)T (non-temporal expression virtually converted to temporal)

Q → R, op1(Q), Q op2R,

πY (QT ) (Y is a subset of the explicit attributes of QT )

op1 → πX , σF , BϑF

op2 → ×, ∪, −
R → non-temporal table

Table 2: Complete syntax of a T A? expression ET A?

timestamp and the latter would produce a relation with two timestamps). Hence,
the expression M1 × πID,STOCK,TYPE,SOURCE,U (M2) represents a correct use of non-
temporal operators, as the result is a correct temporal relation (basically the
Cartesian product between the relation M1 and a relation containing the non-
temporal part of the tuples of M2, timestamped with the timestamps of M1).

4.3. The Temporal Algebra T A?
To overcome the limitations of a sequenced temporal algebra, we propose the

temporal algebra T A? that seamlessly combine the temporal relational algebra
T A with the standard relational algebra. The former provides implicit access to
time over temporal tables while the latter can be used to query standard tables,
including temporal tables where timestamp are made explicit via the extend
operator εU .

The full syntax of any expression ET A? in T A? is shown in Tab. 2.
In particular, T A? provides for a hybrid semantics leveraging the algebras it

combines. In fact, both sequenced and non-sequenced semantics are supported in
the expression and during the execution of a query, provided that it is clear which
parts of the language must be evaluated with a sequenced or non-sequenced
semantics. In fact, T A? extends T A to the support of the non-sequenced part of
queries, which can be reduced to the minimum necessary, by means of standard
relational operators in subexpressions (e.g., to join data belonging to different
snapshots).

Specifically, according to the T A? production rules QT → QT × Q and
QT → Q×QT , standard algebraic sub-expressions Q1, . . . , Qn can be combined
with one temporal sub-expression QT only by means of the × and the temporal
result inherits the timestamps from the streaming/temporal operand QT .

On the other hand, any standard algebraic sub-expression Q can always be
explicitly converted to a temporal one through the T A? expression (Q)T and
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eventually be argument of T A operators according to the QT production rules.
In practice, like the TSQL2 language, our proposed T A? provides a snapshot-

reducible algebra template allowing for islands of non-reducibility inside. Specif-
ically, The first five production rules define the snapshot-reducible template,
whereas the last four ones define the islands of non-reducibility.

Notice that the ATSQL language [17] can be used in a similar way by nesting
non-sequenced statements into sequenced statements (e.g., to translate temporal
logic expressions as shown in [30]); however, the resulting statements with
possibly multiple nestings come out unnecessarily complex even for quite simple
temporal SPJ queries, with respect to the TSQL2-like syntax we propose for
T A? and for which a single SELECT statement suffices as shown in Sec. 3. To the
best of our knowledge, no temporal algebras which can be used with a hybrid
semantics were formalized before T A?. Put in another way, T A? can also be
used to give a complete hybrid semantics to ATSQL queries where mutiple SEQ
and NSEQ nesting levels are employed.

In order to highlight its being an evolutionary step with respect to T A (for
which the expression “extended snapshot reducibility” was coined), we say that
T A? supports an extended? snapshot reducibility semantics.

In the following, we assume readers are familiar with the syntax and semantics
of relational queries2 and we only provide a concise yet informal semantics of
T A?.
Definition 2 (T A? Semantics). Given a T A? expression

ET A? = QT (S1, . . . , Sn, R
T
1 , . . . , R

T
m, Q1, . . . , Q`)

over n streaming tables S1, . . . , Sn, with n ≥ 1, m temporal tables RT1 , . . . , R
T
m,

with m ≥ 0, and ` non-temporal sub-expressions Q1, . . . , Q`, with ` ≥ 0, its
semantics is the result of the semantics of the involved temporal operators for
which extended? snapshot reducibility holds and where each Qi operand is virtually
converted to temporal, that is for each t ∈ T :

τt(ET A?) = QT (τt(S1), . . . , τt(Sn), τt(R
T
1 ), . . . , τt(R

T
m), τt((Q1)T ), . . . , τt((Q`)

T ))

T A? expressions are used to specify both OTQs and CQs over streaming,
temporal and standard tables. The two kinds of queries differs in the access
paradigm for streaming tables and in the semantics. Streaming tables in OTQs
are accessed as event tables and the semantics of any OTQ is the semantics of
the corresponding T A? expression.

Example. Coming back to the last example of Sec. 4.2, it is worth noting that
the algebraic expression testing the temporal join condition M1.U MEETS M2.U
can be expressed in T A? as follows:

σTM1.SOURCE=M2.SOURCE∧M1.STOCK=M2.STOCK
∧M1.TYPE=M2.TYPE∧M1.U MEETSM2.U

(M1 × πID,STOCK,TYPE,SOURCE,U (M2))

2Interested readers can refer to [31] for an in-depth study.
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Streaming tables in CQs are instead accessed as data streams. T A? is then
extended with windowing operators giving rise to the continuous temporal algebra
CT A and its continuous evaluation semantics that are presented in Sections 5
and 6. Examples of legal use of T A? expression deriving from the translation of
the queries presented in Sec. 3 will be given in Sec. 7.

As far as the expressiveness of T A? is concerned, notice that the possibility
of accessing the timestamp values and of using them as if they were explicit
attributes for all intents and without limitations via non-temporal algebra
operators, makes our T A? language as expressive as the Temporal Relational
Calculus (TRC) [32], which has been proven to be strictly more expressive than
a language based on First-Order Temporal Logic (FOTL), with “implicit” access
to time like the temporal algebras with snapshot evaluation [29], including T A
[16]. For example, the TRC “snapshot-equality” query, which was proven in
[33, 34] that cannot be expressed in FOTL, can be expressed in our extended
temporal algebra as shown in Appendix A. These features are summarized by
the Lemma that follows.

Lemma 1. The temporal algebra T A? has the same expressiveness of the Tem-
poral Relational Calculus (TRC) [32] and, thus, is strictly more expressive than
a purely snapshot-reducible temporal algebra or an extended snapshot-reducible
temporal algebra like T A.

Proof. TRC is the two-sorted version of first-order logic over a data domain
D and a time domain T (2-FOL). Its syntax over a database schema ρ =
{R1, . . . , Rk} is defined by the grammar rule:

Q→ R(ti, xi1 , . . . , xik) | ti < tj | xi = xj | Q ∧Q | ¬Q | ∃xi.Q | ∃ti.Q

It is worth noting that it refers to the schemas of atomic relations R(t, x1, . . . , xn)
that temporally extend the relation symbols of a database schema and that all
references to time are explicit.

Given the equivalence between the calculus under active domain semantics
and the relational algebra, we can straightforwardly state that any 2-FOL query
over any temporal relation having an equivalent representation RT in T A? can
be translated in T A? by means of the algebraic expression πY (εU (RT )) and the
standard relational symbols according to the fragment of T A? syntax headed by
Q production rule in Tab. 2. �

However, unlike TRC, T A? is a temporal algebra that overcomes the limi-
tations of a sequenced temporal algebra by supporting a rich set of temporal
and non-temporal operators and the result of any T A? expression is a temporal
relation evaluated under the extended? snapshot reducibility semantics. The
advantage of this approach is twofold: powerful OTQs can be specified through
a simple yet intuitive SQL-based language like the one shown in Sec. 3 and
its implementation can largely benefit from temporally-aware query process-
ing optimizations. Specifically, during the optimization of a T A? expression,
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subexpressions Qi have to be processed separately (also adopting custom tech-
niques for the optimized execution of non-sequenced temporal joins). Then,
T A? expressions only containing RT , which can be either temporal tables, or
streaming tables, or the result of the evaluation of a subexpression Qi, can then
be processed and optimized as described in [16].

Notice that preserving the sequenced semantics as much as possible, while
allowing for minimal non-sequenced subexpressions to enrich the expressiveness
of the language, was an essential design requirement for T A?. In fact, the same
expressiveness could even be obtained by using the non-temporal algebra over
tables with explicit columns used as data timestamps, that is using a “poor
man’s approach” to the management of time-varying data. But this would mean
to completely give up the advantages of the adoption of a temporal data model
and query language, which could result in struggling with overly complex and
inefficient queries, as shown for example in [11], also to accomplish simple tasks
(e.g., enforcement of temporal constraints). Deprecation of such an approach
was indeed the spark that ignited the powders of temporal database research.

5. Querying Streaming Tables with CQs: the Continuous Temporal
Algebra CT A
A continuous query is a query that is issued once, and then logically runs

continuously until terminated by the user. Any streaming table S referenced in
a continuous query must be accessed through a sliding window expression w(S)
that specifies the boundaries of the range of tuples in S to be used for query
evaluation. The continuous temporal algebra CT A we propose leverages T A? and
extends the set of windowing operators usually adopted in the streaming context
[35], by generalizing their semantics to generate and operate on, possibly through
aggregation, sequences of windows instead of single windows. The following
definition introduces the notion of algebraic expression in the continuous temporal
algebra CT A.

Definition 3 (CT A Expression). An algebraic expression

ECT A = QT (w1(S1), . . . , wn(Sn), RT1 , . . . , R
T
m, Q1, . . . , Q`)

in the continuous temporal algebra CT A is a T A? expression QT over n streaming
tables S1, . . . , Sn, with n ≥ 0, each Si accessed through a corresponding sliding
window expression wi, m temporal tables RT1 , . . . , R

T
m, with m ≥ 0, that may also

include streaming tables accessed as event tables, and Q1, . . . , Qm non-temporal
sub-expressions.

The complete syntax of a general CT A expression ECT A is the same as
in Table 2 (with ECT A replacing ET A? in the first place) augmented by the
production rule RT → w(S), where S is a streaming table.

Furthermore, in order to have a well-defined semantics of continuous queries,
we must add to the CT A syntax the constraint that non-temporal Q subex-
pressions cannot contain sliding window expressions (they may contain anyway

23

Jo
ur

na
l P

re
-p

ro
of



Journal Pre-proof
streaming tables, which are dealt with as temporal tables). This means to forbid
that QT subexpressions appearing in πY (QT ) expressions (where Y is a subset
of the explicit attributes of QT ) may contain sliding window expressions w(S).

5.1. CT A Sliding Window Expressions

In order to support sliding window expressions (w) over streaming tables,
CT A introduces two classes of operators: one includes sliding window operators
(ω) and the other includes window flattening and aggregation operators (α).
Sliding window expressions are then defined in a modular way as the composition
of one of the former with one of the latter operators: w = α ◦ ω. Both classes
of operators include one standard and one partitioned version of each operator.
Standard operators operate over streaming tables whereas partitioned operators
operate over streaming table partitions, that is sets of streaming tables.

In the formalization of ω and α operators, in addition to the streaming table
datatype S, we will also make use of the following exotic datatypes:

set of streaming tables: 2S = {S |S ∈ S}

streaming table of streaming tables: S∗ = {(S, τ) |S ∈ S, τ ∈ T }

set of streaming tables of streaming tables: 2S
∗

= {S∗ |S∗ ∈ S∗}

For the sake of clarity, we give an intuition of these two classes of operators
that work in a complementary fashion. All sliding window operators ω generate
a timestamped sequence of portions of the input streaming table according to
a sliding window specification. The new timestamps assigned to each portion
correspond to times at which the windows are evaluated (whereas each portion
maintains as “temporal provenance” witnesses the original timestamps of the
tuples selected from the input streaming table). Specifically, the output of
base sliding window operators is formally a streaming table of streaming tables
whereas the output of partitioned sliding window operators is formally a set of
streaming tables of streaming tables. Window flattening operators and window
aggregation operators α reduce the result of a sliding window operator to a
streaming table, in any case.

