
29 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

On the choice of entropy variables in multifield inflation / Cicoli, Michele; Guidetti, Veronica; Muia,
Francesco; Pedro, Francisco G; Paolo Vacca, Gian. - In: CLASSICAL AND QUANTUM GRAVITY. - ISSN 0264-
9381. - ELETTRONICO. - 40:2(2022), pp. 025008.1-025008.26. [10.1088/1361-6382/acabf7]

Published Version:

On the choice of entropy variables in multifield inflation

Published:
DOI: http://doi.org/10.1088/1361-6382/acabf7

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/915466 since: 2023-02-14

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1088/1361-6382/acabf7
https://hdl.handle.net/11585/915466


This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/) 

When citing, please refer to the published version. 

 

 

 

 

 

This is the final peer-reviewed accepted manuscript of:  

Michele Cicoli et al, On the choice of entropy variables in multifield inflation, 2023 
Class. Quantum Grav. 40, 025008. 

The final published version is available online at: https://doi.org/10.1088/1361-
6382/acabf7  

 

Terms of use: 

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are 
specified in the publishing policy. For all terms of use and more information see the publisher's 
website.   

 

https://cris.unibo.it/
https://doi.org/10.1088/1361-6382/acabf7
https://doi.org/10.1088/1361-6382/acabf7


DESY 21-106

On the choice of entropy variables in multifield
inflation

Michele Cicolia,b, Veronica Guidettic, Francesco Muiad,

Francisco G. Pedroa,b and Gian Paolo Vaccab

a Dipartimento di Fisica e Astronomia, Università di Bologna, via Irnerio 46, 40126 Bologna, Italy
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We discuss the usefulness and theoretical consistency of different entropy variables used

in the literature to describe isocurvature perturbations in multifield inflationary models

with a generic curved field space. We clarify which is the proper entropy variable to be

used to match the evolution of isocurvature modes during inflation to the one after the

reheating epoch in order to compare with observational constraints. In particular, we find

that commonly used variables, as the relative entropy perturbation or the one associated

to the decomposition in tangent and normal perturbations with respect to the inflationary

trajectory, even if more useful to perform numerical studies, can lead to results which are

wrong by several orders of magnitude, or even to apparent destabilisation effects which are

unphysical for cases with light kinetically coupled spectator fields.
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1 Introduction

The development of cosmic inflation [1–4] to solve some of the issues of the standard

Big Bang theory and as a mechanism to generate the primordial perturbations observed

in the Cosmic Microwave Background (CMB) has been one of the most striking results

of cosmology during the last decades [5, 6]. In its simplest implementation, i.e. in single

field models, inflation can in principle account for all observations. Specific single field

models have been increasingly constrained over the years: some of the simplest models

such as inflation with a power-law potential [7] are now strongly disfavoured and - in

general - models featuring concave potentials are favoured with respect to those with convex

potentials [6].

However, it is reasonable to expect that the single field description of inflation is valid

only approximately as in principle there may be many fields that couple to the inflaton

and be dynamical during inflation. For instance, UV complete theories like string theory

give rise, upon compactification, to hundreds of complex scalar fields in the low-energy 4D

theory whose dynamics can be crucial during inflation. Moreover, as typical of supergravity

models, the resulting field space is curved. Notice that, in a gravitational context, theories

with a curved field space and non-trivial kinetic interactions are not just a feature of string

theory but generically arise in non-minimally coupled multifield effective models, upon

moving to Einstein frame [8–11].

Some of these scalars might acquire a very large mass and decouple completely from

the inflationary dynamics. However several of them are expected to remain light and to

play an important role during inflation. A primary example are axion-like fields which are

naturally light since they enjoy a shift symmetry which is broken only at non-perturbative

level. Again, a typical string compactification is characterised by hundreds of them, leading

to the so-called string axiverse [12–15]. Therefore in string models, and more generally in

non-minimally coupled effective theories, it is very natural to have light kinetically coupled

fields during inflation, that in principle cannot be decoupled from the inflationary dynamics.

It becomes then crucial to study the effect of these isocurvature modes on the inflationary

dynamics, to understand if they can modify or even spoil inflation, depending on their

observational signatures.

The choice of entropy variables to describe the effect of isocurvature modes in multifield

models of inflation is clearly fundamental. Several variables have been proposed so far in

the literature, with different pros and cons. In this paper we will discuss the usefulness and

theoretical consistency of each of these entropy variables, clarifying which is the one more

suitable to perform a proper matching between the inflationary and the post-inflationary

evolution of isocurvature perturbations. This matching is crucial to make contact with data

since CMB observations place constraints on the primordial isocurvature fraction only at

the time of CMB decoupling. Let us summarise our analysis:

• Planck measurements constrain the primordial isocurvature fraction parameter de-

fined as βiso(k) = PSnγ (k)/[Pζ(k) + PSnγ (k)], where ζ is the standard curvature

perturbation on uniform-density hypersurfaces, while Snγ is the relative entropy per-

turbation between photons and a different species denoted with n which can be cold
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dark matter, baryons or neutrinos. The upper bound on this fraction goes from about

1% to 10% depending on the species involves and the momentum scale [6].1

• The correct entropy variable to be studied during inflation seems therefore Sij , where

now i and j are indices denoting different fields (or combinations thereof) of the

underlying multifield models. The evolution of Sij during inflation should be matched

with the post-inflationary history of our universe, leading to Snγ , once a proper

understanding of the model-dependent reheating epoch is developed [16, 17]. This

involves the knowledge of how photons, cold dark matter, baryons and neutrinos

are produced from the decay of the different microscopic degrees of freedom. This

study has been recently carried out in flat field spaces [18] but the extension of this

formalism to curved systems is still missing.

• There are some particular cases where however the relative entropy variable Sij be-

comes ill-defined since it would apparently diverge. This might occur in general

in multifield models where the kinetic energy of some scalar fields vanishes [19]

as in situations with a curved field space and light spectator fields [20, 21] since

Sij ∼
(
δρj
ρ̇j
− δρi

ρ̇i

)
→ ∞ due to ρ̇i → 0 (where ρi is the energy density of the i-th

scalar field, δρi is its perturbation and ρ̇i ≡ dρi/dt).

• We will show that this divergence is unphysical since no geometrical destabilisation

[22] of the background trajectory is induced by the spurious growing isocurvature

perturbations. In fact, we will argue that in this case a better entropy variable

which should be used is Ŝij ∝ ρ̇iρ̇jSij which remains well-behaved and decreases

with respect to standard adiabatic perturbations. In these ‘pathological’ cases it is

therefore the evolution of Ŝij , and not the one of Sij , which should be studied during

inflation. Matching with the beginning of radiation dominance will then lead to Ŝnγ
which can be safely translated into Snγ to compare with observational data since Snγ
is a well-defined quantity with no divergence.

• Another entropy variable which is sometimes used is the total entropy defined in

terms of the non-adiabatic pressure perturbation δPnad as S =
(
H/Ṗ

)
δPnad. This

quantity, even if used in some cases [23, 24], contains both intrinsic and relative

entropy contributions, and so it is not the right one to be used to compare with

observational bounds on βiso.

• The non-adiabatic perturbation δs, introduced for the first time in [25] and then used

extensively in many studies (see for example [26, 27]), corresponds instead to fluc-

tuations which are orthogonal to the classical background trajectory. The entropy

variable δs is very useful to picture clearly the decomposition of an arbitrary per-

turbation into adiabatic (tangent) and entropy (normal) components, and it allows

for an easier numerical integration of the field equations. However it is not the right

variable to compare with observations since it can lead to results which are wrong

by several orders of magnitude since δs is proportional to total entropy [23, 24, 28].

Moreover, in a curved field space, the use of δs can lead to apparent destabilisation

1This is just an example of the isocurvature variable that can be constrained by observations.
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effects which are unphysical. This effect can be seen in the behaviour of the effective

mass-squared m2
eff of isocurvature perturbations δs which receives different contri-

butions from derivatives of the scalar potential, the curvature of the field space and

the turning rate of the background trajectory. Depending on the form of the kinetic

coupling and the underlying scalar potential, there are 3 general situations:

1. Multifield models featuring a geometrical destabilisation [22] induced by the

negative curvature of the field space that causes a tachyonic effective mass [29]

which however turns into m2
eff > 0 once the system settles down in the classical

background trajectory [20, 30]. In this case both Sij and δs would decay since

the isocurvature modes are heavy (even if Sij is the right variable to study to

get to the final prediction for βiso after reheating).

