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ABSTRACT: Omics techniques provide a spectrum of informa-
tion at the genomic level, whose analysis can characterize complex
traits at a molecular level. The relationship among genotype and
phenotype implies that from genome information the molecular
pathways and biological processes underlying a given phenotype
are discovered. In dealing with this problem, gene enrichment
analysis has become the most widely adopted strategy. Here we
present NETGE-PLUS, a Web server for standard and network-
based functional interpretation of gene sets of human and of model
organisms, including Sus scrofa, Saccharomyces cerevisiae, Escherichia
coli, and Arabidopsis thaliana. NETGE-PLUS enables the func-
tional enrichment of both simple and ranked lists of genes,
introducing also the possibility of exploring relationships among KEGG pathways. A Web interface makes data retrieval complete
and user-friendly. NETGE-PLUS is publicly available at http://net-ge2.biocomp.unibo.it.

KEYWORDS: network-based gene enrichment analysis, over-representation analysis, gene set enrichment analysis, functional association,
model organisms, Web server

■ INTRODUCTION

The analysis of large-scale genomic and proteomic data aims at
characterizing complex traits at a molecular level. By this, lists of
“relevant” genes/proteins can focus on putative specific
phenotype(s). Over-representation analysis (ORA) is a widely
adopted method to endow a gene set with functional
annotations, with the aim of disentangling the complex
relationships among genes, their functions, and the phenotype
of interest. ORA tests whether some biological features are
significantly more frequent in the given gene set than is expected
by chance. Alternatively, when genes are endowed with some
numerical score (e.g., the fold change of differential expression),
gene set enrichment analysis (GSEA) allows the inclusion of the
weighted contribution of a large ranked list of genes to perform
the functional characterization.1 Currently, few tools implement
GSEA-related statistics in the analysis of protein sets. Examples
include protein set enrichment analysis (PSEA)2 and PSEA-
Quant.3 Like GSEA, PSEA is suited to analyze the results of
differential experiments for the same set of genes. During input,
PSEA endows each gene with a spectral index computed starting
from mass spectrometry data.2 Alternatively, PSEA-Quant takes
as input the proteins highly expressed in different technical or
biological replicates.3 Both methods compute a statistical
enrichment of the data by adopting background sets of
previously clustered seed genes having the same functional
annotation. In this respect, our method is novel. Indeed,
NETGE-PLUS allows the computation of a GSEA statistical

enrichment according to not only standard enrichment methods
but also the adoption of a reference set of genes that are in
subnetworks of the known interactome for each given species.
Previously, we describedNET-GE, a tool for performingORA

on sets of human genes after their mapping on subnetworks of
genes derived from the analysis of the human interactome.4,5

Exploiting the information contained in biological networks,6

NET-GE enriches the Gene Ontology (GO) terms,7 KEGG
pathway8 and Reactome9 annotations. NET-GE does not allow
GSEA, and it is limited to human genes and their related
interactions. Furthermore, NET-GE adopts the KEGG BRITE
hierarchy (http://www.genome.jp/kegg/kegg3b.html), which
provides a logical organization rather than a complete
description of the proximity relationships among metabolic
pathways.
Adopting network-based strategies stands on the notion that

interactomes remain species-specific10 and that their updates
improve over the different releases. The advantage of such a
procedure is that the enriched biological features have
underlying sets of genes that are connected in the interactome
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in specific functional modules and not only genes that are
clustered together based on identical functional annotations.
Here we introduce NETGE-PLUS, a new Web server that

allows different enrichment procedures. First, the server can
enrich the functional features of genes not only from H. sapiens
but also from S. scrofa, E. coli, S. cerevisiae, and A. thaliana,
organisms that are widely adopted in translational, biomedical,
and biotechnological research. NETGE-PLUS can perform
standard and network-based enrichment. In this version, as
input, NETGE-PLUS takes both lists of genes/proteins and
genes or proteins that are ranked according to some criteria (e.g.,
expression level, spectral index). The present version of
NETGE-PLUS implements both the ORA and GSEA
procedures for the analysis of differential expression data.
Another interesting advancement is the possibility of linking
different KEGGmaps. With this, a given set of genes can retrieve
a network of pathways (KEGG-NET), highlighting the
underlying complexity of the phenotype.