In the following, we provide the formal definition and semantics of the
operators involved in the specification of sliding window expressions. For ease of
notation, we start by introducing some utility operators. The definition of CT A
operators and the specification of their combinations in legal expressions follow.

5.2. Utility Operators

The following operators provide useful transformations of streaming tables,
which are indeed used for the definition of CT A operators.

Definition 4 (Time-Substreaming). The time-substreaming operator SubT :
S × T 2 → S restricts a streaming table S ∈ S to only tuples such that their
timestamp belongs to an interval [t1, t2]:

SubT[t1,t2](S) := {u |u ∈ S ∧ t1 ≤ T (u) ≤ t2}.
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For instance, the expression SubT[2016-01-01 00:00:00, 2016-12-31 23:59:59](OPTION TRADES)
builds from OPTION TRADES a streaming table containing the trades executed in
2016 only.

Definition 5 (Order-Substreaming). The order-substreaming operator Subν :
S × T 2 → S restricts a streaming table S ∈ S to only tuples such that their
insertion number belongs to an interval [ν1, ν2]:

Subν[ν1,ν2](S) := {u |u ∈ S ∧ ν1 ≤ u.ν ≤ ν2}.

For instance, the expression Subν[201, 300](OPTION TRADES) builds from
OPTION TRADES a streaming table containing the 100 trades inserted after the
first 200 ones.

Definition 6 (Streaming Table Partition). The partitioning operator ζ :
S × 2A → 2S partitions the streaming table S ∈ S into a set of streaming tables
containing the tuples of S grouped by their attributes in B (as for the SQL group
by mechanism, a partition is created for each combination of the values of the
attributes B1, . . . , Bk in B):

ζB(S) := {S′ | ∃(s, τ) ∈ S ∧ S′ = {(s′, τ ′) | (s′, τ ′) ∈ S ∧ s′.B = s.B} }.

For instance, the expression ζCLASS(OPTION TRADES), partitioning OPTION TRADES

with respect to the values of CLASS, evaluates to a set containing two streaming
tables, one containing all the trades on call-type options and the other containing
all the trades on put-type options present in OPTION TRADES.

5.3. Sliding Window Operators (ω)

In accordance with commonly adopted definitions of sliding windows [35], sliding
window operators in CT A are time-based and count-based. Standard sliding
window operators apply to a streaming table S and formally generate a streaming
table of streaming tables. Definitions of (backward and/or forward) standard
sliding window operators are provided below.

Definition 7 (Time-based Sliding Window). The time-based sliding win-
dow operator wtime : S × I2 → S∗ over a streaming table S ∈ S creates a
streaming table of streaming tables with a window size of duration d1 ≥ 0 before
and d2 ≥ 0 after the timestamps around which it is computed:

wtime
[d1,d2]

(S) := {(S′, τ) | ∃τ ∈ T ∧ S′ = SubT[τ−d1,τ+d2](S)}.

For instance, the expression wtime
[1week,0](OPTION TRADES) defines a streaming table

whose tuples, for each time τ , are in turn streaming tables extracted from
OPTION TRADES by restricting it to the 1-week wide time window preceding τ .

Definition 8 (Count-based Sliding Window). The count-based sliding win-
dow operator wcount : S × N2 → S∗ over a streaming table S ∈ S creates a
streaming table of streaming tables with a window containing the temporally
closest n1 ≥ 0 tuples valid before and the temporally closest n2 ≥ 0 tuples valid
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Figure 2: Construction of (S′, τ) by wcount
[n1,n2]

(S). The tuples to be included in S′ have an

insertion number ν ∈ [ν1, ν2] in S.

after the time around which it is computed (the tuples possibly valid at the time
around which it is computed are also included):

wcount
[n1,n2]

(S) := {(S′, τ) | ∃τ ∈ T ∧ S′ = Subν[ν1,ν2](S)

∧ν1 = prev(S, τ, n1) ∧ ν2 = next(S, τ, n2)}.

In the definition of (S′, τ) above, the function prev(S, τ, n1) computes the in-
sertion number ν1 of the nth1 closest tuple of S inserted before τ , whereas the
function next(S, τ, n2) computes the insertion number ν2 of the nth2 closest tuple
of S inserted after τ . The functioning of prev and next is exemplified in Fig. 2.

For instance, the expression wcount
[1,1] (OPTION TRADES) defines a streaming

table whose tuples, for each timestamp τ , are in turn streaming tables extracted
from OPTION TRADES and containing one tuple immediately preceding τ , the
tuples valid at τ , and one tuple immediately following τ .

The partitioned version of each sliding window operator applies to a streaming
table S and formally generates a set of streaming tables of streaming tables,
resulting from the application of the corresponding standard sliding window
operator to each streaming table obtained by the partition of S according to a
given set of attributes B. The operators’ definitions follow.

Definition 9 (Time-based Partitioned Window). The time-based parti-
tioned sliding window operator W time : S × 2A × I2 → 2S

∗
over a streaming

table S ∈ S creates a set (of streaming tables of streaming tables) composed of
the time-based sliding windows (with a window size of duration d1 ≥ 0 before
and d2 ≥ 0 after the timestamps around which it is computed) computed over the
streaming tables into which S is partitioned according to the attributes in B:
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W time,B
[d1,d2]

(S) := {wtime
[d1,d2]

(S′) |S′ ∈ ζB(S)}.

For instance, the expression W time,OPTION
[0,1hour] (OPTION TRADES), involving a time-based

partitioned window, defines a set of streaming tables, each one corresponding to
a different option, composed of the streaming tables whose tuples timestamped
with τ are the streaming tables containing the trades involving that option
negotiated in the hour that follows τ .

Definition 10 (Count-based Partitioned Window). The count-based par-
titioned sliding window operator W count : S × 2A × N2 → 2S

∗
over a streaming

table S ∈ S creates a set (of streaming tables of streaming tables) composed of
the count-based sliding window (with a window containing the temporally closest
n1 ≥ 0 tuples valid before and the temporally closest n2 ≥ 0 tuples valid after
the timestamps around which it is computed) computed over the streaming tables
into which S is partitioned according to the attributes in B:

W count,B
[n1,n2]

(S) := {wcount
[n1,n2]

(S′) |S′ ∈ ζB(S)}.

For instance, the expression W count,STOCK
[10,0] (OPTION TRADES), involving a count-

based partitioned window definition, denotes a set of streaming tables, each for a
different stock, composed of the streaming tables whose tuples timestamped with
τ are the streaming tables containing the 10 most recent option trades preceding
τ , in addition to all the trades possibly concluded at time τ , concerning that
stock.

5.4. Window Flattening and Aggregation Operators (α)

The definition of window flattening and aggregation operators is introduced
in the following.

5.4.1. Window Flattening Operators

Window flattening operators allow for normalizing the output of a time-
based or a count-based sliding window operator in S∗ or 2S

∗
, respectively, to a

streaming table in S. As for sliding window operators, the window flattening
operator is introduced both in its standard and in its partitioned version.

Definition 11 (Window Flattening). The window flattening operator ϕ :
S∗ → S over a streaming table of streaming tables w creates a streaming table
composed of the tuples belonging to the streaming tables in w valid at the time at
which the flattening is computed:

ϕ(w) := {(εU (s), τ) | ∃(S, τ) ∈ w ∧ s ∈ S}.

For instance, the expression ϕ(wtime
[1hour,0](OPTION TRADES)), involving a window

flattening operator, builds a streaming table whose tuples with timestamp τ
are all the tuples belonging to the streaming table wtime

[1hour,0](OPTION TRADES)
valid at τ , that is belonging to the 1-hour wide time window of OPTION TRADES

preceding τ .
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Definition 12 (Partitioned Window Flattening). The partitioned window
flattening operator Φ : 2S

∗ → S over a set of streaming tables of streaming tables
W creates a streaming table composed of the tuples belonging to the streaming
tables in w ∈W valid at the time at which the flattening is computed:

Φ(w) := {(εU (s), τ) | ∃w ∈W ∧ ∃(S, τ) ∈ w ∧ s ∈ S}.

For instance, the expression Φ(W count,OPTION,CLASS
[4,0] (OPTION TRADES)), involving a

partitioned flattening operator, retrieves the data necessary to display, for each
time point and for each stock option, a book with the five latest put trades and
the five latest call trades.

It is worth noting that, for both flattening operators, tuples come out all
timestamped with τ in the result but preserve the value of the original timestamp
they had in OPTION TRADES converted into an explicit attribute U .

5.4.2. Window Aggregation Operators

Window aggregation operators are defined to compute aggregate data over time-
based or count-based sliding windows, according to a set of aggregation functions
F . As for operators above, both standard and partitioned versions of the window
aggregation operator are provided.

Definition 13 (Window Aggregation). The sliding window aggregation op-
erator θ : S∗ × 2F → S over a streaming table of streaming tables w cre-
ates a streaming table having as attributes the values of the aggregates in
F = {f1, . . . , fh} calculated over the streaming table in w valid at the time
at which the aggregation is computed:

θF (w) := {(Z, τ) | ∃(S, τ) ∈ w ∧ Z = (f1(S), . . . , fh(S))}.

The window aggregation operator θ can be used in queries for computing ag-
gregate data over time-based or count-based sliding windows. For each time
point τ , aggregates can be computed over the timestamped tuples belonging to
the streaming table S in w valid at time τ ; aggregate functions MIN, MAX, COUNT
(and SUM, AVG if numeric), FIRST VALUE, LAST VALUE, NTH VALUE(n)3, can be
used on the explicit attributes of S, whereas aggregate functions FIRST, LAST,
DURATION can be used on the timestamps of S.

For instance, the expression θDURATION(w
count
[9,0] (OPTION TRADES)) returns, for each

time point, the width of the time window containing the 10 most recent option
trades.

Definition 14 (Partitioned Window Aggregation). The partitioned slid-
ing window aggregation operator Θ : 2S

∗ × 2A × 2F → S over a set of streaming
tables of streaming tables W creates a streaming table having as attributes the
grouping attributes in B and the values of the aggregates in F = {f1, . . . , fh}

3FIRST VALUE, LAST VALUE, and NTH VALUE(n) are part of the SQL:2011 window functions
[36].
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calculated over the streaming tables w belonging to W valid at the time at which
the aggregation is computed:

BΘF (W ) := {(S.B ◦ Z, τ) | ∃w ∈W ∧ (S, τ) ∈ w ∧ Z = (f1(S), . . . , fh(S))}

The partitioned window aggregation operator Θ can be used in queries for
computing aggregate data over partitioned time-based or count-based sliding
windows. Also in this case, aggregate functions acting on explicit attributes or
timestamps can be used.

For instance, the expression EXPIRΘCOUNT(OPTION)(W
time,EXPIR
[0.5hour,0.5hour](OPTION TRADES)),

at each timepoint and for each expiration date, returns the number of options
with that expiration date traded in a 1-hour wide time window centered around
the timepoint.