2. Multifield models with a non-vanishing turning rate [31] characterised by m2
eff '

0 due to cancellation between different contributions even if the background

field can be heavy (i.e. the eigenvalues of the Hessian of the scalar potential

are non-zero). In this case isocurvature modes are constant on super-horizon

scales and act as a source for curvature perturbations. Thus βiso is expected to

be negligible in this class of models which can qualitatively be well-described

both in terms of Sij and δs, even if one should focus on Sij to pin down the

exact prediction for βiso.

3. Multifield models typical of string compactifications where the inflaton is a

Kähler modulus [32–40] and ultra-light axions play the role of spectator fields.

In the case of Fibre Inflation [33], as shown in [21], when using the entropy vari-

able δs, the effective mass of these isocurvature modes would become tachyonic

due to the negative contribution coming from the curvature of the underlying

field space, i.e. m2
eff < 0. This might signal an exponential growth of isocurva-

ture modes leading the system to a regime where perturbation theory breaks

down. However the background trajectory of these multifield models turns out

to be fully stable [21]. The absence of any instability seems therefore to be a

paradox. This is resolved by noticing that the variable δs is ill-defined in this

case since the divergence arises from the behaviour of the vector normal to the

background trajectory which is used to decompose an arbitrary perturbation to

define δs. In fact, when using the relative entropy variable Ŝij , we will find that

in this case non-adiabatic perturbations decay on super-horizon scales, in full

agreement with the absence of any destabilisation of the background trajectory.

• As we will show for the general case of a curved field space, the different entropy

variables, S, Sij , Ŝij and δs, are all gauge invariant at linear order in perturbation

theory. Thus the apparent instability for cases with light kinetically coupled spectator

fields where both Sij and δs diverge, is not due to the use of a non-physical variable

which is not gauge invariant, but it is simply due to the fact that in these particular

cases those variables become ill-defined.

This paper is organised as follows. In Sec. 2 we discuss different variables used in

the literature to describe entropy perturbations in multifield inflationary models, stressing
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which is the right variable to consider to perform a proper matching between inflation

and the reheating epoch. In Sec. 3 we show how some entropy variables can become

ill-defined in models with kinetically coupled spectator fields which are lighter than the

inflaton. Focusing on a simple 2-field system with a Starobinsky-like inflationary potential,

we investigate the origin of the spurious instability and we then show that, using the

appropriate entropy variable, the isocurvature power spectrum turns out to be negligible.

We draw our conclusions in Sec. 4 and we leave some technical details to the appendices.

In particular, in App. A we first present the general framework of perturbation theory

for a curved field space (focusing on the spatially flat gauge), and we then prove gauge

invariance of all entropy variables. App. B provides instead the details of the single field

limit of density perturbations for our illustrative 2-field model.

2 Entropy variables in multifield inflation

In this section we clarify the relations between the various definitions of entropy that

can be found in the literature, in an effort to understand how the entropy perturbations

generated during multifield inflation are then transferred to the primordial plasma in the

radiation phase.

2.1 Entropy perturbations during inflation

Let us start with the multifield Lagrangian of a generic non-linear sigma model which

can be written as: L√
|g|

=
1

2
Gij(φ

i)∂µφ
i∂µφj − V (φi) , (2.1)

where Gij(φ
i) denotes the field space metric. As already mentioned, this class of mod-

els naturally arises in the framework of beyond the Standard Model theories as string

compactifications, supergravity and non-minimally coupled multifield effective theories.

To make contact with the entropy S, let us recall that for a generic fluid the pressure

P is a function of S and the energy density ρ: P = P (ρ, S). Pressure perturbations can

therefore be decomposed into an adiabatic and a non-adiabatic part, according to:

δP =
δP

δρ

∣∣∣
S
δρ+

δP

δS

∣∣∣
ρ
δS . (2.2)

The adiabatic pressure perturbation is δPad = c2
s δρ, with a speed of sound c2

s ≡ Ṗ /ρ̇.

The non-adiabatic pressure perturbation, denoted δPnad, is formally given by δPnad =(
Ṗ /Ṡ

)
δS, and is in practice computed by subtracting the adiabatic from the total pressure

perturbation:

δPnad = δP − δPad . (2.3)

Total entropy

The total entropy perturbation can be defined in terms of the non-adiabatic pressure

perturbation δPnad as:

S =
H

Ṗ
δPnad =

H

Ṗ

(
δP − c2

sδρ
)
. (2.4)
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During inflation, when scalar fields dominate the energy content of the Universe, one may

write the total entropy of the system in terms of φi and δφi and their derivatives. In the

case of multifield inflation in a generic curved field space (2.4) becomes (setting Mp = 1):

S = − H

3Hφ̇iφ̇i + 2φ̇iVi
δPnad , (2.5)

where in the spatially flat gauge δPnad is given by:

δPnad = −2Viδφ
i +

Viφ̇
iδφjφ̇

j

3H2
− 2

3H

V`φ̇
`

φ̇mφ̇m

[
φ̇iδφ̇

i +
1

2
φ̇iφ̇j∂kGijδφ

k + Viδφ
i

]
. (2.6)

In App. A we have shown that the variable S is gauge invariant not just for canonical

fields but also for the case of a curved field space.

Intrinsic entropy

For a given fluid i one can define the intrinsic entropy perturbation Sint,i as [41]:

Sint,i =
H

Ṗ

(
δPi − c2

i δρi
)
, (2.7)

so that the total intrinsic entropy perturbation of a system with multiple components is:

Sint =
∑

i

Sint,i . (2.8)

Notice that Sint,i = 0 for fluids for which Pi = Pi(ρi) and that Sint is also a gauge invariant

quantity (see again App. A).

Relative entropy

One can also define the relative entropy perturbation as:

Srel = S − Sint . (2.9)

Noting that δP =
∑

i δPi and that δρ =
∑

i δρi and making use of (2.4), (2.7) and (2.8)

one may write [41]:

Srel =
H

Ṗ ρ̇

∑

ij

c2
i (ρ̇jδρi − ρ̇iδρj)

= − 1

6ρ̇Ṗ

∑

ij

ρ̇iρ̇j
(
c2
i − c2

j

)
Sij , (2.10)

where in the last line we have introduced the standard definition of entropy perturbation

between two fluids:

Sij ≡ 3 (ζi − ζj) = −3H

(
δρi
ρ̇i
− δρj

ρ̇j

)
, (2.11)

as is commonly found in the context of hot Big Bang cosmology, and have defined the

individual fluid speed of sound as c2
i = Ṗi/ρ̇i. Notice that, since the curvature perturbation
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on uniform ρi hypersurfaces, ζi = −Ψ−Hδρi/ρ̇i is a gauge invariant quantity (see App. A

for the definition of Ψ, the scalar spatial perturbation to the metric tensor, and a proof of

gauge invariance for scalar non-linear sigma models), Sij is automatically gauge invariant,

even in the presence of energy transfer between the fluids [41, 42].

It is worth pointing out that Sij becomes ill-defined when ρ̇i → 0 in multifield models

with vanishing kinetic energy for some scalar fields [19] as it occurs in classes of string

inflationary models with ultra-light axions [20, 21]. In this case we consider an ‘improved’

relative entropy variable Ŝij defined as:

Ŝij ≡ −
1

6ρ̇Ṗ
ρ̇iρ̇j

(
c2
i − c2

j

)
Sij ⇒ Srel =

∑

ij

Ŝij . (2.12)

Clearly Ŝij remains finite even if ρ̇i → 0.

Entropy field

In order to introduce an alternative description of adiabatic and entropy perturbations,

it is convenient to define the tangent and normal vectors to the inflationary trajectory.

Focusing for simplicity on a 2-dimensional field space, these are given in terms of the

background velocities as [26, 27]:

T i ≡ φ̇i

φ̇0

and N i =
sN (t)√

GjkDtT jDtT k
DtT

i , (2.13)

with φ̇0 ≡
√
Gij φ̇i φ̇j andDtT

i = Ṫ i+ΓijkT
jφ̇k, where Γ is the field space metric connection

and sN (t) = ±1 accounts for the relative orientation between the normal direction and Ṫ i.