■ MATERIALS AND METHODS

Databases

NETGE-PLUS includes the interactomes of H. sapiens (hsa;
taxid: 9606), S. scrofa (ssc; taxid:9823), S. cerevisiae (sce; taxid:
4932), E. coli (eco; taxid: 51145), and A. thaliana (ath; taxid:
3702), as derived from STRING v.10.5.11 The identifiers
adopted in the procedure are (i) the ENSEMBL protein
identifiers for H. sapiens and S. scrofa and (ii) the systematic
locus identifiers, adopted for S. cerevisiae, E. coli, and A. thaliana.
All of the links with a combined STRING score ≥0.4 (medium
confidence) were retained irrespective of the supporting
evidence. Term-specific modules of interacting genes have
been computed for the Gene Ontology terms (v.169; https://
www.ebi.ac.uk/GOA), for KEGG (v.83.2; http://www.kegg.jp/
), and for Reactome (v.61; https://reactome.org/) pathways.
Processing the Interactomes

NETGE-PLUS relies on modules of functionally related genes,
precomputed as described by Di Lena et al.4 In brief, each
module is built starting from (i) a set of genes sharing a specific
functional term (seed set) and (ii) an interactome. Each seed set
is extended into a compact and connected module of interacting
proteins by computing all of the shortest paths among the seed
genes. By applying measures based on graph and information
theory, modules are reduced to minimal connecting networks
while preserving the distances among seeds. The algorithmic
details are included in the Supporting Information and online
(http://net-ge2.biocomp.unibo.it/enrich/default/help).
The resulting modules, containing seed nodes and some of

their interacting partners (connecting nodes), are at the basis of
the functional enrichment. The number of seed genes,
annotation sets, and gene-term associations is reported in
Table 1. Statistics on the sizes of the annotation sets are
presented in Table S1 (Supporting Information). The network-

based modules are larger than the sets of seeds from which they
are derived. Depending on the species and the annotation type,
the mean sizes increase by a factor ranging between 1.4 and 4
upon the module construction.
Enrichment Procedures

NETGE-PLUS implements both a standard and a network-
based gene enrichment analysis. Given an input gene/protein
set, genes are mapped into the subnetworks of each annotation
database. NETGE-PLUS allows us to perform: (i) ORA,
through the Fisher’s exact test and (ii) GSEA, through a
Kolmogorov−Smirnov-like statistic, as described by Subrama-
nian et al.1 and reimplemented using the Python 2.7 package
GSEAPY (v0.9.4; https://pypi.python.org/pypi/gseapy). For
GSEA, we use a weighted enrichment-scoring statistic and 100
permutations. For the multiple testing correction, the user can
select either the Bonferroni or the Benjamini−Hochberg (false
discovery rate (FDR)) procedures.12

Implementation of the Web Server

TheWeb server runs on a web2py engine (http://www.web2py.
com/), and it is optimized to work with all common Web
browsers. The analysis runs asynchronously: Upon request
submission, the server displays a bookmarkable page that is
periodically updated until job completion. A link to the results
page is given to the user as soon as the job is completed.
The final visualization of the results exploits the Graphviz

library (http://www.graphviz.org/) for laying out the directed
acyclic graphs for Gene Ontology, KEGG, and REACTOME.
KEGG-NET results are rendered via the JavaScript library
Cytoscape.js (http://js.cytoscape.org/). Enriched terms from
these annotation systems are highlighted. In addition, the Web
server shows dynamic network renderings based on the
JavaScript library d3.js (http://d3js.org/) for the visualization
of the underlying interaction networks involving a specific term
and the network of pathways.
For multiple submissions, each request is queued, and it runs

as soon as there is available computing power. The run time
depends on the size of the input set (from 2 up to 200; higher
numbers may require a long time) and ranges from 1 to 10 min.
The user can also provide an e-mail address to receive results.

Case Studies

Three gene sets, related to human and porcine diseases, were
investigated to qualitatively evaluate the performance of
NETGE-PLUS. Here we focus on only one of them, the
nonalcoholic fatty liver disease (NAFLD) study case. The other
two study cases are presented in the Supporting Information and
online (http://net-ge2.biocomp.unibo.it/enrich/default/
tutorial).
We retrieved from Phenopedia13 a list of genes that possibly

contribute to the development of NAFLD. Among the 408
NAFLD-related genes, we selected the ones supported by at
least five publications. As a result, we obtained a list of 28 genes.
The set was analyzed by running ORA over the KEGG-NET

Table 1. NETGE-PLUS Summary Statistics

H. sapiens S. scrofa A. thaliana S. cerevisiae E. coli

annotated genes 17 060 16 406 19 144 5860 3790
annotation setsa 23 384 19 022 10 494 9707 5800
associationsstd

b 913 514 552 526 382 085 321 667 156 394
associationsnet

c 3 065 034 1 696 519 1 279 481 780 930 436 734
aNumber of GO terms, KEGG, and Reactome pathways. bNumber of gene-term associations used in the standard enrichment analysis. cNumber of
gene-term associations used in the network-based enrichment analysis.
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resource. We considered statistically enriched terms with a p
value <0.01 after the correction with the Bonferroni procedure.