5.5. Legal Sliding Window Expressions

α ω w

ϕ | θ wtime | wcount
ϕ(wtime

[d1,d2]
(S)), ϕ(wcount

[n1,n2]
(S)),

θF (wtime
[d1,d2]

(S)), θF (wcount
[n1,n2]

(S))

Φ | Θ W time |W count
Φ(W time,B

[d1,d2]
(S)), Φ(W count,B

[n1,n2]
(S)),

BΘF (W time,B
[d1,d2]

(S)), BΘF (W count,B
[n1,n2]

(S))

Table 3: CT A operators combinations in legal sliding window expressions w

The modularity of α and ω operators is regulated by the following definition:

Definition 15 (Legal Sliding Window Expression). A CT A legal sliding
window expression w(S) over the streaming table S is of the form α(ω(S)) where
standard wtime and wcount (resp., partitioned W time and W count) sliding window
operators can only be combined with their standard ϕ and θ (resp., partitioned Φ
and Θ) window flattening or window aggregation counterparts.

The admitted combinations are shown in Table 3 (combinations of standard
operators in the first row, of partitioned operators in the second row). These
constraints ensure that the value of continuous expressions augmenting T A?
is always a streaming table, so that the resulting continuous algebra CT A is
closed with respect to (streaming and) temporal tables. Nevertheless, the exotic
datatypes 2S , S∗ and 2S

∗
, that are used to formalize the operators and are not

part of the model, could be used as guidelines for a native implementation of
the CT A operators, for which the materialization of sets of streaming tables or
(sets of) streaming tables of streaming tables (which could be stored in a ¬1NF
datastore, e.g., in XML or JSON format) could be used to store intermediate
results during the evaluation of α(ω(S)) window expressions. In our approach,
materialization of such intermediate steps is unnecessary, as the translation that
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Figure 3: Examples of α(ω(S)) expressions: ϕ(wcount
[1,1]

(OPTION TRADES)) and

θSUM(CONTRACTS)(wcount
[1,1]

(OPTION TRADES)).

will be proposed in Sec. 8 maps any CT A expressions on T A? expressions to be
executed on top of a temporal DBMS via manipulation of temporal relations
only.

From a semantic point of view, the use of streaming tables of streaming
tables as intermediate results in the evaluation of α(ω(S)) expressions allowed
the propagation of original timestamps of tuples making up a streaming table
as provenance witnesses, while whole streaming tables are assigned by the ω
operator a new global timestamp corresponding to the window evaluation time.
Provenance witness timestamps are then used by the α operator to correctly
produce the desired final result in (1NF) streaming table format. In this respect,
such provenance witness timestamps play a role similar to the lineage sets used
in [16] to define change-preserving operators.

Example. Examples of how the results of α(ω(S)) expressions are conceptually
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constructed via the composition of a sliding window operator with a flatten-
ing or aggregation operator are shown in Fig. 3. The input streaming table
S is OPTION TRADES, the value of the intermediate sliding window expression
wcount

[1,1] (OPTION TRADES) is displayed on the top and the values of the final ex-

pressions ϕ(wcount
[1,1] (OPTION TRADES)) and θSUM(CONTRACTS)(w

count
[1,1] (OPTION TRADES))

are displayed on the bottom of the figure.

6. CQs Evaluation

In order to support continuous queries, a sampling operator is formally
introduced to evaluate an algebraic expression expressed in the continuous
temporal algebra CT A at the required time points. In line with many CQ
specification syntaxes (e.g., [23]), we assume a continuous query is always
equipped with a slide parameter sl representing the query evaluation period,
and with a further optional alignment parameter a specifying the position of the
evaluation point within the evaluation period. The slide parameter can be either
a user-supplied time span or the special parameter REALTIME, that means that the
query is re-evaluated as new tuples arrive. The alignment value is expressed as a
period of time to be counted from the beginning of the time granules representing
the evaluation periods (and is ignored in case sl=REALTIME). Moreover, we also
consider a delay parameter δ specifying that the evaluation of the query at time
t has actually to be executed at time t + δ. Parameters sl, a and δ used for
sampling CT A expressions allow to generalize the usage of the so-called tumbling
windows (and hopping windows) for producing continuous query results [35].

Definition 16 (Sampling Operator). At execution time t, the sampling op-
erator ξ : CT A × T × I4 → S, with an historical period parameter hp, a
sliding parameter sl, an alignment parameter a, causes the evaluation of the
algebraic expression E ∈ CT A at time points t0, t1, . . . , tk only, where ti =
(d t−hp−asl e+ i) · sl + a and k is the largest natural number such that tk ≤ t. If a
delay parameter δ is specified, it forces the evaluation of the expression E to be
actually executed at time t+ δ:

ξt,δhp,sl,a(E) :=

max{k∈N|tk≤t}⋃

i=0

τti(E
t+δ)

For example, if sl=“1 day”, the continuous execution must produce one result
per day: if the alignment parameter is a=“30 minutes”, the results are produced
each day at “00:30” in the morning, whereas if the alignment parameter is a=“16
hours”, the results are produced each day at 4 p.m.. Notice that different results
are produced with respect to the desired alignment, since time windows are
defined with reference to the execution times, which depend on the alignment.
For instance, assuming daily trading hours range from 9 a.m. to 4 p.m., the
sliding window wtime

[1day,0](OPTION TRADES) executed via a sampling with sl=“1

31

Jo
ur

na
l P

re
-p

ro
of



Journal Pre-proof
Figure 4: The sampling points defined at execution time t by the parameters hp, sl, a, δ.

day” and a=“6 hours” includes all the trades executed the day before (from
9 a.m. to 4 p.m.) to contribute to a result produced daily at 6 a.m., but if it
were executed with a=“12 hours” it would include all the trades executed in the
afternoon of the day before (from noon to 4 p.m.) and in the morning of the
current day (from 9 a.m. to noon) to contribute to a result produced daily at
noon.

Fig. 4 shows how sampling points can be visually determined on the time axis
according to the specified ξ parameters. In practice, sl and a define a sequence
of time points with period sl shifted by a with respect to the time origin. The
sampling points, highlighted by red arrows in the figure, are the points of such
sequence that fall into the hp-wide interval preceding the execution time t.

When a delay value δ is specified, the evaluation of the expression E valid at
time t is actually computed at time t+ δ: in general, the results (both valid at
time t) computed at time t and at time t+δ may differ as some required contents
of the temporal relations may not be available at time t yet, or even because
their contents may have been retroactively changed after t (and also tuples in
the streaming tables might be inserted with a little delay with respect to their
validity, e.g., to enforce the right timestamp order). Consider, for instance, our
example of insider trading detection that, in order to produce one result per
trading day, needs to compare the trading volumes evaluated using the streaming
data valid on a 1-month window preceding the execution time and on a 1-day
window following the execution time (to this purpose, it would be sufficient
to delay the execution at the end of the day). However, it also needs to join
such volumes with the news concerning the same stocks published within one
week. Since we can assume relevant news are selected and inserted by human
analysts, we should also consider that they are likely inserted into the NEWS

table retroactively, with the delay of some days with respect to their publication
date. Hence, we should reasonably allow for a delay of, say, 10-15 days in the
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execution of the CQ in order to have all the relevant news available, otherwise
the result of the join would always be empty and the insider trading cases could
not be detected.

Notice that, when the streaming tables involved are defined at a finer time
granularity than sl (e.g., sl=“1 hour” but new tuples can be inserted into the
streaming tables at every second), the values of E are usually defined for many
more time points than required by the query. Hence, the sampling operator can
be used to exactly specify the query execution timepoints of interest. This is
also the reason for which we said in Sec. 2 that non-temporal tables (appearing
in the expression E) are considered virtually converted into temporal tables that
contain an infinite number of tuples: only the tuples timestamped with one of
the timepoints of interest have actually to be generated.

According to the generally accepted definition of continuous query semantics
[37], we define the semantics of a continuous query Qc,δhp,sl,a denoted by an
algebraic expression ECT A ∈ CT A to be equal to the sampling of ECT A at the
time points specified by the slide parameter sl and the alignment parameter a.

Definition 17 (CQs Semantics). Let ECT A = ET A?(w1(S1), . . . , wn(Sn),
RT1 , . . . , R

T
m, Q1, . . . , Q`) be an algebraic expression in CT A containing only legal

sliding window expressions wi(Si) = αi(ωi(Si)), with 1 ≤ i ≤ n.

The result at time t of the continuous query Qc,δhp,sl,a with historical period
parameter hp, slide parameter sl, alignment parameter a and delay parameter δ,
expressed by ECT A is the streaming table with historical period hp given by the
sampling ξt,δhp,sl,a(ECT A) of ECT A at the time points specified by sl with alignment
a, and evaluation delayed by δ, until t.

It is worth noting that, as the CQ semantics is founded on the sampling operator,
we actually implement a CQ on-demand semantics that produces at the execution
query time successive query evaluations at past query points, thus in a delayed
mode (also when δ=0). Moreover, the semantics of joining streaming tables
and temporal and standard tables as specified in the algebraic expression ET A?

refers to the standard temporal semantics. In this way, we implement different
kinds of joining semantics according to the involved tables. For instance, when
temporal tables are involved, the joining results will be temporally consistent
according to the required time points in the past. When, instead, standard
tables are involved, the joining semantics allows users to interoperate current
data with past streamed data.

7. Temporal SQL Hybrid Semantics and Example Reprise

Since it is able to also support real temporal queries (and as also theoretically
remarked by Lemma 1), the T A? extended algebra we introduced in Section
4.3 is strictly more expressive than a shapshot-reducible algebra like T A. In
particular, the T A? algebra has the same expressive power of a temporal SQL
extension allowing for explicit reference to temporal attributes in addition to
snapshot-reducible semantics for implicit temporal attributes like TSQL2, for
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which it mostly represents a syntactic variant. In fact, considering the general
temporal TSQL2-like SPJ query:

SELECT A1, A2, . . . , An (Q0)
FROM R1, R2, . . . , Rm
WHERE C ′ AND C ′′

where C ′ is a selection predicate only involving explicit attributes and C ′′

is a selection predicate explicitly involving the timestamps of the relations
Rh+1, . . . , Rm (with h ≥ 0). The attributes A1, A2, . . . , An appearing in the
SELECT clause may belong to any of the R1, . . . , Rh relations or to only one of
the Rh+1, . . . , Rm relations, say Rk.

The query (Q0) can be translated into the T A? expression:

πTA1,...,An
(σTC′(R1 ×T · · · ×T Rh×T

σT
C
′′(πXh+1,U (εU (Rh+1))× · · · × εU (Rk)× · · · × πXm,U (εU (Rm))))) (A1)

where Xi is the explicit schema of Ri(Xi|T ) and C
′′

it the predicate obtained
by substituting references to implicit time T with references to its explicit
copy U added by εU . Conjuncts involving explitic attributes of Rh+1, . . . , Rm
olny can be moved from C ′ to C

′′
. The argument of σT

C
′′ is the minimal

subexpression containing non-temporal operators in this case. The relation Rk
(with h+ 1 ≤ k ≤ m), appearing without projection in this subexpression, is the
one whose attributes appear in the SELECT clause and donates its timestamps
to the subexpression result. If no reference to attributes of one of the relations
Rh+1, . . . , Rm is made in the SELECT clause, the relation Rk to be used without
projection within the subexpression can be any one of the Rh+1, . . . , Rm relations.
The relations R1, . . . , Rh only involved in the C ′ predicate are managed instead
with sequenced semantics, by preserving the main advantages of such an approach
(first of all, the fact that overlap conditions between their timestamps are
implicit in the translation with temporal algebra operators and do not need to
be explicited by users at the query language level and the default timestamps to
be assigned to the results are implicitly computed as their intersection).

As proposed for TSQL2, if a non-temporal table is desired as result, the form
SELECT SNAPSHOT has to be used. In such a case, in the algebra translation, the
outermost temporal projection πT can be replaced by a non-temporal projection
π in order to eliminate the timestamps.