These two projectors are orthogonal to each other and have unit norm with respect to the

scalar product defined with the metric Gij . In the context of inflationary physics, adiabatic

and entropy perturbations can be characterised in terms of the quantities:

δσ = T i δφi and δs = N i δφi , (2.14)

where σ is the so-called ‘adiabatic field’, while s is the ‘entropy field’ [25] (see App. A for

details of gauge invariance at linear order for δs). These can be related to the adiabatic

and isocurvature perturbations as (in the spatially flat gauge) [26]:

ζ = − 1√
2ε
δσ and S̃ =

1√
2ε
δs , (2.15)

where 2ε =
(
φ̇0/H

)2
. Notice that the entropy direction δs can be directly related to the

total entropy on super-horizon scales as [25]:

S ' −2VN

3φ̇2
0

δs = − 2VN

3φ̇0H
S̃ . (2.16)

Moreover, as shown in App. A, in a 2-field system with a diagonal field space metric with

Gii ≡ Gi for i = 1, 2, δs takes the simple expression:

δs =
√
G1G2

(
φ̇1φ̇2

φ̇0

)
δφ12 , (2.17)
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where δφ12 is a gauge invariant quantity called ‘generalised entropy’ in [25] and defined as:

δφ12 ≡ δφ1

φ̇1
− δφ2

φ̇2
. (2.18)

Finding and solving the evolution equation for δs not only gives an intuitive picture of the

entropy perturbations but is also a more robust manner of numerically computing entropy

perturbations than subtracting from the total pressure perturbation its adiabatic compo-

nent, as in (2.3) [25, 43]. For these reasons it has become the preferred way of describing

entropy perturbations during multifield inflation. However, as already mentioned in Sec.

1, δs becomes ill-defined in cases where the effective mass of isocurvature perturbations

would become tachyonic since it would signal a destabilisation effect which is unphysical

given that the background evolution remains stable [20, 21]. As we will see in Sec. 3, in

this case the proper entropy variable to be used is Ŝij .

⌘ H

Ṗ
(�P � c2

s�⇢)

minimal scalars

Srel ⌘ S � Sint

⌘ �3H

✓
�⇢i

⇢̇i
� �⇢j

⇢̇j

◆

Sint
H

Ṗ

X

i

(�Pi � c2
i �⇢i) ⌘

S

Sij

Srel =
1

6⇢̇Ṗ

X

i,j

⇢̇i⇢̇j(c
2
j � c2

i )Sij

S12 = a3 d

dt

✓
��12

a3

◆

S̃ ��12 ⌘ ��1

�̇1
� ��2

�̇2

�s

�sp
2✏

⌘

N i��i ⌘
�s =

p
G1G2

 
�̇1�̇2

�̇0

!
��12

Figure 1. Summary of various entropy perturbation variables found in the literature and relations

between them. The relations contained within the dashed rectangle hold only for ‘minimal scalars’,

i.e. scalar fields with sum-separable potentials and canonical kinetic terms.

Minimal scalars

For minimally coupled scalars with canonical kinetic terms and sum-separable poten-

tials, which we will call ‘minimal scalars’, one can show that the relative entropy pertur-

bation takes the form:

Srel =
1

3φ̇2
0

VN φ̇
1φ̇2

3Hφ̇0 + 2VT
S12 , (2.19)
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where VT = T iVi and VN = N iVi are respectively the projections of the scalar potential

along the directions tangent and orthogonal to the background trajectory defined in (2.13).

Using the notation of [44], the relative entropy variable S12 can, in turn, be expressed as:

S12 = a3 d

dt

(
δφ12

a3

)
, (2.20)

where δφ12 is the generalised entropy introduced in (2.18). In the simple case of a potential

of the form V = 1
2m

2
1(φ1)2 + 1

2m
2
2(φ2)2, in the slow-roll approximation (2.20) reduces to

S12 ' −3Hδφ12, which using (2.17) with G1 = G2 = 1 gives:

S̃ ' − φ̇
1φ̇2

3φ̇2
0

S12 , (2.21)

showing that in this particular case S̃ becomes proportional to S12. Let us stress that in

the general case S̃ is proportional only to the total entropy perturbation, as in (2.16), and

not to the relative entropy perturbation.

The relations between the different definitions of entropy perturbations discussed above

are summarised pictorially in Fig. 1. We stress in particular which of them can be used

only in case of flat field space without kinetic coupling.

2.2 Entropy perturbations after inflation

After inflation and the subsequent reheating phase, the Universe is expected to enter a

radiation dominated epoch where photons, baryons, cold dark matter and neutrinos make

up the primordial plasma. Neglecting velocity isocurvature perturbations, the presence

of entropy perturbations at this stage leads to a difference in the number density pertur-

bations, δni/ni, between the various species. Taking photons γ as a reference, we can

thus have different non-vanishing relative entropies Snγ , where n can be cold dark matter,

baryons or neutrinos. These are the quantities that are constrained by CMB data.

In fact, the study of cosmological perturbations generated during inflation boils down

to the study of CMB anisotropies that can be characterised by their power spectra:

(2π)3δ(k + q)PIJ(k) = 〈I(k)J(q)〉 , (2.22)

where I and J can denote the curvature ζ =
∑

i ζi or any post-inflationary isocurvature

perturbation Snγ . Observational constraints can then be formulated in terms of the ‘pri-

mordial isocurvature fraction’:2

βiso(k) =
PSnγ (k)

Pζ(k) + PSnγ (k)
, (2.24)

2We are not interested in this paper on the other parameter that is constrained by Planck observations,

namely the ‘correlation fraction’:

cos ∆IJ =
PIJ

(PIIPJJ)1/2
∈ (−1, 1) , (2.23)

which is taken to be scale-independent in Planck analyses [6].
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where PSnγ (k) ≡ PSnγSnγ (k) and Pζ(k) ≡ Pζζ(k). In general this quantity is not scale

invariant, so that Planck constraints are placed at three different reference scales, with the

observational upper bound on βiso going from about 1% to 10% depending on the species

involves [6]. Given our illustrative purposes though, we adopt the assumption of [45] and

take the spectral index for all the spectra to be zero, so that the primordial isocurvature

fraction turns out to be scale-independent. Let us also stress that the constraint on βiso

comes indirectly: once we have the primordial power spectra PIJ at the start of the radi-

ation dominated era (that implies that we have consistently transferred all perturbations

from the inflationary to the post-inflationary era) we need to evolve them using Einstein

and Boltzmann equations till the release of the CMB, and then translate them into ob-

servable quantities. Only then we are able to place constraints on βiso by means of CMB

constraints.

After this discussion of observational constraints, it is clear that we should use the rela-

tive entropy variable Sij defined in (2.11) to transfer the entropy mode from the inflationary

scalar field system to the primordial plasma that gets formed after reheating and consists

of fluids only. In fact, Sij has already been used in several previous works [16, 17, 46].

In general, in order to make contact between the inflationary and the reheating phase,

one needs to have a complete model where the couplings of the inflationary scalars to the

various species are known, so that Sij can be evolved up to radiation domination.

Notice instead that we would obtain a result which could be wrong by several orders

of magnitude if we used the total entropy S given by (2.5) [23, 24] since S contains both

intrinsic and relative contributions. Similar considerations would apply to the entropy

perturbation S̃ orthogonal to the background trajectory given in (2.15) since (2.16) shows

that S is proportional to S̃. Moreover, as we will discuss in more detail in Sec. 3, in some

specific models [19–21] the use of (2.15) can lead to an unphysical instability of the entropy

perturbations due to the spurious divergence of the normal projector N i. In these cases,

however, also the relative entropy Sij itself becomes an inappropriate variable since the

curvature ζ turns out to be ill-defined. One has therefore to use the ‘improved’ relative

entropy variable Ŝij given in (2.12) which remains finite during inflation and can be safely

matched to the post-inflationary epoch, leading to Ŝnγ for different species denoted by

n. In order to compare with observational constraints on βiso, one has then to infer Snγ
from Ŝnγ using again (2.12). Notice that there is no apparent divergence in the radiation

dominated era since Snγ is a well-defined quantity.

3 Spurious instability from light kinetically coupled fields

In this section we shall discuss in depth cases where Sij and S̃ become ill-defined.

In the case of kinetically coupled light scalars, the authors of [20, 21] found that the

isocurvature perturbation S̃ grows rapidly on super-horizon scales despite the fact that the

background trajectory is essentially single field and stable. We will now show that this

apparent paradox is caused by the use of wrong entropy variables.
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3.1 Evolution of isocurvature perturbations

Before analysing a particular toy-model, let us briefly review how to describe the evo-

lution of isocurvature perturbations in generic multifield models with a curved field space.