■ RESULTS AND DISCUSSION

NETGE-PLUS Web Server

NETGE-PLUS accepts different gene names and identifiers
(UniProtKB, ENSEMBL gene and protein, official gene name,
and the systematic locus identifier) plus the related scores in the

case of GSEA. As output, NETGE-PLUS returns two tables (one
for the standardmethod and one for the network-based method;
Figure 1A) listing the over-represented terms. The tables report
basic information (e.g., term name, p value(s), input genes) plus
other statistics that allow a better understanding of the
specificity of the enriched terms. These include the information
content (IC), a measure of function specificity,14 and the
ontology hierarchy level. The results page also provides graphs

Figure 1. NETGE-PLUS results. (A) Table of network-based over-represented KEGG-NET pathways. (B) Network of pathways. Circles represent
enriched pathways, and diamonds represent the connecting pathways. The circle color represents the magnitude of enrichment, and the green
diamonds highlight the presence of at least one input gene associated with them. Each edge is labeled with the number of genes shared between
pathways in the standard gene enrichment procedure (S) and in the network-based procedure (N). (C) Example of a functional module of the over-
represented GO term GO:0042438. Seed nodes (yellow) represent genes directly annotated with the term, and connecting nodes (blue) represent
connecting genes. Nodes presenting a purple border identify the part of the submitted genes. The link type is highlighted based on the seven different
channels of STRING (https://string-db.org/).
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depicting (i) the functional connection among enriched terms
(the hierarchy or the network of pathways; Figure 1B) and (ii)
the organization of functional modules (subnetworks; Figure
1C). Tables and graphs can be downloaded and locally
managed.
Input and output details are presented in the Supporting

Information. Additional details are also available online (http://
net-ge2.biocomp.unibo.it/enrich/default/help).

Understanding the Functional Relationships among
Over-Represented KEGG Pathways

When enriching functional pathways, it is useful to represent
them in a larger context that comprises the most related
pathways.Whereas for REACTOME a full hierarchy is provided,
in the case of KEGG, the BRITE hierarchy gives only a
categorization of the different KEGG maps. For a better
understanding of the overall organization of the KEGG
pathways, we exploit the information contained in the links
among different KEGG maps by defining KEGG-NET. When a
set of genes enriches different KEGG pathways, the most related
connecting pathways are determined by computing the pairwise
shortest paths through the links. Because the pathway network is
highly connected, we retain only the paths with a maximum
length equal to two (no. of edges). KEGG map01100 (whole
metabolism) and the disease-related maps are not considered in
this procedure because of their dense connectivity. By this, users
have the possibility of obtaining putative biological dependences
among the enriched pathways.

Nonalcoholic Fatty Liver Disease: A Case Study Involving
the KEGG-NET Resource

In the following, we deal with a specific case study, described also
in the online tutorial. We make use of the KEGG-NET resource
to dissect the biological complexity of NAFLD. Defined as a
genetic−environmental−metabolic stress-related disease,
NAFLD is a pathology characterized by excessive fat
accumulation in the liver, even in the absence of alcohol
consumption. NAFLD encompasses a spectrum of diseases,
from simple steatosis to nonalcoholic steatohepatitis (NASH),
which can progress to cirrhosis and hepatocellular carcinoma.
There is also increasing evidence that NAFLD represents the
hepatic component of a metabolic syndrome characterized by
obesity, hyperinsulinemia, peripheral insulin resistance, dia-
betes, hypertriglyceridemia, and hypertension.15 Moreover,
several studies have identified many genetic variations that
may be associated with the development of NAFLD.16

The analysis of the 28 NAFLD-related genes highlighted 6
over-represented pathways (Table 2); 3 were detected via the
standard enrichment analysis, whereas the other 3 were added
by the network-based procedure.