As particular cases of (Q0), we can consider a pure sequenced query and a
pure non-sequenced query. A pure sequenced query does not contain selection
predicates involving timestamps (i.e., C ′′ is void and m = h). In this case, the
translation reduces to a pure T A expression:

πTA1,...,An
(σTC′(R1 ×T · · · ×T Rh)) (A2)

A pure non-sequenced query instead only involves relations whose timestamps
appear in the temporal selection condition C ′′ (i.e., h = 0). In such a case, the
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translation becomes:

πTA1,...,An
(σT
C′∧C′′(πX1,U (εU (R1))× · · ·

× εU (Rk)× · · · × πXm,U (εU (Rm)))) (A3)

Since σT is always equivalent to σ when the selection predicate only involve
explicit attributes, if the query does not require the result to be a temporal
relation (i.e., it has the form SELECT SNAPSHOT), π has to be used in place of
πT to remove timestamps and, thus, the whole translation can be reduced to a
non-temporal algebra expression.

The correspondence between any general CT A expression and its SQL-like
syntax as exemplified in Sec. 3 can be defined in a similar way, also taking into
account grouping, window declarations with flattening/aggregate expressions
and sampling specifications.

Hence, we show in the remainder of this section how the example queries
presented in Sec. 3 can be automatically translated into CT A expressions. In
order to have more compact formulas, we will always use the aliases (i.e., relational
variable names) declared in the FROM clause of the queries instead of the full
relation names. Besides immediate translations exemplifying the application of
the (A1)–(A3) rules provided above and only using the T A base operators in
Table 1, we will also provide (owing to the equivalence σF (R1×R2) ≡ R1 ./F R2,
where F is a join condition between R1 and R2, also valid for temporal operators)
the corresponding expressions containing join operations instead of Cartesian
products, which is a format more friendly to SQL programmers and query
optimizers.

(Q1) The query does not contain temporal selection conditions (i.e., predi-
cates involving timestamps) and, thus, the specialized translation formula (A2)
can be used:

Q1 = πTID,OPTION(σ
T
LN.STOCK=OT.STOCK∧LN.STOCK=’Apple’(LN×T OT))

= πTID,OPTION(σ
T
LN.STOCK=’Apple’(LN) ./TLN.STOCK=OT.STOCK OT)

The outcome is a temporal table with schema (ID, OPTION | T ).
(Q2) The query only contains relations involved in temporal selection con-

ditions and, thus, the specialized translation formula (A3) can be used. Since
the the result is required to be in snapshot format as (i.e., a SELECT SNAPSHOT

clause is used), the outermost projection needs to be non-temporal to remove the
timestamps from the retrieved tuples. The resulting expression can be evaluated
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using non-temporal algebra operators only:

Q2 = πLN1.ID(σLN1.SOURCE=LN2.SOURCE∧LN1.STOCK=LN2.STOCK
∧LN1.TYPE=LN2.TYPE
∧LN1.U MEETS LN2.U

(πID,STOCK,TYPE,
SOURCE,U

(εU (LN1))×

πID,STOCK,TYPE,
SOURCE,U

(εU (LN2))))

= πLN1.ID(πID,STOCK,TYPE,SOURCE,U(εU (LN1))

./LN1.SOURCE=LN2.SOURCE
∧LN1.STOCK=LN2.STOCK
∧LN1.TYPE=LN2.TYPE
∧LN1.U MEETS LN2.U

πID,STOCK,TYPE,
SOURCE,U

(εU (LN2)))

The outcome is a non-temporal table with schema (LN1.ID).
(Q3) The query contains temporal selection conditions and relations non

involved in them and, thus, the general translation formula (A1) must be used
(with LN1 as Rk as its attributes ID appear in the SELECT clause):

Q3 = πTN1.ID,
OPTION

(σTLN1.STOCK=OT.STOCK(OT×T

(σTLN1.SOURCE=LN2.SOURCE
∧LN1.STOCK=LN2.STOCK
∧LN1.TYPE=LN2.TYPE
∧LN1.U MEETS LN2.U

[εU (LN1)× πID,STOCK,TYPE,
SOURCE,U

(εU (LN2))])))

= πTN1.ID,
OPTION

(OT ./TLN1.STOCK=OT.STOCK

[εU (LN1) ./LN1.SOURCE=LN2.SOURCE
∧LN1.STOCK=LN2.STOCK
∧LN1.TYPE=LN2.TYPE
∧LN1.U MEETS LN2.U

πID,STOCK,TYPE,
SOURCE,U

(εU (LN2))])

The part within square brackets is the minimal subexpression containing non-
temporal operators. The outcome is a temporal table with schema (N1.ID,
OPTION | T ).

(Q4) This is a continuous query containing two window expressions, W1A and
W1B, which are both partitioned time-based windows with partitioned aggregation
and whose definitions can be translated, respectively, into the CT A expression
that follow:

W1A = STOCKΘSUM(CONTRACTS)(W
time,STOCK
[0,1week] (OPTION TRADES)),

W1B = STOCKΘSUM(CONTRACTS)(W
time,STOCK
[1week,0] (OPTION TRADES))

The query part preceding the SAMPLE clause does not contain temporal
selection conditions (i.e., predicates involving timestamps) and, thus, can be
translated using the specialized translation formula (A2) as follows:

E4 = πT SOURCE,LN.STOCK,
100*(W1A.SUM(CONTRACTS)/
W1B.SUM(CONTRACTS)-1),

BEGIN(LN)

(σTLN.STOCK=W1A.STOCK
LN.STOCK=W1B.STOCK

(LN×T W1A×T W1B))

Notice the required final projection on BEGIN(LN) can be preliminary applied to
the relation LN (transforming it, in practice, from a temporal state relation with
interval timestamps [tB , tE) to a temporal event relation with point timestamps
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tB). This avoids the temporary generation by the ×T or ./T operators of many
tuples (due to the matching of the timestamps of the window expression also
with the (tB , tE) part of the timestamps of LN) that will be eventually discarded
by the timestamp intersection implied in the projection. Hence, an equivalent
but optimized formula is as follows:

E′4 = πT SOURCE,LN.STOCK,
100*(W1A.SUM(CONTRACTS)/
W1B.SUM(CONTRACTS)-1)

(σTLN.STOCK=W1A.STOCK
∧LN.STOCK=W1B.STOCK

(πTBEGIN(LN)(LN)×T W1A×T W1B))

= πT SOURCE,LN.STOCK,
100*(W1A.SUM(CONTRACTS)/
W1B.SUM(CONTRACTS)-1)

((πTBEGIN(LN)(LN) ./TLN.STOCK=W1A.STOCK W1A) ./TLN.STOCK=W1B.STOCK W1B)

Finally, the required sampling operator has to be applied to the resulting
expression as follows:

Q′4 = ξnow,1week∞,1sec,0 (E′4)

The outcome is a temporal table with schema (SOURCE, LN.STOCK,

100*(W1A.SUM (CONTRACTS)/W1B.SUM(CONTRACTS)-1) | T ), where new tuples
are added at each second with a 1-week delay with respect to their timestamp
values.

(Q5) This is a continuous query containing a window expressions, N10KA,
which is a count-based window with aggregation and whose definition can be
translated into CT A as follows:

N10KA = θLAST(w
count
[0,10000](OPTION TRADES)),

The query part preceding the SAMPLE clause only contains relations/window
expressions involved in temporal selection conditions and, thus, the specialized
translation formula (A3) can be used:

E5 = πTDAY(N10KA.U)(σ
T

TYPE=’Product Launch’∧STOCK=’Apple’
∧N10KA.LAST<BEGIN(LN.U)∧BEGIN(LN.U)<N10KA.U+12hour

[εU (N10KA)× πID,STOCK,TYPE,
SOURCE,U

(εU (LN2))])

= πTDAY(N10KA.U)([εU (N10KA) ./T N10KA.LAST<BEGIN(LN.U)
∧BEGIN(LN.U)<N10KA.U+12hour

πID,STOCK,TYPE,
SOURCE,U

(εU (σTTYPE=’Product Launch’
∧STOCK=’Apple’

(LN2)))])

The part within square brackets is the minimal subexpression containing non-
temporal operators. Notice that, although the result is required to be in snapshot
format, we cannot apply a non-temporal outermost projection as we did for
(Q2), since the timestamps of N10KA are needed to apply the sampling operator.
Hence, the timestamp removal required by the SELECT SNAPSHOT clause can be
just performed after the application of the sampling operator:

Q5 = πDAY(N10KA.U)(ξ
now,1week
∞,1day,12hour(E5))

37

Jo
ur

na
l P

re
-p

ro
of



Journal Pre-proof
The outcome is a non-temporal table with schema (DAY(N10KA.U)), where new
tuples are added each day at noon with a 1-week delay with respect to their
timestamp values.

(Q6) This is a continuous query containing two window expressions, D1A and
M1B, which are both partitioned time-based windows with partitioned aggregation
and whose definitions can be translated into CT A, respectively, as follows:

D1A = STOCKΘSUM(CONTRACTS)(W
time,STOCK
[0,1day] (OPTION TRADES)),

M1B = STOCKΘSUM(CONTRACTS)(W
time,STOCK
[1month,0] (OPTION TRADES))

The query part preceding the SAMPLE clause contains temporal selection
conditions and relations non involved in them and, thus, the general translation
formula (A1) must be used (with the window expression D1A playing the role of
Rk as its attribute STOCK appear in the SELECT clause):

E6 = πTD1A.STOCK(σ
T
D1A.STOCK=M1B.STOCK∧D1A.STOCK=LN.STOCK
∧D1A.SUM(CONTRACTS)>M1B.SUM(CONTRACTS)/3

(M1B×T σTLN.U>D1A.U+1day
∧LN.U<D1A.U+1week

[εU (D1A)× πID,STOCK,TYPE,
SOURCE,U

(εU (LN))]))

= πTD1A.STOCK(M1B ./
T
D1A.STOCK=M1B.STOCK∧D1A.STOCK=LN.STOCK
∧D1A.SUM(CONTRACTS)>M1B.SUM(CONTRACTS)/3

[εU (D1A) ./ LN.U>D1A.U+1day
∧LN.U<D1A.U+1week

πID,STOCK,TYPE,
SOURCE,U

(εU (LN))])

The part within square brackets is the minimal subexpression containing non-
temporal operators.

Finally, the required sampling operator, for which also an HISTORICAL

PERIOD of 6 months has been specified, has to be applied to the resulting
expression as follows:

Q6 = ξ
now,15day
6month,1day,0(E6)

The outcome is a temporal table with schema (D1A.STOCK | T ), where new tuples
are added each day at midnight with a 15-day delay with respect to their
timestamp values.