We will first consider the ‘field space basis’ where scalar perturbations are parametrised

as δφi, and then the ‘kinematic basis’ where the perturbations are decomposed in modes

tangent and orthogonal to the background trajectory.

Field space basis

The gauge invariant scalar perturbations defined as Qi = δφi + Ψφ̇i/H follow [47]:

D2
tQ

i + 3HDtQ
i − a−2∇2Qi + CijQ

j = 0 , (3.1)

where Cij is given by:

Cij = ∇jV i − φ̇2Rik`jT
kT ` + 2ε φ̇−1

0 H
(
T iVj + TjV

i
)

+ 2ε(3− ε)H2T iTj . (3.2)

In order to analyse the stability of these perturbations it is useful to expand the covariant

derivatives, thereby recasting the Mukhanov-Sasaki (MS) equation into the following form:

Q̈i + Q̇j
(

2Γijkφ̇
k + 3Hδij

)
− a−2∇2Qi + (M2)ijQ

j = 0 , (3.3)

where the mass-squared matrix looks like:

(M2)ij ≡ Cij +
(
Γijk,` + Γi`mΓmjk

)
φ̇kφ̇` + Γijk

(
φ̈k + 3Hφ̇k

)
. (3.4)

Making use of the background equations of motion and recalling that:

Rijk` ≡ Γij`,k − Γijk,` + ΓikmΓm`j − Γi`mΓmkj , (3.5)

the mass-squared matrix can be simplified to:

(M2)ij = ∂jV
i + Γik`,jφ̇

kφ̇` + 2ε φ̇−1
0 H

(
T iVj + TjV

i
)

+ 2ε(3− ε)H2T iTj . (3.6)

Should there be an instability, at least one of the eigenvalues of M2 would be large and

negative in order to overcome the friction term in (3.3) and to drive the growth of the

perturbations on super-horizon scales.

Kinematic basis

As already mentioned in Sec. 2.1 regarding the entropy field s, in multifield setups it is

often useful to work in the kinematic basis rather than in the field space one. One projects

the field space perturbations Qi onto the kinematic basis by using the vielbeins eIi :

QI = eI iQ
i , (3.7)

allowing to write (3.3) in this new basis as [26]:

D2
tQ

I + 3HDtQI − a−2∇2QI + CIJQ
J = 0 , (3.8)
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where CIJ = eIi e
j
JC

i
j and the new covariant derivative is defined as DtQI ≡ Q̇I + Y I

J Q
J

with Y I
J ≡ eI iDte

i
J . In order to analyse the stability of this set of coupled oscillators it is

useful, as before, to expand the covariant derivatives and to write the MS equation as:

Q̈I + (3HδIJ + 2Y I
J)Q̇J − a−2∇2QI + (µ2)IJQ

J = 0 , (3.9)

where we defined the mass-squared matrix of the perturbations in the kinematic basis as:

(
µ2
)I
J
≡ CIJ + Ẏ I

J + 3HY I
J + Y I

KY
K
J . (3.10)

In a simple 2-field case one may choose:

ei1 = eiT = T i and ei2 = eiN = N i , (3.11)

where T i and N i are the tangent and normal vectors to the background trajectory intro-

duced in (2.13). The background dynamics implies:

DtT
i = −Hη⊥N i and DtN

i = Hη⊥T
i , (3.12)

where η⊥ = ViN
i/(Hφ̇0) is the turning rate of the trajectory. These relations yield:

Y T
T = Y N

N = 0 and Y T
N = −Y N

T = Hη⊥ . (3.13)

One can then show that:

(
µ2
)T

T
= VTT + 4εφ̇−1

0 HVT + 2ε(3− ε)H2 − (Hη⊥)2 , (3.14)
(
µ2
)N

N
= VNN + φ̇2

0R− (Hη⊥)2 , (3.15)
(
µ2
)T

N
= VNT + 2εφ̇−1

0 HVN +H2η⊥(3− ε− ξ⊥) , (3.16)

where R is the Ricci scalar of the field space and ξ⊥ ≡ −η̇⊥/(Hη⊥).

3.2 A 2-field model with an apparent instability

In order to illustrate our claims in the simplest possible terms, in what follows we shall

focus on a 2-field system, (φ1, φ2), where the metric and the scalar potential look like:

Gij =

(
1 0

0 f2(φ1)

)
and V = V (φ1, φ2) . (3.17)

It can be shown that the field space described by (2.1) with (3.17) exhibits a non-vanishing

scalar curvature that takes the form:

R = −2
f11

f
, (3.18)

where fi ≡ ∂φif . The equations of motion become:

�φi + gµνΓijk∂µφ
j∂νφ

k +GijVj = 0 , (3.19)
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where �φi = 1√
|g|
∂µ

(√
|g|gµν∂νφi

)
and Γijk are Christoffel symbols which describe the

metric connection of the field space.

These models may give rise to non-geodesic motion in field space with a curved trajec-

tory. Considering homogeneous fields φi = φi(t) in an expanding Universe with
√
|g| = a3,

the equations of motion can be written as:

π̇1 = a3
(
ff1(φ̇2)2 − V1

)
, π̇2 = −a3V2 , (3.20)

where πi are the conjugate momenta (πi = ∂L/∂φ̇i) given by:

π1 = a3φ̇1 , π2 = a3f2φ̇2 . (3.21)

The background dynamics of the system is determined by (3.20), (3.21) and the Friedmann

equation:

3H2 =
1

2
Gijφ̇

iφ̇j + V . (3.22)

In order to understand the effects of the kinetic coupling on the inflationary dynamics

we need to analyse both the background trajectory and cosmological perturbations. To

provide some quantitative results, let us assume for concreteness that the potential for the

inflaton φ1 is of the Starobinsky form [1] and the spectator field φ2 is equipped with a

quadratic potential:

V (φ1, φ2) = Λ4

(
1− e−

√
2
3
φ1
)2

+
m2

2

2
(φ2)2 , (3.23)

where we will assume m2 � m1 = 2√
3

Λ2

Mp
< H (reinstating appropriate factors of the

reduced Planck mass) with Λ4 ' 1.8 × 10−10M4
p in order to match observational bounds

on adiabatic perturbations. Moreover we shall consider an exponential kinetic coupling

(which is very natural in supergravity and string models) of the form:

f(φ1) = e−λφ
1
, (3.24)

so that the field space has a constant scalar curvature R = −2λ2. The super-horizon

behaviour of the isocurvature modes depends on the geometry of the field space. In par-

ticular, considering the case of a massless spectator field, i.e. m2 = 0, the mass associated

to the isocurvature perturbations δs given by (3.15) becomes [21]:

(
µ2
)N

N
= −λV1 − 2λ2εH2 , (3.25)

where the first term comes from the field space metric connection (and it is of order
√
ε),

while the second from the field space curvature (and it is of order ε). Notice that in this

case η⊥ = 0. Therefore, if the field space shows an ∼ O(1) scalar curvature (as typical of

supergravity and string models), the sign of (µ2)NN during inflation is determined by the

relative sign between λ and the first derivative of the inflationary potential. Given that

in Starobinsky inflation V1 > 0,
(
µ2
)N

N
< 0 for λ > 0.3 It is important to stress that a

3Notice that the form of the inflationary potential is crucial to induce a tachyonic entropy perturbation

δs since a quintessence-like potential of the form V = V0 e
−kφ1

would not induce any negative eigenvalue

of the mass-squared matrix [21, 48, 49].
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Figure 2. Adiabatic and isocurvature power spectra (in terms of S̃) for the system described by

(3.23) and (3.24) with m2 = 0. Left: for λ = 0 the isocurvature perturbations decay on super-

horizon scales. Centre: for λ = 4/5 the mass of the isocurvature perturbations is tachyonic but the

isocurvature power spectrum still decays because of Hubble friction. Right: for λ = 2/
√

3 we have

tachyonic isocurvature modes that produce an exponential growth of S̃.

negative (µ2)NN is not sufficient to trigger the growth of the isocurvature perturbations by

itself, since (3.3) and (3.9) also feature a Hubble friction term.4 We show some examples

related to different values of λ in Fig. 2. These results suggest that, despite the fact that for

every value of λ the system trajectory becomes effectively single field (as signalled by the

fact that η⊥ = 0), there might be a growth of isocurvature perturbations triggered by slow-

roll suppressed contributions. This somewhat paradoxical state of affairs requires further

investigation. Given our interest in understanding the origin of the apparent isocurvature

growth, from now on we will focus on the case with λ = 2/
√

3.