Pathways over-represented by the standard method are the
adipocytokine signaling pathway, the longevity-regulating path-
way, and the AMPK signaling pathway. Considering the graph
generated by linking the whole set of enriched pathways (Figure
1B), the three pathways are connected within a chain. All of
them are also linked to the insulin-signaling pathway (not
included in the enriched set). Insulin resistance plays an
important role in NAFLD, and it is caused by adipocytokines, a
specific kind of cytokine secreted by the adipose tissue.
Adiponectin is an anti-inflammatory and antidiabetic adipocy-
tokine, which exerts its actions by the activation of adenosine
monophosphate (AMP)-activated kinase (AMPK) and
PPARα.17 Interestingly enough, the PPAR signaling pathway
is one of the terms enriched with the network-based procedure.
Another important cytokine within the adipocytokine path-

way is leptin. It binds the leptin receptor (LEP-R) and triggers a
phosphorylation chain, resulting in the activation of the
mitogen-activated protein kinase (MAPK) pathway.18 This is
another connecting pathway in the network. One of the
members of the MAPK pathway, namely, the protein kinase c-
Jun N-terminal kinase (JNK), is closely related to insulin
resistance. Moreover, rat models with activated JNK present
phenotypes related to NAFLD, such as hepatocyte fat
accumulation and cell injury.15

In Figure 1B, the MAPK pathway links the adipocytokine and
insulin signaling pathways with the Th17 cell differentiation
pathway (enriched with the network-based procedure).
Interestingly, Th17 cells have been associated with hepatocel-
lular steatosis and inflammatory processes via the production of
IL-17, which is also implicated in insulin resistance. Moreover,
the secretion of IL-17 is triggered and perpetuated through the
nuclear factor-κB (NF-κB),19 and theNF-κB pathway is indeed a
connecting node.
The last term enriched with the network procedure is

“phagosome”, which is linked to the other nodes through the
“Toll-like receptor signaling pathway”. Both of these terms
computationally derived with NETGE-PLUS suggest the
involvement of macrophages in NAFLD, in particular, in
relation to the reprogramming induced by cytokines. The role
of macrophages in NAFLD from initial steatosis to advanced
fibrosis was previously reviewed.20 By highlighting links among
different metabolisms, KEGG-NET can help to highlight the
complex interactions among different biological pathways
underlying the phenotype of interest.

■ CONCLUSIONS

We describe a Web server, NETGE-PLUS, which, besides
standard enrichment methods, computes online interesting
alternatives for characterizing the molecular complexity of

Table 2. Nonalcoholic Fatty Liver Disease Case Studya

enrichmentb termc N1d N2e backgroundf Bonferronig descriptionh

S hsa04920 6 69 6516 8.44 × 10−5 adipocytokine signaling pathway
S hsa04211 6 90 6516 4.12 × 10−4 longevity regulating pathway
S hsa04152 6 121 6516 2.32 × 10−3 AMPK signaling pathway
N hsa03320 8 133 7921 2.85 × 10−6 PPAR signaling pathway
N** hsa04145 9 426 7921 2.28 × 10−3 phagosome
N hsa04659 6 175 7921 6.39 × 10−3 Th17 cell differentiation

aGene enrichment analysis over the KEGG-NET resource. bStandard (S) and network-based (N) procedures. N** indicates a new enriched term
not directly associated with the input gene/proteins. cFunctional annotation identifier. dInput genes/proteins belonging to the term. eGenes
associated with the functional term. fNumber of genes used as background at the Fisher’s exact test. gp value corrected by using the Bonferroni
procedure. hBrief explanation of the term.

Journal of Proteome Research pubs.acs.org/jpr Technical Note

https://dx.doi.org/10.1021/acs.jproteome.9b00749
J. Proteome Res. 2020, 19, 2873−2878

2876

http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.9b00749/suppl_file/pr9b00749_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.9b00749/suppl_file/pr9b00749_si_001.pdf
http://net-ge2.biocomp.unibo.it/enrich/default/help
http://net-ge2.biocomp.unibo.it/enrich/default/help
pubs.acs.org/jpr?ref=pdf
https://dx.doi.org/10.1021/acs.jproteome.9b00749?ref=pdf


emergent phenotypes in organisms encompassing the different
kingdoms of life. NETGE-PLUS, with a user-friendly Web page,
offers: (i) the possibility of performing ORA and GSEA, both
according for standard and network-based procedures; (ii) the
possibility of performing network-based enrichment over sets of
connected genes with updated annotations for H. sapiens and
four other well-studied model organisms (S. scrofa, S. cerevisiae,
E. coli, andA. thaliana); and (iii) the possibility of understanding
the functional relationships among over-represented KEGG
pathways via the KEGG-NET resource.
NETGE-PLUS is therefore a useful tool for disentangling

biological complexity and, via the subnetworks (network-based
enrichment analysis), for retrieving genes that, besides the ones
given in the input, may play a fundamental role in the genotype−
phenotype relationship.
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