We conclude or example roundup by showing how also the CT A equivalent of
query (Q4′′) involving a (continuous) view can be determined. First of all, using
the algebra expression Q′4 of its definition query (Q4′), the algebra expression
defining of the view NEWS IMPACT becomes as follows (ρ is the standard renaming
operator of the relational algebra):

NEWS IMPACT = ρ2,3←STOCK,VOL VAR(Q
′
4)

= ρ2,3←STOCK,VOL VAR(ξ
now,1week
∞,1sec,0 (E′4))

= ξnow,1week∞,1sec,0 (ρ2,3←STOCK,VOL VAR(E
′
4))

= ξnow,1week∞,1sec,0 (Ẽ′4)

where Ẽ′4 is E′4 with the second and third column renamed as STOCK and VOL VAR,
respectively. Then, the translation of (Q4′′) into T A is straightforward:

Q′′4 = SOURCEϑ
T
COUNT(DISTINCT STOCK),AVG(VOL VAR)(σ

T
VOL VAR>50(NEWS IMPACT))
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Substituting the view definition expression above we obtain:

Q′′4 = SOURCEϑ
T
COUNT(DISTINCT STOCK),AVG(VOL VAR)(σ

T
VOL VAR>50(ξnow,1week∞,1sec,0 (Ẽ′4)))

= ξnow,1week∞,1sec,0 (SOURCEϑ
T
COUNT(DISTINCT STOCK),AVG(VOL VAR)(σ

T
VOL VAR>50(Ẽ′4)))

The outcome is a temporal table with schema (SOURCE, COUNT(DISTINCT STOCK),
AVG(VOL VAR) | T ), where new tuples are added at each second with a 1-week
delay with respect to their timestamp values.

8. Translating CQs into OTQs (with Implementation on the Horizon)

In this section we propose a translation of the continuous temporal model
presented so far into a new temporal model where continuous queries are trans-
formed into temporal one-time queries. Furthermore, whereas the continuous
model has been defined as an abstract temporal model (point-based), the new
model is intended to be a concrete temporal model (interval-based) [20] amenable
to implementation. In particular, the new temporal model can be implemented
on a traditional relational DBMS following similar directions as presented in
[16]. In fact, our final aim is to build comprehensive support for the continuous
temporal model through a mixed stratum/built-in approach that relies on the
full potentialities of an industrial-strength relational engine, extended with novel
functionalities.

For the intended translation, the source algebra is therefore CT A and
the target algebra is T A? but made to work on relations employing interval-
timestamping, according to an extended sequenced semantics [16], in order to
enforce snapshot equivalence also in the presence of subexpressions supporting a
non-sequenced semantics. Although working on an interval-based concrete tem-
poral model, the target algebra represents indeed a point-based query language
(in the sense of [38]) and, thus, its implementation on a traditional DBMS does
not require enforcement of change preservation (e.g., via adjustment, alignment
and scaling techniques as proposed in [16]). For ease of presentation, hereinafter,
with a little abuse of notation, when we need to distinguish the same concept at
the two different levels, we will use the superscript CT A to denote tables and
algebraic operators in the continuous temporal model and the superscript T A?
to denote the corresponding concepts in the target model.

The main issue for our goal is to mimic in a static context the behavior of
CT A windowing operators, which are evaluated on user-specified time intervals
and operate on the contents of the involved streaming tables at the evaluation
instants. To this end, we first translate each streaming table SCT A with schema
S(X|T ) at the continuous level into an interval-based streaming table ST A

?

with
schema S(X,T |T ′), where the event occurrence time T associated to tuples is
made explicit and T ′ is an implicit interval attribute that records tuple validity,
that is [st,∞), where st is the time when the tuple s enters the system (without
transaction-time support, it is worth noting that st can be approximated with
s.T ). Each temporal relation with schema R(X|T ) in CT A is translated into a
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relation with schema R(X|T ′) in T A?, by coalescing the timestamps of value-
equivalent tuples in RCT A into maximal intervals to be used as timestamps
in RT A

?

. Non temporal relations are converted into temporal relations whose
tuples are timestamped with a [0,∞) validity interval in T A?.

Then, in Tab. 4 we present the semantics of the continuous operators in-
troduced in Sec. 5.1 defined through T A operators, to be used as translation
rules from the source CT A to the target T A? language (the aliases P and PB
are introduced just to disambiguate attributes T and B belonging to both join
operands).

Notice that, unlike their counterpart at the CT A level, sliding window
operators at the T A? level require a set of time instants tset to be evaluated
and the flattening operator ΦT A simply undoes the effects of partitioning. Being
T A ⊂ T A?, with the translation rules of Tab. 4 converting sliding window
expressions into T A, any legal CT A expression can be translated into T A?.
Moreover, it is worth stressing that, in this way, any legal CT A sliding window
expression can be evaluated via T A operators working on streaming tables only.
In particular, there is no need for implementing sets of streaming tables or (sets
of) streaming tables of streaming tables as formally introduced in the definitions
of CT A operators in Sec. 5.

Translation of time-based windows and partitioning can be easily carried out
using the selection operator σTp (with p involving the attribute T , which is explicit

after the conversion to T A?) and the grouping operator Bϑ
T
F , respectively. The

translation of count-based window expressions deserves some more explanations.
In general, the definition of a count-based window using plain relational algebra
operators is problematic as it requires the notion of ordered data or sequence
which is lacking in the relational model, where relations are defined as sets of
tuples. To solve this problem, for instance, some authors provided for extensions
of the algebra with a rank [39] or sequence [40] operator that can be applied to
relations to superimpose an ordering to their tuples. In this work, we take a
different approach, which exploits the intrinsic ordering of tuples in a streaming
table, which is partial on the insertion time and total on the insertion order.
Then, in order to define a count-based window expression, the standard grouping
operator Bϑ

T
F can come in help, provided that two new aggregate functions

PREV and NEXT are available. Such aggregate functions correspond exactly to
the functions with the same names introduced in Def. 8 (how they operate has
been also illustrated in Fig. 2) and can easily and efficiently implemented thanks
to the existing ordering of tuples in a streaming table. The values ν1 = PREV(n1)
and ν2 = NEXT(n2), computed for each T (or for each T,B pair in the partitioned
case) owing to the grouping, are then used to select tuples with insertion number
ν1 ≤ ν ≤ ν2 via the join predicate. Therefore, in order to implement count-based
window expressions, we do not need to add a new algebraic operator to the
kernel of a DBMS but just to implement two new aggregate functions to be
used with the standard grouping operator. Notice that partitioning does not
affect the definition of time-based windows (as the union of the tuples selected
per partition equals the set of tuples globally selected without partitions) but
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Time-based sliding windows

tsetwtime
[d1,d2]

(S)T A :=
⋃
t∈tset τt(σ

T
t−d1≤S.T≤t+d2(S))

tsetW time,B
[d1,d2]

(S)T A :=
⋃
t∈tset τt(σ

T
t−d1≤S.T≤t+d2(S))

Count-based sliding windows

tsetwcount
[n1,n2]

(S)T A :=
⋃
t∈tset τt(π

T
S.X(S ./T S.T=P.T

∧PREV(n1)≤S.ν≤NEXT(n2)

P ))

where P = Tϑ
T
PREV(n1),NEXT(n2)

(S)

tsetW count,B
[n1,n2]

(S)T A :=
⋃
t∈tset τt(π

T
S.X(S ./TS.T=PB .T∧S.B=PB .B

∧PREV(n1)≤S.ν≤NEXT(n2)

PB))

where PB = T,Bϑ
T
PREV(n1),NEXT(n2)

(S)

Window flattening operators

ϕ(S)T A := S

Φ(tsetW time,B
[d1,d2]

(S))T A := tsetW time,B
[d1,d2]

(S)T A

Φ(tsetW count,B
[n1,n2]

(S))T A := tsetW count,B
[n1,n2]

(S)T A

Window aggregation operators

θF (S)T A := (∅ϑTF (S))T A

BΘF (tsetW time,B
[d1,d2]

(S))T A := (Bϑ
T
F (tsetwtime

[d1,d2]
(S)))T A

BΘF (tsetW count,B
[n1,n2]

(S))T A := (Bϑ
T
F (tsetW count,B

[n1,n2]
(S)))T A

Table 4: Translation of windowing operators into T A

affects the definition of count-based windows (since tuples belonging to different
partitions may be interleaved along the insertion order, the evaluation of ν1 and
ν2 gives different results with groups defined by T or T,B; in the latter case, an
additional join condition on B is required to skip tuples in the insertion number
range [ν1, ν2] non belonging to the partition defined by B).

Finally, we define the sampling operator at the T A? level and show that the
results of the two sampling operators, the one defined at the CT A level and the
other one defined at the T A? level, are equivalent (i.e., they provide the same
results for the same continuous query).

Definition 18 (Sampling OperatorT A
?

). At execution time t, the evaluation
delayed by δ of an algebraic expression E = ET A?(α1(ω1(S1)),
. . . , αn(dn(Sn)), R1, . . . , Rm, Q1, . . . , Q`) ∈ CT A, with an historical parameter
hp, slide parameter sl and alignment parameter a, at the T A? level is defined
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by the sampling operator ξT A
?

: T A? × T × I4 → ST A?

as follows:

ξt,δhp,sl,a(E)T A
?

:=

ET A?

(
(α1(tsetω1(St+δ1 )))T A, . . . ,

(αn(tsetωn(St+δn )))T A,tsetRt+δ1 , . . . ,tsetRt+δm

)

where tset is the evaluation time instant set: tset = {t′ | t′ ≤ t∧ t′ = (d t−hp−asl e+
i) · sl + a for some i ∈ N} and tsetRt+δj =

⋃
ti∈tset τti(R

t+δ
j ), with 1 ≤ j ≤ m.

The following Theorem shows the correctness of the translation. It is worth
noting that correctness is shown for CT A algebraic expressions that include legal
sliding window expressions w only.

Theorem 1. Given the continuous query E = ET A?(α1(ω1(S1)), . . . , αn(ωn(Sn)),
R1, . . . , Rm) ∈ CT A (where Rj, with 1 ≤ j ≤ m, can be a temporal table or
a streaming table S used as a temporal table, that is without the interposition
of sliding window operators, or a non-temporal T A? subexpression virtually
converted to temporal), with slide parameter sl and alignment parameter a, then,
for each execution time t with delay δ:

ξt,δhp,sl,a(E)CT A = ξt,δhp,sl,a(E)T A
?

where ξCT A is the sampling operator defined for CT A in Def. 16.
Proof. For the sake of simplicity, we assume δ = 0 and replace each Rt

and St in the operator semantics with R and S, respectively (the proof can be
straightforwardly adapted to the case when δ > 0). First, we can observe that:

ξt,δsl,a(E)CT A

=

(max{k∈N|tk≤t}⋃

i=0

τti
(
ET A?(α1(ω1(S1)), . . . , αn(ωn(Sn)), R1, . . . , Rm)

))CT A

=

(
ET A?

(max{k∈N|tk≤t}⋃

i=0

τti(α1(ω1(S1))), . . . ,

max{k∈N|tk≤t}⋃

i=0

τti(αn(ωn(Sn))),tsetR1, . . . ,
tsetRm

))CT A

where tsetRj =
⋃
ti∈tset τti(Rj) =

⋃max{k∈N|tk≤t}
i=0 τti(Rj) (1 ≤ j ≤ m).

Hence, recalling that non-temporal subexpressions (which may appear among
Rjs) cannot contain sliding window expressions and, thus, (Rj)

CT A = (Rj)
T A?

=

Rj (1 ≤ j ≤ m), if we show that
⋃max{k∈N|tk≤t}
i=0 τti(αj(ωj(Sj))

CT A) =
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(αj(
tsetωj(Sj)))

T A, then we can write:

ET A?

(max{k∈N|tk≤t}⋃

i=0

τti(α1(ω1(S1))), . . . ,

max{k∈N|tk≤t}⋃

i=0

τti(αn(ωn(Sn))), tsetR1, . . . ,
tsetRm

)CT A

= ET A?

(
(α1(tsetω1(S1)))T A, . . . , (αn(tsetωn(Sn)))T A,tsetR1, . . . ,

tsetRm
)

And, thus, the proof of the theorem follows: ξt,δsl,a(E)CT A = ξt,δsl,a(E)T A
?