In Sec. 3.3 we reveal the nature of this spurious instability first by uncovering the

origin of the growth of the isocurvature perturbations in the kinematic basis and then by

showing that the relative entropy perturbation between the two scalars is well-behaved and

vanishingly small during inflation.

3.3 Origin of the spurious instability

In this section we will analyse the eigenvalues of the mass-squared matrices of the

perturbations in the field space and in the kinematic basis, showing that the apparent

instability of the isocurvature perturbation S̃ is a feature exclusively of the kinematic basis

triggered by (µ2)NN < 0. In fact, this instability disappears in the field space basis where the

mass-squared matrix has no negative eigenvalue, showing that S̃ is not a physical quantity.

We will see that a well-behaved, i.e. both gauge invariant and finite, quantity is the relative

entropy perturbation Srel = Ŝ12 defined in (2.12).

4From a mathematical point of view, this situation is exactly what usually happens in single-field in-

flation, where a negative slow-roll sized squared-mass for the curvature perturbations does not lead to a

growth of these modes on super-horizon scales. In fact, a negative slow-roll suppressed squared-mass in the

Klein-Gordon equation can lead to an instability that is however only appreciable on time scales greater

than 3H/m2.
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• Field space basis

Restricting our attention to the model described by (3.23) and (3.24) and assuming

for simplicity m2 = 0, one can show that, on-shell, the only non-vanishing entry of

the mass-squared matrix (3.6) is:

(
M2
)1

1
= V11 + 4εφ̇−1

0 HV1 + 2ε(3− ε)H2 . (3.26)

As shown in App. B, (3.26) can be written in terms of the Hubble slow-roll parameters

ε = −Ḣ/H2, η = ε̇/(εH) and κ = η̇/(ηH) as:

(
M2
)1

1

H2
= −3η

2
+
εη

2
− η2

4
− κη

2
, (3.27)

which matches exactly the mass of the Q-perturbation obtained in the single field

formalism, so excluding the presence of any tachyonic instability in this basis.

• Kinematic basis

In the model under study, the relations (3.14)-(3.16) reduce asymptotically (i.e. when

the system relaxes to the background attractor solution) to:

(
µ2
)T

T
= V11 + 4εφ̇−1

0 H V1 + 2ε(3− ε)H2 , (3.28)

(
µ2
)N

N
=
f1

f
V1 + εH2R = −λV1 − 2λ2εH2 , (3.29)

(
µ2
)T

N
= 0 . (3.30)

Notice that
(
µ2
)T

T
= (M2)1

1, an indication that adiabatic perturbations behave the

same way in both bases and in a manner compatible with a single field analysis of the

model. However, as shown in Sec. 3.2, we can have a tachyonic orthogonal direction

if the metric connection or the field space curvature R give rise to sufficiently negative

contributions, signaling the presence of a potential instability.

Given that the difference between the kinematic and the field space basis is the mere

multiplication by the vielbein, as in (3.7), it is natural to conclude that the origin of the

apparent geometrical instability is the time evolution of the vielbein, a fact we will now

investigate in detail.

A growing projector

In order to pin down the origin of the apparent geometrical instability in the kinematic

basis, we consider the time evolution of the vector orthogonal to the background trajectory:

DtN
i = Hη⊥T

i . (3.31)

In the cases under consideration the background trajectory is straight, implying that η⊥ =

0, leading to:

Ṅ i = −Γijkφ̇
jNk . (3.32)
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Furthermore in the attractor solution φ̇2 = 0, implying:

Ṅ1 = 0 and Ṅ2 = −Γ2
21φ̇

1N2 . (3.33)

The equation for N2 can be integrated to find N2 = 1/f or equivalently N2 = f = e−λφ
1
,

showing that N2 grows during inflation as the inflaton φ1 rolls down towards the origin of

the potential from positive values. Notice that the normalisation of the orthogonal vector,

N iNi = 1, is preserved at all times.5 On the other hand, N1 = N1 = 0, as can be easily

seen from (2.13) for φ̇2 = 0. Therefore, if we expand the definition (2.14) of the orthogonal

perturbation δs, we find that it involves only the N2 component:

δs = N1δφ
1 +N2δφ

2 = N2δφ
2 . (3.34)

As shown above, the perturbation δφ2 = Q2 (in the spatially flat gauge) has a vanishing

mass, and so it becomes constant on super-horizon scales. This can be easily seen from

(3.3) with i = 2 and m2 ' 0 which, focusing on super-horizon scales and working at first

order in the slow-roll approximation, becomes Q̈2 + 3H(1− 2λ
√

2ε)Q̇2 ' Q̈2 + 3HQ̇2 = 0

for ε � 1, whose solution is clearly a combination of a constant and a decaying mode.

Notice that δφ1 = Q1 is also constant on super-horizon scales since (3.3) with i = 1 would

become Q̈1 + 3HQ̇1 − 3
2ηH

2Q1 ' Q̈1 + 3HQ̇1 = 0 for η � 1. On the other hand, as we

have just seen, N2 grows during inflation, signalling a potentially dangerous growth of δs.

This is the very origin of the apparent geometric instability observed in [20, 21].

However, as mentioned in Sec. 2.2, observational bounds on isocurvature perturbations

are given in terms of the post-inflationary relative entropy perturbation Snγ which, after

a proper understanding of the reheating epoch, should arise from the inflationary non-

adiabatic perturbation S12 defined in (2.11). Thus the observed growth in δs does not

rule these models out since the quantity to be considered to match observations is S12.

However, in this particular case also S12 is ill-defined as the action of the spectator field

φ2 is (in the massless limit):

L√
|g|
⊃ 1

2
f2(φ1) (∂φ2)2 , (3.35)

which gives ρ2 = 1
2 f

2(φ1)(φ̇2)2 that rapidly goes to zero during inflation. We therefore

conclude that S12 is singular. Notice that the same problem would arise for canonically

normalised massless scalars (which however do not suffer from a growing δs).

3.4 Vanishing relative entropy perturbation

We now further clarify the spurious nature of the apparent geometric instability which

characterises this class of models by showing that the relative entropy Srel = Ŝ12 given by

(2.10) remains finite and vanishingly small during inflation. We argue that Srel provides a

consistent definition of isocurvature perturbations that are independent of the (unstable)

vielbeins, in order to compute the scalar 2-point functions and to confront the model

predictions with observational constraints.

5This time evolution could also have been deduced from the normalisation of the orthogonal vector N i.
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Let us start the computation of Srel by noticing that the energy-momentum tensor

during inflation can be decomposed as:

Tµν = Tµν(1) + Tµν(2) , (3.36)

where the subscripts (1) and (2) refer to φ1 and φ2 respectively. Due to the kinetic coupling,

the individual Tµν(i) are not conserved since there is energy transfer between the fluids [41]:

∇νTµν(1) = T µ and ∇νTµν(2) = −T µ , (3.37)

where T µ is the energy transfer function. Despite the fact that there is some freedom in

the definition of the two fluids, it is natural to write the energy and pressure of the two

fields as (see also App. A.2):

ρ1 =
1

2
(φ̇1)2 + V (1)(φ1) , ρ2 =

1

2
f(φ1)2(φ̇2)2 + V (2)(φ2) , (3.38)

P1 =
1

2
(φ̇1)2 − V (1)(φ1) , P2 =

1

2
f(φ1)2(φ̇2)2 − V (2)(φ2) , (3.39)

where we decomposed the sum-separable potential in (3.23) as V (φ1, φ2) = V (1)(φ1) +

V (2)(φ2). The energy transfer function takes the form:

T µ =

(
ρ̇1 + 3H(ρ1 + P1)

~0

)
=

(
ff1 φ̇

1 (φ̇2)2

~0

)
. (3.40)

The sound speeds of the two fluids defined in (3.38) and (3.39) are:

c2
1 = 1 +

2V1

3Hφ̇1 − ff1 (φ̇2)2
, c22 = 1 +

2V2

φ̇2(3Hf2 + ff1φ̇1)
, (3.41)

while the overall sound speed is given by:

c2
s = 1 +

2

3H

Viφ̇
i

φ̇jφ̇j
. (3.42)

In order to compute the relative entropy perturbation Srel, we need to use perturbation

theory at linear order. Given that Srel is gauge invariant, we can compute it in any gauge.

For simplicity we shall use the spatially flat gauge where the perturbed Einstein equations

take the form presented in App. A. Energy and pressure perturbations read:

δρ1 = −Φ(φ̇1)2 + φ̇1δφ̇1 + V1δφ
1 , (3.43)

δP1 = −Φ(φ̇1)2 + φ̇1δφ̇1 − V1δφ
1 , (3.44)

δρ2 = δP2 = −Φf2(φ̇2)2 + f2φ̇2δφ̇2 + (φ̇2)2ff1δφ
1 + V2δφ

2 , (3.45)

where Einstein equations imply that the lapse function (defined in App. A) is given by:

Φ =
1

2H

(
φ̇1δφ1 + f2φ̇2δφ2

)
. (3.46)
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In order to get some analytic results, let us focus again on the massless case with m2 = 0

(we will however show below also numerical results for the m2 6= 0 case). In the 2-field

case, it is easy to see that the relative entropy perturbation (2.10) can also be written as:

Srel =
H

Ṗ

[(
c2

1 − c2
s

)
δρ1 +

(
c2

2 − c2
s

)
δρ2

]
. (3.47)

Before computing this expression, it is important to realise that the equation of motion for

φ2 can be integrated exactly leading to:
(
fφ̀2

)
(N) =

(
fφ̀2

)
(0) e−

∫N
0 (3−ε)dN ′+λ∆φ1 , (3.48)

where we used the number of e-foldings N =
∫
Hdt as time variable, φ̀2 ≡ dφ2/dN and

∆φ1 = φ1(N)−φ1(0). Given that in Starobinsky inflation ∆φ1 '
√

3
2 ln

(
1− 4N

3 e
−
√

2
3
φ1(0)

)
,

it is easy to see that during inflation the velocity of the canonical spectator field becomes

rapidly negligible since:

(fφ̀2) ' (fφ̀2)(0) e−3N → 0 . (3.49)

Using this crucial result, we can now evaluate the different contributions to Srel, The terms

involving the speeds of sound look like:

c2
1 − c2

s = (1− c2
s)(fφ̀

2)2


 1 + f1φ̀1

3f

f1φ̀1

3f (fφ̀2)2 − (φ̀1)2


 ∼ O((fφ̀2)2)→ 0 , (3.50)

c2
2 − c2

s = (1− c2
s) , (3.51)

while the energy density perturbations can be expressed as:

δρ1 = H2

[(
V1

H2
− (φ̀1)3

2

)
δφ1 + φ̀1δφ̀1

]
− 1

2
H2f(fφ̀2) (φ̀1)2δφ2

︸ ︷︷ ︸
O(fφ̀2)→0

(3.52)

δρ2 = H2(fφ̀2)

[
1

2
(fφ̀2)

(
2f1

f
− φ̀1

)
δφ1 + fδφ̀2 − 1

2
f(fφ̀2)2δφ2

]
∼ O(fφ̀2)→ 0 .

Finally the ratio H/Ṗ is finite and well-behaved since:

H

Ṗ
= − 1

6εH2 + 2VT
√

2ε
. (3.53)

Thus these relations, when inserted in (3.47), imply that after a few e-foldings of inflation

the relative entropy perturbation becomes immediately negligible since Srel ∼ O(fφ̀2)→ 0.

We confirmed this analytic result by performing a numerical analysis of the evolution

of all entropy variables S, Sint, Srel, S12 and S̃ for 3 different values of the parameter

α = m2/m1 = {10−3, 10−5, 0} which fixes the mass hierarchy between φ2 and φ1.6 The

6Notice that for m2 � m1 the stochastic growth of the quantum fluctuations of the light spectator field

could induce a second stage of inflation or could be an additional source of isocurvature perturbations [50].

The displacement of φ2 due to quantum diffusion can be easily estimated to be of order α−1H
√

1− e−α2N

which in our case turns out however to be negligible since the Hubble scale during inflation H is very

suppressed with respect to Mp: H ∼ 10−5Mp. In fact, a quantum kick of order Mp can be achieved only

for α . 10−5 and a huge number of efoldings N & 1010.
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Figure 3. Time evolution of all entropy perturbation variables for modes exiting the horizon 60

e-foldings before the end of inflation in the system described by (3.23) and (3.24) for different values

of α = m2/m1. The initial conditions are φ1 = 5.7, φ2 = 0.5, φ̀1 = 0 and φ̀2 = 0.1. Left: adiabatic

and isocurvature power spectra using the entropy variable S̃ which decays only for α = 10−3.

Centre: spurious growth of isocurvature perturbations using the relative entropy perturbation S12.

Right: isocurvature power spectrum in terms of the total (S), the intrinsic (Sint) and the relative

(Srel) entropy perturbation which is decreasing and subdominant on super-horizon scales.

outcome is presented in Fig. 3 for modes exiting the horizon N = 60 e-foldings before the

end of inflation. Notice that the isocurvature power spectrum computed using S̃ grows

not just for α = 0 but also for α = 10−5, while it decays for α = 10−3 even it features a

slight climb back up between 50 and 60 e-foldings. This implies that the perturbation δs

orthogonal to the background trajectory is a bad variable not just in the m2 = 0 case but

also more in general for spectator fields lighter than the inflaton. This is true, above all,

also for the relative entropy perturbation S12 which clearly diverges for all values of α since

the energy density ρ2 becomes in practice constant during inflation. On the other hand, the

‘improved’ relative entropy perturbation Ŝ12 = Srel gives rise to a decaying non-adiabatic

power spectrum.

We therefore conclude that the apparent geometrical instability of models with light

kinetically coupled spectator fields is unphysical and this class of models, upon exit from

inflation, gives rise to a radiation phase where perturbations of the gravitational potential

are set by the inflationary curvature perturbations and where there are no isocurvature
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perturbations, just like in single field inflationary models.

Let us close this section by outlining the post-inflationary evolution of this class of

models following [51] which analysed reheating for a string inflationary scenario charac-

terised by a potential similar to (3.23) and a kinetic coupling of the form (3.24). Both

φ1 and φ2 are gravitationally coupled to Standard Model gauge bosons with Planck-

suppressed interactions of the form φi

Mp
FµνFµν which induce a decay width scaling as

Γφi→SM ∼ m3
i /M

2
p , i = 1, 2. Moreover, due to the kinetic coupling (3.24), φ1 can decay

into φ2 with Γφ1→φ2φ2 ∼ (m2/m1)4 Γφ1→SM if m2 6= 0 or Γφ1→φ2φ2 ∼ Γφ1→SM if φ2 is

massless. Clearly, when m1 � m2 6= 0, as for α = 10−5 and α = 10−3, the branching

ratio associated to the decay of φ1 into φ2 is chirality suppressed. Hence, after the end

of inflation a thermal bath gets formed from the decay of φ1 into Standard Model gauge

boson with reheating temperature Trh,1 ∼
√

Γφ1→SMMp ∼ 1010 GeV. When H becomes

of order m2, φ2 starts oscillating around its minimum and behaves as matter. It therefore

quickly comes to dominate the energy density of the Universe and gives rise to a second

reheating epoch at lower energies characterised by a temperature Trh,2 ∼
√

Γφ2→SMMp

which is of order Trh,2 ∼ 105 GeV for α = 10−3 and Trh,2 ∼ 100 GeV for α = 10−5. Both of

these reheating temperatures are well above the BBN temperature TBBN ∼ 5 MeV, showing

how this class of models can yield a viable post-inflationary history. On the other hand,

when m2 = α = 0, φ2 behaves as an additional component of dark radiation which would

increase the number of effective neutrino-like species Neff . Due to the tight constraints on

Neff , and the fact that in this case Γφ1→φ2φ2 ∼ Γφ1→SM, one should carefully derive the

exact numerical coefficients of the couplings of φ1 to φ2 and to Standard Model fields to

make sure that no dark radiation overproduction is induced by the inflaton decay. For a

detailed analysis of this delicate issue see [51] which derived the model-building conditions

to satisfy this observational requirement.