.
To this end, as far as αj(ωj(Sj)) is concerned, all possible operator com-

binations should be considered. Let us first consider the case when αj = θF
and ωj = wtime

[d1,d2]
. Given θF (wtime

[d1,d2]
(Sj)), in the following we will show that

s ∈ ⋃max{k∈N|tk≤t}
i=0 τti(θF (wtime

[d1,d2]
(Sj))

CT A) iff s ∈ (θF (tsetwtime
[d1,d2]

(Sj))
T A. Let

s ∈ ⋃k:tk≤ti=0 τti(θF (wtime
[d1,d2]

(Sj))
CT A), then s = (X, ti) ∈ τti(θF (wtime

[d1,d2]
(Sj))

CT A)

for some i. Being s = (X, ti) ∈ τti(θF (w)CT A), where w = wtime
[d1,d2]

(Sj)), then,

according to the θF (w) semantics, s ∈ τti(θF (w)CT A) iff X = (f1(S), . . . , fh(S))
and (S, ti) ∈ w. This means that S = SubT[ti−d1,ti+d2](Sj)

CT A = {(s, τ) | (s, τ) ∈
Sj , (ti − d1) ≤ τ ≤ (ti + d2)}. Hence, (s, τ) ∈ SubT[ti−d1,ti+d2](Sj)

CT A iff

(s, τ, ti) ∈ τti(SubT[ti−d1,ti+d2](Sj)
T A). As ti ∈ tset, it follows that:

(s, τ, ti) ∈
⋃

t∈tset
τt(SubT[t−d1,t+d2](Sj)

T A) =tset wtime
[d1,d2]

(Sj)
T A

From S′ = τti(SubT[ti−d1,ti+d2](Sj)
T A) and X ′ = (f1(S′), . . . , fh(S′)),

it follows that (X ′, ti) ∈ ∅ϑ
T
F (Sj)

T A, which is equivalent to say
that (X ′, ti) ∈ (θF (wtime

[d1,d2]
(Sj))

T A. Being X = X ′ then s ∈
⋃max{k∈N|tk≤t}
i=0 τti(θF (wtime

[d1,d2]
(Sj))

CT A) iff s ∈ (θF (tsetwtime
[d1,d2]

(Sj))
T A.

When αj = ϕ, X and X ′ definitions change but the equivalence still holds.
Instead, when ωj = wcount

[n1,n2]
, notice that S ./T S.T=P.T

∧PREV(n1)≤S.ν≤NEXT(n2)

P contains the

n1 closest tuples of S inserted before and the n2 closest tuples of S inserted after
each explicit timestamp in S. Therefore, the equivalence still holds.

Finally, whenever partitioned operators are concerned, let us consider the
case when αj =B ΘF and ωj = W time

[d1,d2]
. Given BΘF (W time

[d1,d2]
(Sj)), with

B = {B1, . . . , Bn} grouping attributes, in the following we will show that

s ∈ ⋃max{k∈N|tk≤t}
i=0 τti(BΘF (W time

[d1,d2]
(Sj))

CT A) iff s ∈ (BΘF (tsetW time
[d1,d2]

(Sj))
T A.

Let s ∈ ⋃k:tk≤ti=0 τti(BΘF (W time
[d1,d2]

(Sj))
CT A), then s = (X, τ) ∈ τti(BΘF (W time

[d1,d2]

(Sj))
CT A) for some i. Being (X, τ) ∈ τti(BΘF (W )CT A), whereW = W time

[d1,d2]
(Sj)),

then, according to the BΘF semantics, s ∈ τti(θF (w)CT A) iff it exists a stream-
ing table of streaming tables w ∈ W such that (S, ti) ∈ w, for each (s, τ) ∈ S,
s.Bi = bi, for i ∈ [1, n], and X = (b1, . . . , bn, f1(S), . . . , fh(S)). Notice that,
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from the definition of W time
[d1,d2]

, w = tw̄
time
[d1,d2](S

′
j) where S′j ∈ ζB(Sj). Then,

the proof easily follows from the proof above concerning the sliding window
operator tw̄time

[d1,d2]
and the proposed translation of BΘF (W time

[d1,d2]
(Sj)) in T A,

i.e., BΘF (W time
[d1,d2]

(Sj))
T A. The other combinations involving the partitioned

operators can be dealt with in a similar way. In particular, in the case of
ωj = W count,B

[n1,n2]
the grouping PB and the temporal join also involves the explicit

grouping attributes B, whose values are necessary to select in PB the right ν
selection range and in S the right tuples to be included in the window. �

Thanks to the above theorem ensuring that the semantics of execution
is preserved, we can safely translate each continuous query in CT A into an
equivalent expression in T A? and execute it on a temporal database or even on
a traditional relational engine (with an extended kernel supporting the execution
of T A expressions as shown in [16]).

9. Related Work

In the following, we will provide a general overview of the status of current
data management proposals with respect to the requirements we are targeting in
this paper: the availability of a query language that supports the combination of
CQs and OTQs on streaming and relational data, including temporal conditions
to be evaluated according to different query semantics (sequenced and/or non-
sequenced). In particular, Sec. 9.1 focuses on literature approaches, while Sec. 9.2
analyzes available systems and frameworks. We start with a short discussion of
our contribution.

The algebra we conceived in this paper with its TSQL2-like query language
counterpart is the ultimate result of a unified framework grounded on two main
pillars: our contribution on streaming tables [13], bringing together for the
first time the streaming and temporal database worlds, and the work in [16],
presenting a first proof-of-concept that an interval-based temporal DBMS can
be successfully implemented on top of standard RDBMS technology. On the one
hand, we have brought under a unifying semantic umbrella streaming data as well
as temporal relational data, so that they can be queried in a seamless way through
the CT A we introduced. On the other hand, we have extended the approach
in [16] by “wrapping” the temporal algebra T A with a formal framework that
guarantees complex CQs including full-fledged temporal conditions entailing a
hybrid semantics (sequenced and/or non-sequenced) to be rewritten, optimized,
and executed on top of a traditional DBMS (with a kernel extended as shown in
[16]).

Starting from the groundwork in [14], one main contribution of this paper
consists in the extension of T A in [16], which supports only sequenced temporal
queries, to T A?, which supports also non-sequenced operations within the
execution of a sequenced temporal query through the regulated use of non-
temporal operators. This extension opens a wider range of querying possibilities,
most importantly the answering of real temporal queries as well as OTQs and CQs
over streaming, relational and temporal data. In this way, this paper extends and
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completes the semantics of queries introduced in [14] by regrounding the entire
framework from T A to T A?, and by introducing the concept of legal sliding
window expression together with an exhaustive discussion on the composition
rules of CT A operators. This result represents a further demonstration of the
advantages provided by an algebra and advances our work in [14] by regulating
how continuous queries can be properly specified. The proposal is enriched by
a collection of representative TSQL2-like queries and of their translation into
the continuous algebra CT A which exemplifies the usefulness of the proposed
approach in the context of a market surveillance application.

9.1. Discussion on Query Languages and Algebras for Querying Streaming
and/or Temporal Data

In this section we discuss literature approaches for querying streaming and/or
temporal data together with traditional relational data. Sections 9.1.1 and 9.1.2
focus on temporal/relational and streaming/relational aspects, respectively.

9.1.1. On Temporal Data Querying and Querying Semantics

In the jungle of the dozens of proposed temporal query languages, we can
consider TSQL2 [15] as a milestone. Its design was the outcome of a great
consensual effort aimed at merging a rigorous theoretical foundation with a great
expressive power and user friendliness, such that it could become a standard
proposal for the temporal extension of SQL. TSQL2 was equipped with a mix of
sequenced features (e.g., temporal intersection semantics based on syntactic de-
faults) and non-sequenced features (e.g. explicit rendering of implicit timestamps
enabling real temporal queries). However, their coexistence was not resolved
at the level of the proposed algebra [15, Ch. 27], whose operators were generic
enough to support both kinds of semantics. A comprehensive mapping from
the language syntax to algebraic expressions giving to the SELECT statement a
precise semantics was lacking indeed.

The temporal query language ATSQL [17], which has been designed to
supersede TSQL2, tried to solve its defects with an approach based on the
separation of concerns. In ATSQL, distinct modalities of temporal execution
following the sequenced or non-sequenced semantics can be selected through the
use of statement modifiers SEQ and NSEQ, respectively, prefixing each query. In
such a way, the advantages of a hybrid semantics (i.e., partly sequenced and
partly non-sequenced) are lost: pure sequenced queries suffer from a very limited
expressiveness and pure non-sequenced queries waive the benefits of a sequenced
execution, including the efficient support of interval-timestamping (and change
preservation) with the implementation techniques presented in [16]. For instance,
the hybrid query (Q3) of Sec. 3 could be expressed in ATSQL only by means of
two independent statements nested as follows:

SEQ VT

SELECT ID, OPTION

FROM LATEST NEWS AS LN, OPTION TRADES AS OT

WHERE LN.STOCK = OT.STOCK AND ID =
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( NSEQ VT

SELECT LN1.ID

FROM LATEST NEWS AS LN1 LN2

WHERE LN1.SOURCE = LN2.SOURCE AND LN1.STOCK = LN2.STOCK

AND LN1.TYPE = LN2.TYPE

AND END(VTIME(LN1)) = BEGIN(VTIME(LN2)) )

Since the ATSQL outer and inner queries of the example have different semantics,
they must be evaluated separately. The outer query with the SEQ VT modifier
must be translated into a snapshot-reducible temporal algebra (like T A) in
order to be evaluated with a sequenced semantics, whereas the inner query
with the NSEQ VT modifier must be translated into a non snapshot-reducible
temporal algebra (like the traditional relational algebra) in order to be evaluated
with a non-sequenced semantics. Since the resulting algebra expressions have
different semantics and must be evaluated separately, they can only be optimized
separately. On the contrary, using our hybrid T A? algebra, the whole query can
be translated, as shown in Sec. 7, into a single algebraic expression which can be
evaluated as a whole, and which is liable to cost-based or semantic optimization
(e.g. by means of rewriting rules) as a whole.

In [41], the authors aim at reconciling the sequenced and non-sequenced
viewpoints by providing a unifying framework where queries can be evaluated
using different temporal semantics (also including context, periodic and preceding
semantics). In such an approach, the execution semantics can be selected with
lightweight annotations preceding the queries and, thus, different temporal
semantics can be selected for the execution of different queries but all the parts
of a single query are evaluated with the same semantics. Hence, there are no
substantial differences with ATSQL as to single query expressiveness and global
optimization opportunities.

In our approach, we took a different road leading to the reconciliation of
the two viewpoints by allowing for individual queries to be evaluated with a
hybrid semantics, as the T A? algebra allows to merge non-sequenced parts into
a sequenced T A expression in order to extend its query expressiveness. Hence,
the coexistence of the different temporal semantics is within single queries rather
than between separate queries, and sequenced and non-sequenced parts can be
combined in the same T A? expressions to support a wider range of temporal query
types (with the same expressive power of the Temporal Relational Calculus,
having explicit access to timestamp values, as shown in Lemma 1) but also
preserving, as much as possible, the advantages of a sequenced approach. In this
way, we finally gave a solid foundation to the hybrid semantics of user-friendly
TSQL2 queries, showing how generic SPJ queries can be translated into our
T A? algebra.