4 Conclusions

Effective field theories characterised by multiple scalar fields and a Riemannian field

manifold are a ubiquitous feature of gravitational theories with non-minimal couplings, su-

pergravity models and string theory compactifications. One of their primary applications

is early Universe cosmology where the dynamics of the scalar field system drives cosmic

inflation. In a multifield framework the study of cosmological perturbations deserves how-

ever careful attention. In particular, non-adiabatic fluctuations can potentially rule these

models out by giving rise to isocurvature perturbations whose amplitude exceeds observa-

tional constraints. Various entropy variables have been proposed so far in the literature,

with different pros and cons.

In this paper we clarified which of these entropy perturbation variables should be used

to match observations, in particular for the subtle case of non-linear sigma models. We first

reviewed all the ways to describe non-adiabatic modes: (i) the total entropy perturbation

S which can be decomposed in an intrinsic contribution Sint and a relative one Srel; (ii) the

relative entropy perturbation between two fluids Sij defined as the difference between the

corresponding curvature perturbations, Sij = ζi− ζj ; (iii) the fluctuation δs of the entropy

field corresponding to fluctuations orthogonal to the background inflationary trajectory in
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field space. This last variable, despite being very useful to perform an efficient numerical

integration of the field equations during inflation, is not the right one to match data which

are instead expressed in terms of Sij . Similar considerations apply to the total entropy

perturbation S since it is proportional to δs.

We therefore argued that the right variable to be studied is Sij which should be evolved

from the inflationary epoch to the post-inflationary era until CMB decoupling where ob-

servations are performed. This process clearly requires a detailed understanding of the

reheating epoch and how the fluctuations of the microscopic degrees of freedom get trans-

ferred to density and pressure perturbations of the different fluids (photons, baryons, cold

dark matter and neutrinos) which characterise the post-inflationary history of our Universe.

We noticed that the use of S or δs instead of Sij in general can yield results which are

wrong even by several orders of magnitude. Moreover, in the case of kinetically coupled

light spectator fields which can arise naturally in string inflation, the mass of δs fluctuations

can become tachyonic, signalling the emergence of a potentially dangerous destabilisation

effect due to the growth of these isocurvature modes. In this situation, the relative entropy

perturbation Sij becomes also pathological since it blows up due to the fact that during

inflation the energy density of the spectator fields very quickly goes to zero.

In a simple 2-field model with a Starobinsky-like inflationary potential and a light

spectator field, we showed that the growth of these non-adiabatic modes is unphysical and

the associated destabilisation effect is spurious since it is caused just by the use of entropy

variables which in this case become ill-defined. In fact, δs increases after horizon-exit

just because the vector normal to the background trajectory diverges, while no anomalous

growth of isocurvature fluctuations is seen when considering scalar fluctuations in the

original field basis. We therefore defined a so-called improved entropy perturbation Ŝij
associated to the relative entropy perturbation Srel which remains always well-behaved

and decays during inflation, showing that the dynamics of this class of models becomes

effectively single field, with no production of isocurvature fluctuations. In order to perform

a detailed matching with observations, one should therefore study the evolution of Ŝij
during inflation and the subsequent reheating epoch, translating at the end its value into

the standard relative entropy perturbation Snγ between photons and a generic n species

since this quantity is now finite and it is the one used to express the isocurvature fraction

βiso constrained by data.

Let us finally stress that all entropy variables described in this paper are gauge invari-

ant, even in the generic case of a curved field space. Hence in principle they are all good

candidates to describe physical quantities. However well-defined physical quantities should

be not just gauge invariant but also finite. The failure to satisfy this last requirement is

the reason why δs and Sij are not the proper entropy variables to be used to confront ob-

servations, as emerges clearly in the case of light kinetically coupled spectator fields which

is characterised by unphysical instabilities. As already pointed out, the spurious nature

of this apparent destabilisation effect manifests itself in the basis-dependence of the time

evolution of isocurvature perturbations which diverge in the kinematic basis whereas decay

in the field space one. In fact, we have overcome this problem for cases where ρ̇i → 0 by

defining an improved relative entropy variable Ŝij which remains finite in the field space

basis. More general situations with more complicated spurious singularities might in prin-
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ciple require the use of an even different relative entropy variable. A more sophisticated

analysis of the proper physical variable that should be used to describe entropy pertur-

bations in multifield models should therefore be basis-independent, i.e. invariant under

field reparametrisations. In this way, one would have the definition of a physical entropy

variable which is covariant under field reparametrisation, i.e. which is the same, and finite,

in any field basis. This investigation is however beyond the scope of our paper, and so we

leave it for future work.
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A Perturbation theory and gauge invariance in curved field space

A.1 General framework in spatially flat gauge

Let us start by considering the most generic perturbed line element:

ds2 = −(1 + 2Φ)dt2 + 2aBidtdx
i + a2 [(1− 2Ψ)δij + Eij ] dx

idxj . (A.1)

Combining metric perturbations with scalar field perturbations:

ϕA = φA + δφA , (A.2)

we can compute the perturbed Einstein equations as:

δGνµ = δT νµ . (A.3)

Considering a curved field space, we list the resulting equations below. The (0, 0) compo-

nent of (A.3) gives:
(

6H∂t − 2
∂kk
a2

)
Ψ + 2

H

a
∂kkB +

(
6H2 − φ̇Aφ̇A

)
Φ− 1

2a2
∂kiEki

+VAδφ
A + φ̇AGAB ˙δφ

B
+

1

2
φ̇Aφ̇BGAB,Cδφ

C = 0 . (A.4)

From the (i, 0) component we get:

2∂iΨ̇ + 2H∂iΦ +
1

2
∂jĖij − φ̇AGAB∂iδφB = 0 . (A.5)

The spatial (i, j) components with i 6= j give rise to:

∂i∂jΨ−∂i∂jΦ+a2

(
∂tt
2

+
3

2
H∂t −

∂kk
2a2

)
Eij +

1

2
(∂ikEjk + ∂jkEik)−a (∂t + 2H) ∂ijB = 0 ,

(A.6)
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while if i = j we find:

(
6∂tt − 2

∂ii
a2

+ 18H∂t

)
Ψ +

2

a
(∂t + 2H) ∂kkB +

(
2
∂ii
a2

+ 6H∂t + 6H2 + 12
ä

a
+ 3φ̇Aφ̇A

)
Φ

−1

2

∂kiEik
a2

+ 3
(
VAδφ

A − ˙δφ
A
φ̇BGAB − φ̇Aφ̇BGAB,CδφC

)
= 0 . (A.7)

In what follows we use the spatially flat gauge, E = Ψ = 0, that is a very convenient

setup for computing inflationary perturbations. After two spatial integrations and fixing

arbitrary integration functions of time to zero, the component (i, j) with i 6= j reduces to:

Φ + 2ȧB + aḂ = 0 . (A.8)

After one spatial integration, the (0, i) component becomes:

HΦ =
1

2
φ̇Aδφ

A . (A.9)

Finally the (0, 0) component is given by:

6Φ

(
ȧ

a

)2

+ 2
H

a
Bii = Φφ̇Aφ̇

A − φ̇Aδφ̇A −
1

2
φ̇Aφ̇B∂CGABδφ

C − VAδφA , (A.10)

and, making use of the previous equations, becomes:

∂i∂iB =
a

2H

[(
φ̇2

0

2H
φ̇A − 3Hφ̇A −

1

2
GBC,Aφ̇

Bφ̇C − VA
)
δφA − φ̇Aδφ̇A

]
. (A.11)

Working in the spatially flat gauge, the gauge invariant MS variables coincide with field

perturbations:

QA ≡ δφA +
φ̇A

H
Ψ ≡ δφA , (A.12)

and the Klein-Gordon equation for perturbations is given by:

DtDtQ
B − a−2∂i∂iQ

B + 3HDtQ
B +

[
RBCADφ̇

C φ̇D +GBLV;LA

+
1

H

(
φ̇AV

B + VAφ̇
B
)

+ φ̇Aφ̇
B

(
3− φ̇2

0

2H2

)]
QA = 0 , (A.13)

where DtQ
A = Q̇A + ΓABCQ

Bφ̇C , V;LA = VLA−ΓBLAVB are covariant derivatives and RBCAD
is the Riemann tensor of the field space. This is the well-known gauge invariant equation

for field perturbations [47].

A.2 Gauge invariance of entropy variables

In this appendix we prove the gauge invariance, at first order in cosmological perturba-

tion theory, of all different entropy variables mentioned in the main text. We shall consider

an N -dimensional non-linear sigma model described by the Lagrangian (2.1) in the simple

case where the metric is diagonal, i.e. Gij(φ
k) = Gi(φ

k)δij , with a generic potential which
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we arbitrarily decompose as V (φk) =
∑

i V
(i)(φk). Similarly to the spacetime metric, we

split the fields in background and fluctuation components as φi(xµ) = φi(x0) + δφi(xµ).

The background evolution in a FLRW spacetime is given by:

G(i)φ̈i + 3HG(i)φ̇i +G(i),jφ̇iφ̇j −
1

2
Gj,iφ̇j

2
+ Vi = 0 , (A.14)

where we adopt the convention that contracted (upper and lower) indices are summed,

unless an index is written inside round brackets, i.e. contraction of i with (i) implies no

sum. Let us define the background density and pressure components of the system as:

ρi =
1

2
G(i)φ̇i

2
+ V (i) and Pi =

1

2
G(i)φ̇i

2 − V (i) , (A.15)

which sum up to the total quantities ρ =
∑

i ρi and P =
∑

i Pi. Using the equations of

motion (A.14) one finds:

ρ̇i =
1

2
G(i),jφ̇jφ̇i

2
+G(i)φ̇iφ̈i + V

(i)
j φ̇j

= −3HG(i)φ̇i
2 − 1

2
G(i),jφ̇jφ̇i

2
+

1

2
Gj,(i)φ̇j

2
φ̇i + V

(i)
j φ̇j − Viφ̇(i) , (A.16)

which trivially verifies the background relation:

ρ̇ =
∑

i

ρ̇i = −3HGiφ̇i
2

= −3H (ρ+ P ) , (A.17)

and:

Ṗi = ρ̇i − 2V
(i)
j φ̇j . (A.18)

The density and pressure fluctuations can instead be written in terms of the scalar and

spacetime metric fluctuations as:

δρi = −ΦG(i)φ̇i
2

+
1

2
G(i),jφ̇i

2
δφj +G(i)φ̇iδφ̇i + V

(i)
j δφj , (A.19)

δPi = δρi − 2V
(i)
j δφj . (A.20)

Let us now consider a gauge transformation induced by a change of reference frame

xµ → xµ + εµ. At linear order in the fluctuations εµ and δφi we obtain:

φi → φi , δφi → δφi − φ̇iε0 , Φ→ Φ− ε̇0 , Ψ→ Ψ +Hε0 , (A.21)

where Φ and Ψ are the two metric scalar fluctuations introduced in (A.1). The induced

change in the density fluctuations goes as follows:

δρi → −(Φ− ε̇0)G(i)φ̇i
2

+
1

2
G(i),jφ̇i

2
(δφj − φ̇jε0) +G(i)φ̇i(δφ̇i − φ̇iε̇0 − φ̈iε0) + V

(i)
j (δφj − φ̇jε0)

= δρi − ε0ρ̇i , (A.22)

where we used again the equations of motion (A.14). Similarly, it can be easily seen that

the pressure fluctuations transform at linear order as:

δPi → δPi − ε0Ṗi . (A.23)

With these relations at hands, it is now straightforward to show the gauge invariance

(at first order) of all different entropy variables introduced in Sec. 2.
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Total entropy

The total entropy perturbation (2.4) can also be expressed as

S = H

(
δP

Ṗ
− δρ

ρ̇

)
, (A.24)

and using (A.22) and (A.23) we find:

S → H

(
δP

Ṗ
− ε0 − δρ

ρ̇
+ ε0

)
= S . (A.25)

Intrinsic entropy

The intrinsic entropy perturbation for a given fluid i given by (2.7) is also clearly gauge

invariant since it can be rewritten as:

Sint,i = H
Ṗi

Ṗ

(
δPi

Ṗi
− δρi

ρ̇i

)
→ H

Ṗi

Ṗ

(
δPi

Ṗi
− ε0 − δρi

ρ̇i
+ ε0

)
= Sint,i . (A.26)

Thus also the total intrinsic entropy perturbation Sint =
∑

i Sint,i of a system with several

components turns out to be gauge invariant.

Relative entropy

Given that the relative entropy perturbation Srel is the difference between two gauge

invariant quantities, S and Sint, it definitely turns out to be gauge invariant. In particular,

each of the N(N−1)
2 relative entropy perturbations Sij introduced in (2.11) is gauge invariant

since it is defined as Sij = 3(ζi − ζj) in terms of N distinct gauge invariant curvature

perturbations (using (A.21) and (A.22)):

ζi = −Ψ−H δρi
ρ̇i
→ −Ψ−Hε0 −H δρi

ρ̇i
+Hε0 = ζi . (A.27)

Entropy field

The fluctuation of the entropy field δs = N iδφi is defined in (2.14) in terms of the

vector normal to the background trajectory N i = DtT
i/||Dt

~T || which, according to (2.13),

can in turn be derived from the covariant derivative of the tangent vector given by:

DtT
i =

1

φ̇3
0Gi

(
Viφ̇

2
0 −G(i)φ̇iVjφ̇j

)
. (A.28)

From these expressions it can be easily checked that GijT
iN j = 0, as expected from the

orthogonality condition. Focusing for simplicity on the 2-field case we find:

Dt
~T =

(
φ̇2G−1

1

−φ̇1G−1
2

)
1

φ̇3
0

(
V1G2φ̇2 − V2G1φ̇1

)
(A.29)

and:

~N =

√
G1G2

φ̇0

(
φ̇2G−1

1

−φ̇1G−1
2

)
. (A.30)
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It is now easy to obtain the following expression for δs:

δs = GijN
iδφj = G1N

1δφ1 +G2N
2δφ2 =

√
G1G2

(
φ̇1φ̇2

φ̇0

)(
δφ1

φ̇1
− δφ2

φ̇2

)
, (A.31)

which using (A.21) shows clearly that this entropy variable is gauge invariant:

δs→
√
G1G2

(
φ̇1φ̇2

φ̇0

)(
δφ1

φ̇1
− ε0 − δφ2

φ̇2
+ ε0

)
= δs . (A.32)

B Single field limit of density perturbations

In single field inflation, the dynamics of the scalar perturbations is determined by the

(Fourier space) MS equation:

u′′ +

(
k2 − z′′

z

)
u = 0 , (B.1)

where the canonically normalised scalar perturbation is defined as u ≡ aQ, primes denote

derivatives with respect to conformal time, and z ≡
√

2εa. In order to make contact with

the multifield results described in the main text, it is useful to rewrite the single field MS

equation using cosmic time and Q instead of u:

Q̈+ 3HQ̇+

(
k2

a2
− z′′

za2
+H2 +

ä

a

)
Q = 0 , (B.2)

prompting the definition:

m2
Q ≡ −

z′′

za2
+H2 +

ä

a
, (B.3)

which using the exact relation:

z′′

z
= (aH)2

(
2− ε+

3η

2
− εη

2
+
η2

4
+
ηκ

2

)
, (B.4)

and the definitions of the Hubble slow-roll parameters, can be recast as:

m2
Q

H2
= −3η

2
+
εη

2
− η2

4
− ηκ

2
. (B.5)

In order to relate (M2)1
1 to the above result it is necessary to translate between the

potential slow-roll parameters:

εV ≡
1

2

(
V ′

V

)2

and ηV ≡
V ′′

V
, (B.6)

and the Hubble slow-roll parameters. Using the background equations of motion one may

show that:

ε = εV
3− ε

3− ε+ η
2

. (B.7)
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Taking the time derivative of the background Klein-Gordon equation and using the defini-

tions of the potential and Hubble slow-roll parameters one also can show that:

ηV =
3(2ε− η

2 )− 2ε2 + 5
2εη −

η
4 (η + 2κ)

3− ε . (B.8)

Notice that these results are exact and involve no slow-roll expansion, depending only on

the definitions of the various slow-roll parameters. Using these results we can show that

(3.26) reduces to (B.5):

(
M2
)1

1
= V11 + 4

εH

φ̇0

V1 + 2ε(3− ε)H2

= V ηV − 4εH3
(

3− ε+
η

2

)
+ 2ε(3− ε)H2

= H2

(
−3η

2
+
εη

2
− η2

4
− κη

2

)
,

(B.9)

where we have eliminated derivatives of V in favour of the corresponding slow-roll param-

eters and in the first and second steps we have used (B.7) and (B.8) respectively.
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