The present work extends the preliminary version in [14] under several
directions, most importantly the specification of queries that include complex
temporal conditions, the exploration of the expressiveness of the proposed algebra
and the provision of a semantics for TSQL2-like hybrid queries.

Notice that also recent works on semantic aspects of temporal data man-
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agement in DBMSs (such as [42]) limit their approach to different assumptions
(focus on data with a single time dimension and on pure snapshot-reducible
algebras).

9.1.2. On Streaming Data Querying and Querying Semantics

Many works on Data Stream Management Systems (DSMSs) exist in litera-
ture, many of them including theoretical frameworks on algebras for querying
streaming data. DSMSs (among them, Stream Mill [43], STREAM [23], Aurora
[44], TelegraphCQ [45], NiagaraCQ [46], Gigascope [47]) natively support CQs
over continuous unbounded streams of data according to windows where only
the most recent data is retained [48]. This kind of research is mainly focused on
the performances of both stream data management and querying rather than
on semantics. Some works specifically concentrate on semantics but in a very
different context: for instance [49] addresses the problem of synopsis construc-
tion with the goal of keeping in the system the smallest amount of data w.r.t.
query requirements, while our assumption is that data never leaves the system.
Generally, (e.g., in CQL [23] and SyncSQL [50], but also in more recent proposals
[51]) streams are transformed into instantaneous/synchronized relations that
are manipulated through relational operators, and then transformed back to
streams. Under a more general perspective, these approaches do not actually
deal with both streaming and traditional relational data in a unified model. In
this paper we prove that it is possible to exploit the full potential of a unified
approach, by preserving the standard (and temporal) semantics of (T)RDBMS’s
algebras while overcoming the transformation overhead of stream-relation-stream
approaches like [23, 50].

As a matter of fact, some works charge DSMSs with short-sightedness as to
treating stream processing distinct from traditional data processing [8–10]. Thus,
recent research proposals extend traditional DBMSs’ query model and language
towards streaming query capabilities [9, 52]. However, these works present
extensions to SQL through query examples and do not offer a formal algebraic
framework for a clear specification of query operators and their semantics. The
only paper offering a fully native representation of streaming data in a DBMS is
[13].

The work in [35] presents a comprehensive description of window types that
can be specified over data streams, and proposes an algebra for continuous
query specification. However, the algebraic operators introduced (e.g., windowed
selection, windowed join, etc.) are tightly bound to the window types, thus
resulting in windowed operators that absorb windows in their definition. In
our work instead we propose a sharp distinction between standard algebraic
operators, belonging to T A?, and window operators, defined in CT A. Such
a twofold view offers two main advantages: a clearer semantics of operators,
and more flexibility in formulating algebraic expressions, thus also leading to a
more accurate optimization. Moreover, both in SQL:2011 and proposed stream
query languages, sliding windows can only be used, via aggregation operators,
to produce results in the target list of a query, whereas CT A allows us to use
them everywhere (e.g., in a selection predicate as in our running example). To
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the authors’ knowledge, these features are not covered by any existing approach
dealing with streaming data.

An approach similar to ours is followed in [53], where operators for window
specification are kept separate from standard algebraic operators. The introduced
operators are tailored to deal with a multiset representation of temporal data
in a novel logical model and are implemented on ad-hoc data structures for
state maintenance under a time-interval approach. Snapshot reducibility is
demonstrated for standard operators. Window operators instead overwrite
tuples’ original timestamps with window evaluation time and thus they are not
snapshot-reducible. This approach does not integrate with the theoretical and
practical solutions proposed for the development of a robust temporal database
technology, including [16] which presents a proposal for the implementation of a
standard temporal algebra in an off-the-shelf DBMS, supporting a sequenced
semantics that guarantees extended snapshot reducibility. As to CT A operators,
we proved this fundamental requirement by showing how CT A expressions can
be translated into equivalent expressions in the temporal algebra T A?.

An additional note concerns the semantics of ad-hoc proposals of temporal
operators that often proves to be ambiguous as far as timestamp management is
concerned. A consensus is not shared among existing approaches. For instance,
the timestamps of tuples resulting from a windowed join can be either the
minimum of the two original timestamp values [35, 44], or the most recent
one [54], or the time instant at which the join is executed [55]. Operators in
T A follow a precise and commonly adopted sequenced semantics [16], and a
temporal join is always performed between pairs of tuples having overlapping
timestamp, thus being valid at the same time instants. The non-sequenced part
of expressive temporal queries (e.g., necessary to interoperate data belonging to
different temporal snapshots) is captured by the T A? extensions we proposed
for T A. Furthermore, as noticed about [53], also in [23] windowing operators
overwrite the original timestamp of tuples with a new timestamp corresponding
to the window evaluation time instant. CT A operators maintain instead both
this information and the original tuple timestamp, thus not losing relevant
information concerning the lineage of streaming data, to be used for further
processing. Such “provenance witness” timestamps play a role similar to the
lineage sets used in [16] to define change-preserving operators. This feature
enables CT A windowing operators to be translated into T A and, thus, to be
snapshot-reducible on valid time.

A further property featured by CT A is the capability of defining forward
windows, thus opening to the possibility of evaluating queries (possibly in an
approximated way) by referring tuples that will be observed after a given time
instance, as proposed for SQL:2011 [36] (e.g., SQLStream Blaze [4] considers
forward windows in its query syntax specifications but it does not provide an
implementation for them).

9.2. Data-intensive Systems and Frameworks

From a system perspective, a great amount of software frameworks for the
management of large volumes of data has flourished in recent years. However,
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none of them offer a full-fledged answer to the challenging data management
objectives we pointed out in the introduction and that motivated this work.

DSMSs do not support data persistency and/or temporal versioning: the
common assumption is “all past tuples cannot be memorized” [43]. This means
that, for instance, jointly querying current data with historical data changing
over time is not directly supported and requires the overhead of interfacing with
other data management systems, with performance and usability problems. The
large number of available commercial DSMSs, such as SQLStream Blaze [4],
IBM Infosphere Streams [5] and Oracle Fusion [6] are conceived under the same
assumptions.

9.2.1. Joint Management of Streaming and Relational Data

With the advent of the Big Data era, a large number of novel data manage-
ment proposals has tried to revolutionize data management, offering extensible
architectures able to cope with different kinds of data, including streams and
tabular data. Following the guidelines of the Lambda architecture [56], dis-
tributed realtime computation systems such as Apache Storm [57] have appeared
and have been coupled with distributed computing platforms such as Apache
Hadoop [58] and NoSQL databases such as Amazon Dynamo [59] in order to
provide a complete solution to real-time (online) processing and batch (offline)
processing of tabular and streaming data, but with big disadvantages for users:
duplicative development effort in systems offering different data/querying mod-
els and languages (e.g., for defining online or offline processing pipelines, for
working on tabular or streaming data, etc.), and additional overhead for repro-
cessing/merging data between them. Further systems have then been presented,
trying to provide larger flexibility in a single data management solution, as
also to the guidelines of the Kappa architecture [60]: big data processing en-
gines such as Apache Spark [3], big data stores such as Apache HBase [61],
stream processing frameworks such as Apache Flink [12, 62] and Apache Samza
[7]. The extensibility and modularity of their architecture allows them to offer
data models often supporting different kinds of data: for instance, Spark data
model based on finite Resilient Distributed Datasets (RDDs) is extended towards
streaming (infinite) data by means of the SparkStreaming [63] extension. The
same applies to their querying model: users can typically implement the kind
of operators they want, and, besides typical windowing operators applying to
streams, some systems offer the possibility to extend their data and querying
model towards the relational world, including aggregates and joins. For instance,
Flink “base” data model is based on the low-level “dataset” and “datastream”
data types; in order to apply relational operators (managed through Apache
Calcite [64]) on such data, these need to be transformed in “table” data types
(which include “dynamic tables” to manage streaming data). This is also the
case of other relational add-ons such as StormSQL, SparkSQL [28], SamzaSQL
[65] and Apache Phoenix [66] for HBase.

On the one hand, such variety of extensions brings great flexibility as to
query answering. On the other hand, it essentially introduces fragmentation.
From a practical point of view, although offering high performances, such
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extensions do not provide a real synergic approach to querying streaming and
relational data under a unified perspective. For instance, HBase extended with
Phoenix supports SQL queries but still not streaming data; SparkStreaming and
SparkSQL extensions work together only by introducing substantial overheads
(stream data each time needs to be converted and registered as a temporary
table to be queried using SQL); similarly, in SamzaSQL and Flink relational
operators need to transform the data between the base and relational model,
whereas joining a table and a stream requires reading the whole table data in
memory (“bootstrap”) in order to transform it to a stream. Moreover, joins
between tables and streams are supported only under specific circumstances (for
instance, Flink only supports joining append-only tables). This confirms that
(a) the typical drawbacks of DSMSs when dealing with tabular data are still
present and (b) the streaming/continuous model and the relational model are
kept as two separate worlds.

With reference to the example application domain considered in this paper,
also the work in [67] acknowledges the need by financial services of integrating
real-time and historical analytics seamlessly on streaming and relational data.
[67] presents the implementation of a framework that relies on an extended
relational algebra for internal query representation as a means for translating
queries expressed in the Q language (a highly domain-specific query language
tailored to time series analytics) to SQL. The focus of the paper is on the
efficiency of query translation, rather than on providing a comprehensive syntax
and semantics of the algebra, and query translation is shown through examples.

Ultimately, these systems certainly have strong scalability and performances in
specific use-cases but, since they do not rely on a traditional RDBMS architecture,
they are not able to exploit the full expressive power of relational algebra and the
well-established optimization power of RDBMSs’ query engines. Rather, being
based on novel ad-hoc implementations and extensions providing limited features
in specific cases, they show substantial limitations in expressing generalized
queries and inefficiencies in executing them.

9.2.2. Systems Dealing with Time

With regard to temporal capabilities, DSMSs (e.g., [23]) include a timestamp
in each data tuple, representing the time the tuple is created. Some stream
processing frameworks (e.g., Storm [57]) give the chance either to work without
explicit timestamps (i.e., window calculations are performed based on the time
when the tuple is processed), or to use source-generated timestamps (e.g., event
time, for processing events based on the time when an event occurs). Flink [12]
also offers a third option of working with ingestion time (the same as transaction
time, i.e., when the data enters the dataflow). However, even if users can
typically extend these models (and define custom operators that have to be
programmed from scratch), none of the approaches provide the flexibility of
automatically maintaining both the streaming data original timestamps and
the window evaluation time, as we do when evaluating window expressions.
By envisioning tuples’ original timestamps as streaming data transaction time
values, our approach permits the translation of CQs in OTQs and it enables
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the implementation of the continuous temporal model on a temporal relational
engine supporting an extended sequenced semantics.

When talking about time management, the support for time versioning and
sequenced semantics as offered by TDBMSs is particularly crucial: while this
is typically of little use in a pure DSMS, it instead becomes fundamental when
supporting queries involving streams and relational data that changes over time
(e.g., in temporal joins). Quite surprisingly, considering the temporal nature
of a data stream, most existing data-intensive systems (i.e., both DSMSs and
Big Data frameworks) do not support built-in temporal versioning for data.
HBase/Phoenix and major standard RDBMSs do, but no streaming support is
provided though. Flink is quite an exception and provides some kind of support
to versioning by offering the “temporal table” abstraction. Temporal tables can
be used in queries together with the other abstractions (e.g., dynamic tables for
streaming data), but with a number of limitations similar to the ones already
discussed for relational/streaming management: joining dynamic and temporal
tables is again supported only under specific circumstances (e.g., joins require
users to materialize portions of the temporal tables through ad-hoc programmed
temporal table functions, joins with event time tables are not supported, etc.).

Most importantly, even if some systems (e.g., Flink [12] and Samza [65])
underline the importance of the so-called replay principle (i.e., a streaming
query should produce the same result as the corresponding non-streaming query
would if given the same data in a table), none of them fully support temporal
database semantics. While our approach is designed to preserve as much as
possible a sequenced semantics, while also allowing for non-sequenced operations,
DSMSs and Big Data frameworks are not designed on this assumption and
leave sequenced semantics support to the programmers’ skill: in order to obtain
standard sequenced semantics behavior on a query involving temporal tables,
the user has to manually select relevant slices and specify how to deal with the
involved times for each required operation (e.g., joins).

In short, most approaches combine streaming features with desir-
able (T)DBMSs features, albeit without directly exploiting well-established
(T)DBMSs’ research and implementations, often with uneven results.

An equally hot research topic has been extending standard DBMSs towards
a flexible and efficient management of temporal and versioned data: even if some
partial temporal support is becoming widespread also in commercial systems
[68], much research is still needed in order to fully support such capabilities.
For instance, the seminal work [16] provides several breakthroughs towards this
direction, even if basically focused on the management of temporal queries with
sequenced semantics. All in all, grounding our research on such recent (T)DBMS
research (including extensions toward the streaming world [13]) enables our
CT A proposal to leverage on the well-founded (temporal) query semantics and
on the underlying consolidated (T)DBMS technology (e.g., regarding query
optimization), provided the kernel extensions presented in [16].

51

Jo
ur

na
l P

re
-p

ro
of



Journal Pre-proof
10. Concluding Remarks and Future Research Directions

The ongoing research and the discussed works on the management and
querying of streaming, temporal and standard relational data are certainly
promising. However, there is still much work to be done in order to have an actual
“all-in-one” answer to all the modern application requirements we discussed in the
introduction. Following the first step provided by the streaming table concept
we introduced in [13], in this paper we present a full-fledged TSQL2-like query
language based on a novel temporal algebra extended with windowing and
aggregation operators supporting both OTQs and CQs on streaming, standard
and temporal relational data. Continuous queries are proved to be correctly
translated into temporal OTQs, thus paving the way to the implementation on a
relational engine extended with temporal capabilities. With the aim of avoiding
any ambiguity, our approach complies to a formal scheme that guarantees
correctness of query rewriting, which is known to have a crucial impact on design
and implementation issues like, for instance, query optimization.

Our proposal is highly flexible in that it allows to combine in a unified
framework several continuous query features proposed in the literature (e.g.,
real time and historical analytics, backward and forward sliding windows, tum-
bling and hopping windows) but for which a well-founded semantics and full
implementation agenda is still lacking, and to interoperate streaming data with
non-temporal data and archival data stored in temporal tables in a consistent
way.

In our near future work, we plan to explore algebraic optimization issues
and indexing techniques to efficiently support the implementation of CT A
operators in a temporal DBMS or in a traditional DBMS extended with temporal
capabilities. Optimization issues include the efficient support of the hybrid
sequenced/non-sequenced semantics introduced in this work, requiring techniques
for the combined optimization of T A? subexpressions containing non-temporal
operators involving costly non-sequenced temporal joins and T A expressions
which can be dealt with as shown in [16]. A further extension concerns the
possibility of seamlessly maintaining two or more times for each tuple. This
feature would enable a richer variety of querying possibilities, for instance
through operators involving together event and transaction time, as well as
out-of-order and skewed inputs’ management [24]. Our final aim is to exploit
all the consolidated and universally adopted technology a standard temporal
framework provides, in order to complete the integration of streaming tables in
the context of a temporal RDBMS, breaking the traditional barrier between the
streaming and the temporal worlds.

A medium-term research direction we intend to investigate concerns the
study of metodologies and techniques for modeling/processing linked stream
data, a way in which the Linked Data principles can be applied to stream data
and be part of the Web of Linked Data [69]. To this end, we will blend our long-
standing know-how in the field of semantic data modeling and processing [70, 71],
also including temporal aspects [72, 73], with the expertise we have gathered
with stream data management [13, 74, 75]. While some works discuss temporal
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querying of RDF data [73, 76] as well as querying of streaming RDF data [77, 78],
these issues are dealt with under different and separate perspectives, depending
on their specific querying goals involving temporal or streaming query capabilities,
respectively. In this context, we plan to apply the same principles underlying the
comprehensive approach adopted in this paper also to this stimulating scenario.
We expect that a unified querying model, like the one we proposed, will very
likely transpose (most of) the advantages we discussed in this paper also to the
RDF data context. We consider this topic a very promising one that would
certainly boost a new range of real-time applications.

A further related topic we are interested in regards reasoning on semantic
data streams. Our purpose is to take advantage of the amount of existing work
on stream reasoning [79] to study the application of inference techniques to highly
dynamic semantic data. We deem this issue as a prominent and challenging goal
for the definition of innovative means for data analysis in complex environments
like, for instance, smart factories in the Industry 4.0 scenario under development.

Another scenario we would like to explore is the management of data streams
with intrinsic interval-based rather than point-based semantics. Intelligent
sensors can be thought to produce streams of data concerning the accomplishment
of some kind of complete tasks and for which an interval timestamping is needed,
as they represent telic data [80]. Telic facts (like “the patient had one 100mg
intravenous drug infusion from 10:00 to 10:45”) are true on an interval but false
on any superinterval or subinterval of it, and need to be manipulated with an
interval temporal logic or algebra. Extending our framework to the management
of interval-based data streams and telic temporal data [81] is another challenge
we plan to accept.

A further extension that we intend to consider consists in providing pattern de-
tection capabilities, which is a typical feature offered by event processing systems
on data streams (for instance, Flink enables it through the match recognize

clause). Since this kind of operation founds on rather different principles than
those underlying a DBMS’s perspective, in order to efficiently implement this
ability in our framework, we plan to extend our algebra with a specific pattern
matching operator that, by exploiting the ordering of tuples in a streaming
table, would select the desired patterns as a preprocessing operation before the
application of standard algebraic operators.

In the long term, we also wish to explore the potentialities offered by the
availability, at the data model and at the query language level, of complex ¬1NF
data types including sets of streaming tables, streaming tables of streaming
tables and sets of streaming tables of streaming tables. Such a possibility has
been explicitly forbidden in the current approach as it was unnecessary for the
purposes of the present work, but could reveal elements of interestingness for
particular applications. In this vein, another constraint present in the current
approach that could be relaxed concerns the use of sliding window expressions,
which could be allowed to also have generic temporal expressions as arguments
and to appear inside non-temporal algebra subexpressions.
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Appendix A. Expressing the Snapshot-equality Query in the Extend-
ed Temporal Algebra T A?

The “snapshot-equality” query tests for the existence of distinct database
snapshots with an equal content. Assuming the database schema composed
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of a single unary relation S(X|T ) using point timestamping, it can easily be
expressed in TRC as follows:

(∃t)(∃t′)[t 6= t′ ∧ (∀x)(S(x, t) ≡ S(x, t′))]

Such a query cannot be expressed in FOTL or in a standard temporal algebra
acting on relations with a single implicit timestamp [33, 34]. On the contrary,
we will show in the following how it can be expressed in our extended temporal
algebra T A? also employing non-temporal operators. This will prove that the
following Lemma holds:

Lemma 2. The “snapshot-equality” query can be expressed in the extended
temporal algebra T A?.

Proof. The expression πX,U1(εU1(S)) represents a non-temporal relation
obtained from S by transforming the implicit timestamping attribute T into
an explicit attribute U1. Such a relation is non-temporal as the timestamp
column has been projected out. Hence, if we use such a relation as argument
of a T A operator, it is virtually converted to a temporal relation as shown
in Sec. 2 (i.e., obtained as the Cartesian product between the tuples of the
non-temporal relation and the whole time domain T ). Then we can consider the
temporal division operator ÷T , defined as the temporal extension with sequenced
semantics of its non-temporal counterpart ÷ (the semantics of ÷ is the standard
one considered in relational algebra; for example, the division between R1(X1X2)
and R2(X2) can be defined as R1÷R2 = πX1(R1)− πX1 [(πX1(R1)×R2)−R1]).
In our case, the temporal division is used to express the required universal
quantification on values of the explicit attribute X. In fact, we can use the
expression:

P = πX,U1
(εU1

(S))÷T S
whose result is a temporal relation with schema P (U1, T ), to find the pairs (ti, tj)
of timepoints, such that the snapshot of S valid at ti contains all the X values
present in the snapshot of S valid at tj .

Notice that, owing to the sequenced semantics, the tuples valid at time t in
P are the ones that can be computed by executing the non-temporal division
÷ between πX,U1(εU1(S)) and the explicit contents of the timeslice at time t of
S (i.e., πX(τt(S)))). The results of such a non-temporal division are the values
t′ of U1 for which all the values x of X in τt(S) are present as explicit tuples
(x, t′) in S (actually in the snapshot valid at t of the temporal conversion of
πX,U1

(εU1
(S)); notice that, owing to the conversion, the explicit contents of all

the snapshots are equal to the non-temporal relation πX,U1(εU1(S))).
The timestamp T of P can also be made explicit for further manipulations

as follows:
Q = σTU1 6=U2

(
εU2

[πX,U1
(εU1

(S))÷T S]
)

The outer selection eliminates tuples with U1 = U2, representing trivial snapshot
self-containments. An example of the functioning of the temporal division (with
further manipulations leading to Q) can be found in Fig. A.5.
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Figure A.5: Example of computation of πX,U1
(εU1

(S))÷T S and further manipulations leading
to Q(U1, U2|T ). The table πX,U1

(εU1
(S))T to the left represents the tuples of interest in

the result of the temporal conversion of πX,U1
(εU1

(S)) (all the other tuples produced by the
conversion, with timestamps different form t1, t2 and t3, do not contribute to the result of
the temporal division owing to the sequenced semantics and, thus, have been omitted in the
figure). The red, yellow and green colors highlight the ÷ computations made on the individual
snapshots valid at t1, t2 and t3, respectively, to assemble the final ÷T result in accordance to
the sequenced semantics.
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In order to find equal snapshots, we must finally test for reciprocal con-
tainment of the X values present in the snapshots valid at ti and tj , which
means to test for the presence of both (U1, U2) pairs (ti, tj) and (tj , ti) in Q.
This can be done in more than one way with the operators of the temporal
algebra, for instance using attribute rename and intersection or (semi)join. Us-
ing rename and intersection (which in T A can be defined, for example, as
R1 ∩T R2 = R1 −T (R1 −T R2)), the following expression:

(πU1,U2
(Q))T ∩T ρU1,U2←U2,U1

(Q)

where the operator ρU1,U2←U2,U1
is used to rename the attributes U1 to U2

and U2 to U1 in Q, respectively, returns a non-empty result if and only if the
TRC snapshot-equality query returns a true value. In fact, the (U1, U2) pairs
in the tuples of the result are the timestamps of the equal snapshots. Notice
that πU1,U2

(Q) is a non-temporal relation, which is converted to temporal (with
tuples valid always) since it appears as argument of a temporal operator in the
expression above. �

Finally, notice that considering point timestamping in S is not a limitation,
as an expression similar to the proposed solution can also be easily found for
answering the snapshot-equality query on a relation using interval timestamping.
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